Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T15:16:16.848Z Has data issue: false hasContentIssue false

8 - Diffusion and diffusional creep

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access

Summary

Diffusional creep is an important mechanism of plastic deformation in a polycrystalline material at relatively low stress and small grain size. There is evidence that diffusional creep plays an important role in some regions of Earth. At high temperatures, atoms move from their stable positions with some probability due to thermally activated processes. This is referred to as diffusion. The driving force for diffusion is the gradient in chemical potential including the concentration gradient caused by the contact of materials with different chemical compositions or by the stress gradient at grain boundaries created by the applied stress. Consequently, the rate of deformation due to diffusive mass transport is sensitive to diffusion coefficient as well as grain size: the rate of deformation is faster for a smaller grain size. Similar to other processes, diffusional mass transport involves a number of parallel (independent) and sequential (dependent) processes. As a result, the interplay of various diffusing species can be complicated and this also results in a complicated variation in grain-size sensitivity with grain size. Deformation of a polycrystalline material is associated with grain boundary sliding. Large-strain plastic flow involving grain-boundary sliding is sometimes referred to as superplastic flow. Materials science models of superplastic flow are reviewed and some geological significance is discussed. Finally, transient diffusional creep caused by the stress redistribution and its possible roles in small-strain deformation in Earth are discussed.

Key words point defects, diffusion, Fick's law, high-diffusivity path, chemical reaction, Nabarro–Herring creep, Coble creep, pressure-solution creep, grain-boundary sliding, superplasticity.

Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 123 - 142
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×