Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T13:23:04.347Z Has data issue: false hasContentIssue false

4 - Micro-damage mechanics

Published online by Cambridge University Press:  05 July 2012

Ramesh Talreja
Affiliation:
Texas A & M University
Chandra Veer Singh
Affiliation:
University of Toronto
Get access

Summary

Introduction

As explained in the previous chapter, damage affects the overall stress–strain response of the solid continuum body. Damage mechanics pertains to the study of this effect. Two widely different subfields have emerged over the years in this field. One concerns study of damage directly at the scale of formation of cracks, i.e., the microstructural scale, and hence can be called “micro-damage mechanics” (MIDM). The other approach, on the contrary, looks at the overall response at the macro or structural scale by using some internal variables to characterize damage, and thus can be termed as “macro-damage mechanics” (MADM). These terms were originally coined by Hashin [1]. MADM is the same as “continuum damage mechanics” (CDM), which is still the commonly used terminology.

MIDM for composite materials is derived from an older and more mature field called micromechanics that deals with overall properties of heterogeneous materials (see, e.g., [2]). In micromechanics one views heterogeneities such as inclusions and voids as “microstructure” and estimates overall properties by various methods, e.g., averaging schemes such as self-consistent and differential schemes, or variational methods to obtain bounds to average properties. Microcracks are treated as limiting geometry of microvoids, such as ellipsoidal voids with one dimension much smaller than the other two. As illustrated in the previous chapter, “damage” in composite materials has significant complexities concerning the geometry as well as evolution characteristics such as multiplication of cracks within a fixed volume. For these reasons a simple extension of micromechanics to damage in composites is generally not possible. A separate field identified as MIDM has therefore emerged. This chapter will treat the features of MIDM that have been developed to specifically treat certain cases of damage in composite materials. Since determining local (micro-level) stress or displacement fields is a necessary feature of micromechanics, it is expected that not all cases within the wide range of damage in composites can be handled by MIDM. However, this limitation can be alleviated by incorporating computational solutions of the local stress or displacement fields, thereby broadening classical micromechanics to include so-called computational micromechanics. In the most recent versions of MIDM this strategy has been used. More on this will be discussed toward the end of this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hashin, Z.Analysis of damage in composite materialsYielding, Damage, and Failure of Anisotropic SolidsBoehler, J. P.LondonMechanical Engineering Publications 1990 3Google Scholar
Nemat-Nasser, S.Hori, M.Micromechanics: Overall Properties of Heterogeneous MaterialsAmsterdamNorth Holland, 1999Google Scholar
Aveston, J.Cooper, G. A.Kelly, A.Single and multiple fractureThe Properties of Fiber CompositesSurrey, UKIPC Science and Technology Press, National Physical Laboratory 1971 15Google Scholar
Kelly, A.The 1995 Bakerian Lecture: composite materialsPhil Trans R Soc London A 354 1996 1841CrossRefGoogle Scholar
Cooper, G. A.Sillwood, J. M.Multiple fracture in a steel reinforced epoxy resin compositeJ Mater Sci 7 1972 325CrossRefGoogle Scholar
Aveston, J.Kelly, A.Theory of multiple fracture of fibrous compositesJ Mater Sci 8 1973 352CrossRefGoogle Scholar
Wang, S. W.Parvizi-Majidi, A.Experimental characterization of the tensile behaviour of Nicalon fibre-reinforced calcium aluminosilicate compositesJ Mater Sci 27 1992 5483CrossRefGoogle Scholar
Masters, J. E.Reifsnider, K. L.An investigation of cumulative damage development in quasi-isotropic graphite/epoxy laminatesDamage in Composite Materials 775 Reifsnider, K. L.Philadelphia, PAASTM 1982 40Google Scholar
Tong, J.Guild, F. J.Ogin, S. L.Smith, P. A.On matrix crack growth in quasi-isotropic laminates – I. Experimental investigationCompos Sci Technol 57 1997 1527CrossRefGoogle Scholar
Katerelos, D. T. G.Lundmark, P.Varna, J.Galiotis, C.Analysis of matrix cracking in GFRP laminates using Raman spectroscopyCompos Sci Technol 67 2007 1946CrossRefGoogle Scholar
Yokozeki, T.Aoki, T.Ishikawa, T.Consecutive matrix cracking in contiguous plies of composite laminatesInt J Solids Struct 42 2005 2785CrossRefGoogle Scholar
Yokozeki, T.Aoki, T.Ogasawara, T.Ishikawa, T.Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite laminatesCompos A 36 2005 1229CrossRefGoogle Scholar
Kashtalyan, M.Soutis, C.Stiffness and fracture analysis of laminated composites with off-axis ply matrix crackingCompos A 38 2007 1262CrossRefGoogle Scholar
Kashtalyan, M.Soutis, C.Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminatesJ Mater Sci 41 2006 6789CrossRefGoogle Scholar
McCartney, L. N.Schoeppner, G. A.Predicting the effect of non-uniform ply cracking on the thermoelastic properties of cross-ply laminatesCompos Sci Technol 62 2002 1841CrossRefGoogle Scholar
Silberschmidt, V. V.Effect of micro-randomness on macroscopic properties and fracture of laminatesJ Mater Sci 41 2006 6768CrossRefGoogle Scholar
Silberschmidt, V. V.Matrix cracking in cross-ply laminates: effect of randomnessCompos A 36 2005 129CrossRefGoogle Scholar
Asp, L. E.Berglund, L. A.Talreja, R.A criterion for crack initiation in glassy polymers subjected to a composite-like stress stateCompos Sci Technol 56 1996 1291CrossRefGoogle Scholar
Asp, L. E.Berglund, L. A.Talreja, R.Effects of fiber and interphase on matrix-initiated transverse failure in polymer compositesCompos Sci Technol 56 1996 657CrossRefGoogle Scholar
Asp, L. E.Berglund, L. A.Talreja, R.Prediction of matrix-initiated transverse failure in polymer compositesCompos Sci Technol 56 1996 1089CrossRefGoogle Scholar
Huang, H. S.Talreja, R.Numerical simulation of matrix micro-cracking in short fiber reinforced polymer composites: initiation and propagationCompos Sci Technol 66 2006 2743CrossRefGoogle Scholar
Huang, H.Talreja, R.Effects of void geometry on elastic properties of unidirectional fiber reinforced compositesCompos Sci Technol 65 2005 1964CrossRefGoogle Scholar
Chowdhury, K. A.Talreja, R.Benzerga, A. A.Effects of manufacturing-induced voids on local failure in polymer-based compositesJ Eng Mater Tech, Trans ASME 130 2008CrossRefGoogle Scholar
Chowdhury, K. A. 2007
Cox, H. L.The elasticity and strength of paper and other fibrous materialsBr J Appl Phys 3 1952 72CrossRefGoogle Scholar
Nairn, J. A.On the use of shear-lag methods for analysis of stress transfer unidirectional compositesMech Mater 26 1997 63CrossRefGoogle Scholar
Garrett, K. W.Bailey, J. E.Multiple transverse fracture in 90 degrees cross-ply laminates of a glass fiber-reinforced polyesterJ Mater Sci 12 1977 157CrossRefGoogle Scholar
Parvizi, A.Garrett, K. W.Bailey, J. E.Constrained cracking in glass fiber-reinforced epoxy cross-ply laminatesJ Mater Sci 13 1978 195CrossRefGoogle Scholar
Manders, P. W.Chou, T. W.Jones, F. R.Rock, J. W.Statistical analysis of multiple fracture in 0°/90°/0° glass fibre/epoxy resin laminatesJ Mater Sci 18 1983 2876CrossRefGoogle Scholar
Highsmith, A. L.Reifsnider, K. L.Stiffness-reduction mechanisms in composite laminatesDamage in Composite Materials 775 Reifsnider, K. L.Philadelphia, PAASTM 1982 103Google Scholar
Lee, J. W.Daniel, I. M.Progressive transverse cracking of crossply composite laminatesJ Compos Mater 24 1990 1225CrossRefGoogle Scholar
Flaggs, D. L.Prediction of tensile matrix failure in composite laminatesJ Compos Mater 19 1985 29CrossRefGoogle Scholar
Tan, S. C.Nuismer, R. J.A theory for progressive matrix cracking in composite laminatesJ Compos Mater 23 1989 1029CrossRefGoogle Scholar
Han, Y. M.Hahn, H. T.Ply cracking and property degradations of symmetric balanced laminates under general in-plane loadingCompos Sci Technol 35 1989 377CrossRefGoogle Scholar
Han, Y. M.Hahn, H. T.Croman, R. B.A simplified analysis of transverse ply cracking in cross-ply laminatesCompos Sci Technol 31 1988 165CrossRefGoogle Scholar
Laws, N.Dvorak, G. J.Progressive transverse cracking in composite laminatesJ Compos Mater 22 1988 900CrossRefGoogle Scholar
McManus, H. L.Maddocks, J. R.On microcracking in composite laminates under thermal and mechanical loadingPolymers & Polymer Composites 4 1996 305Google Scholar
Lim, S. G.Hong, C. S.Prediction of transverse cracking and stiffness reduction in cross-ply laminate compositesJ Compos Mater 23 1989 695CrossRefGoogle Scholar
Caslini, M.Zanotti, C.O'Brien, T. K.Fracture mechanics of matrix cracking and delamination in glass/epoxy laminatesJ Compos Tech Res 9 1987 121Google Scholar
Nairn, J. A.Mendels, D. A.On the use of planar shear-lag methods for stress-transfer analysis of multilayered compositesMech Mater 33 2001 335CrossRefGoogle Scholar
Berthelot, J. M.Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loadingAppl Mech Rev 56 2003 111CrossRefGoogle Scholar
Nairn, J. A.Hu, S.Micromechanics of damage: A case study of matrix microcrackingDamage Mechanics of Composite MaterialsTalreja, R.AmsterdamElsevier 1994 187Google Scholar
Parvizi, A.Bailey, J. E.Multiple transverse cracking in glass-fiber epoxy cross-ply laminatesJ Mater Sci 13 1978 2131CrossRefGoogle Scholar
Dvorak, G. J.Laws, N.Heiazi, M.Analysis of progressive matrix cracking in composite laminates – I. Thermoelastic properties of a ply with cracksJ Compos Mater 19 1985 216CrossRefGoogle Scholar
Fukunaga, H.Chou, T.-W.Peters, P. W. M.Schulte, K.Probabilistic failure strength analysis of graphite/epoxy cross-ply laminatesJ Compos Mater 18 1984 339CrossRefGoogle Scholar
Steif, P. S.Parabolic shear lag analysis of a [0/90]s laminate. Transverse ply crack growth and associated stiffness reduction during the fatigue of a simple cross-ply laminateOgin, S. L.Smith, P. A.Beaumont, P. W. R.105Cambridge UniversityEngineering Department, UK 1984Google Scholar
Ogin, S. L.Smith, P. A.Beaumont, P. W. R.Matrix cracking and stiffness reduction during the fatigue of [0/90]s GFRP laminateCompos Sci Technol 22 1985 23CrossRefGoogle Scholar
Ogin, S. L.Smith, P. A.Beaumont, P. W. R.Stress intensity factor approach to the fatigue growth of transverse ply cracksCompos Sci Technol 24 1985 47CrossRefGoogle Scholar
Nuismer, R. J.Tan, S. C.Constitutive relations of a cracked composite laminaJ Compos Mater 22 1988 306CrossRefGoogle Scholar
Fan, J.Zhang, J.In-situ damage evolution and micro/macro transition for laminated compositesCompos Sci Technol 47 1993 107CrossRefGoogle Scholar
Kashtalyan, M.Soutis, C.Stiffness degradation in cross-ply laminates damaged by transverse cracking and splittingCompos A 31 2000 335CrossRefGoogle Scholar
Zhang, J. Q.Herrmann, K. P.Fan, J. H.A theoretical model of matrix cracking in composite laminates under thermomechanical loadingActa Mech Solida Sin 14 2001 299Google Scholar
Kashtalyan, M.Soutis, C.Analysis of composite laminates with intra- and interlaminar damageProg Aerosp Sci 41 2005 152CrossRefGoogle Scholar
Berthelot, J. M.Analysis of the transverse cracking of cross-ply laminates: a generalized approachJ Compos Mater 31 1997 1780CrossRefGoogle Scholar
Berthelot, J. M.Leblond, P.El Mahi, A.Le Corre, J. F.Transverse cracking of cross-ply laminates: part 1. AnalysisCompos A 27 1996 989CrossRefGoogle Scholar
Lee, J. W.Daniel, I. M.Yaniv, G.Fatigue life prediction of cross-ply composite laminatesCompos Mater: Fatigue and Fracture 2 1989 19Google Scholar
Nairn, J. A.Hu, S. F.The formation and effect of outer-ply microcracks in cross-ply laminates – a variational approachEng Fract Mech 41 1992 203CrossRefGoogle Scholar
Manders, P. W.Chou, T. W.Jones, F. R.Rock, J. W.Statistical analysis of multiple fracture in [0/90/0] glass fiber/epoxy resin laminatesJ Mater Sci 18 1983 2876CrossRefGoogle Scholar
Laws, N.Dvorak, G. J.The loss of stiffness of cracked laminatesProceedings of the IUTAM Eshelby Memorial SymposiumCambridgeCambridge University Press 1985Google Scholar
Laws, N.Dvorak, G. J.Hejazi, M.Stiffness changes in unidirectional composites caused by crack systemsMech Mater 2 1983 123CrossRefGoogle Scholar
Hill, R.A self-consistent mechanics of composite materialsJ Mech Phys Solids 13 1965 213CrossRefGoogle Scholar
Budiansky, B.On elastic moduli of some heterogeneous materialsJ Mech Phys Solids 13 1965 223CrossRefGoogle Scholar
Eshelby, J. D.The determination of the elastic field of an ellipsoidal inclusion, and related problemsProc R Soc London A 241 1226 376CrossRefGoogle Scholar
Eshelby, J. D.Elastic inclusion and inhomogeneitiesProgress in Solid MechanicsAmsterdamNorth Holland 1961 89Google Scholar
Hoiseth, K.A micromechanics study of transverse matrix cracking in cross-ply compositesGeorgia Institute of TechnologyAtlanta, GA 1995Google Scholar
Qu, J.Hoiseth, K.Evolution of transverse matrix cracking in cross-ply laminatesFatigue Fract Eng Mater Struc 21 1998 451CrossRefGoogle Scholar
Hashin, Z.Analysis of cracked laminates: A variational approachMech Mater 4 1985 121CrossRefGoogle Scholar
Hashin, Z.Analysis of composite materials – a surveyJ Appl Mech, Trans ASME 50 1983 481CrossRefGoogle Scholar
Nairn, J. A.The strain energy release rate of composite microcracking: A variational approachJ Compos Mater 23 1989 1106CrossRefGoogle Scholar
Bailey, J. E.Curtis, P. T.Parvizi, A.On the transverse cracking and longitudinal splitting behavior of glass and carbon-fiber reinforced epoxy cross-ply laminates and the effect of Poisson and thermally generated strainProc R Soc London A 366 1979 599CrossRefGoogle Scholar
Varna, J.Berglund, L. A.Multiple transverse cracking and stiffness reduction in cross-ply laminatesJ Compos Tech Res 13 1991 97Google Scholar
Varna, J.Berglund, L.Two-dimensional transverse cracking in [0(m)/90(n)](s) cross-ply laminatesEur J Mech A – Solids 12 1993 699Google Scholar
Varna, J.Berglund, L. A.Thermoelastic properties of composite laminates with transverse cracksJ Compos Tech Res 16 1994 77Google Scholar
Hashin, Z.Thermal-expansion coefficients of cracked laminatesCompos Sci Technol 31 1988 247CrossRefGoogle Scholar
Hashin, Z.Analysis of orthogonally cracked laminates under tensionJ Appl Mech, Trans ASME 54 1987 872CrossRefGoogle Scholar
Kuriakose, S.Talreja, R.Variational solutions to stresses in cracked cross-ply laminates under bendingInt J Solids Struct 41 2004 2331CrossRefGoogle Scholar
Varna, J.Krasnikovs, A.Transverse cracks in cross-ply laminates 2. Stiffness degradationMech Compos Mater 34 1998 153CrossRefGoogle Scholar
Varna, J.Berglund, L.Krasnikovs, A.Chihalenko, A.Crack opening geometry in cracked composite laminatesInt J Damage Mech 6 1997 96CrossRefGoogle Scholar
Joffe, R.Varna, J.Analytical modeling of stiffness reduction in symmetric and balanced laminates due to cracks in 90 degrees layersCompos Sci Technol 59 1999 1641CrossRefGoogle Scholar
McCartney, L. N.Theory of stress transfer in a 0-degrees-90-degrees-0-degrees cross-ply laminate containing a parallel array of transverse cracksJ Mech Phys Solids 40 1992 27CrossRefGoogle Scholar
McCartney, L. N.Energy-based prediction of failure in general symmetric laminatesEng Fract Mech 72 2005 909CrossRefGoogle Scholar
McCartney, L. N.Physically based damage models for laminated compositesProc Inst Mech Engineers L – J Mater Design App 217 2003 163Google Scholar
McCartney, L. N.Prediction of ply crack formation and failure in laminatesCompos Sci Technol 62 2002 1619CrossRefGoogle Scholar
McCartney, L. N.Model to predict effects of triaxial loading on ply cracking in general symmetric laminatesCompos Sci Technol 60 2000 2255CrossRefGoogle Scholar
McCartney, L. N.Predicting transverse crack formation in cross-ply laminatesCompos Sci Technol 58 1998 1069CrossRefGoogle Scholar
Errata to “Model to predict effects of triaxial loading on ply cracking in general symmetric laminates.” [Compos Sci Technol 2000; 60(12–13):2255–2279]Compos Sci Technol 62 2002 1273CrossRef
Nairn, J. A.Fracture mechanics of composites with residual thermal stressesJ Appl Mech, Trans ASME 64 1997 804CrossRefGoogle Scholar
Ostlund, S.Gudmundson, P.Numerical analysis of matrix-crack-induced delaminations in [+/−55-degrees] GFRP laminatesCompos Eng 2 1992 161CrossRefGoogle Scholar
Gudmundson, P.Zang, W. L.An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracksInt J Solids Struct 30 1993 3211CrossRefGoogle Scholar
Gudmundson, P.Zang, W.Thermoelastic properties of microcracked composite laminatesMech Compos Mater Struct 29 1993 107CrossRefGoogle Scholar
Gudmundson, P.Ostlund, S.Numerical verification of a procedure for calculation of elastic-constants in microcracking composite laminatesJ Compos Mater 26 1992 2480CrossRefGoogle Scholar
Gudmundson, P.Ostlund, S.1st order analysis of stiffness reduction due to matrix crackingJ Compos Mater 26 1992 1009CrossRefGoogle Scholar
Gudmundson, P.Ostlund, S.Prediction of thermoelastic properties of composite laminates with matrix cracksCompos Sci Technol 44 1992 95CrossRefGoogle Scholar
Adolfsson, E.Gudmundson, P.Matrix crack initiation and progression in composite laminates subjected to bending and extensionInt J Solids Struct 36 1999 3131CrossRefGoogle Scholar
Adolfsson, E.Gudmundson, P.Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracksInt J Solids Struct 34 1997 2035CrossRefGoogle Scholar
Adolfsson, E.Gudmundson, P.Matrix crack induced stiffness reductions in [(0_m/90_n/+theta_p/−theta_q)(s)](m) composite laminatesCompos Eng 5 1995 107CrossRefGoogle Scholar
Varna, J.Akshantala, N. V.Talreja, R.Crack opening displacement and the associated response of laminates with varying constraintsInt J Damage Mech 8 1999 174CrossRefGoogle Scholar
Lundmark, P.Varna, J.Constitutive relationships for laminates with ply cracks in in-plane loadingInt J Damage Mech 14 2005 235CrossRefGoogle Scholar
Lundmark, P.Damage mechanics analysis of inelastic behaviour of fiber compositesLuleå University of Technology, LuleåSweden 2005 175Google Scholar
Krasnikovs, A.Varna, J.Transverse cracks in cross-ply laminates. I. Stress analysisMech Compos Mater Struct 33 1997 565CrossRefGoogle Scholar
Joffe, R.Krasnikovs, A.Varna, J.COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminatesCompos Sci Technol 61 2001 637CrossRefGoogle Scholar
Hill, R.Elastic properties of reinforced solids: Some theoretical principlesJ Mech Phy Solids 11 1963 357CrossRefGoogle Scholar
Rubenis, O.Spārninš, E.Andersons, J.Joffe, R.The effect of crack spacing distribution on stiffness reduction of cross-ply laminatesAppl Compos Mater 14 2007 59CrossRefGoogle Scholar
Benthem, J. P.Koiter, W. T.Asymptotic approximations to crack problemsMechanics of Fracture I: Methods of Analysis and Solutions of Crack ProblemsSih, G. C.LeydenNoordhoff 1972 131Google Scholar
Tada, H.Paris, P.Irwin, G.The Stress Analysis of Cracks HandbookSt. Louis, MO: Del Research Corporation 1973Google Scholar
Lundmark, P.Varna, J.Crack face sliding effect on stiffness of laminates with ply cracksCompos Sci Technol 66 2006 1444CrossRefGoogle Scholar
Varna, J.Physical interpretation of parameters in synergistic continuum damage mechanics model for laminatesCompos Sci Technol 68 2008 2592CrossRefGoogle Scholar
Li, S.Reid, S. R.Soden, P. D.A finite strip analysis of cracked laminatesMech Mater 18 1994 289CrossRefGoogle Scholar
Reddy, J. N.A generalization of two-dimensional theories of laminated composite platesCommun Appl Nume Mthds 3 1987 173CrossRefGoogle Scholar
Li, S.Singh, C. V.Talreja, R.A representative volume element based on translational symmetries for FE analysis of cracked laminates with two arrays of cracksInt J Solids Struct 46 2009 1793CrossRefGoogle Scholar
Noh, J.Whitcomb, J.Effect of various parameters on the effective properties of a cracked plyJ Compos Mater 35 2001 689CrossRefGoogle Scholar
Li, S.General unit cells for micromechanical analyses of unidirectional compositesCompos A 32 2001 815CrossRefGoogle Scholar
Li, S.On the unit cell for micromechanical analysis of fibre-reinforced compositesProc R Soc London A 455 1999 815CrossRefGoogle Scholar
Li, S.Boundary conditions for unit cells from periodic microstructures and their implicationsCompos Sci Technol 68 2008 1962CrossRefGoogle Scholar
Li, S. G.Wongsto, A.Unit cells for micromechanical analyses of particle-reinforced compositesMech Mater 36 2004 543CrossRefGoogle Scholar
Srirengan, K.Whitcomb, J. D.Finite element based degradation model for composites with transverse matrix cracksJ Thermoplast Compos Mater 11 1998 113CrossRefGoogle Scholar
Tong, J.Guild, F. J.Ogin, S. L.Smith, P. A.On matrix crack growth in quasi-isotropic laminates – II. Finite element analysisCompos Sci Technol 57 1997 1537CrossRefGoogle Scholar
Yuan, F. G.Selek, M. C.Transverse cracking and stiffness reduction in composite laminatesJ Reinf Plas Compos 12 1993 987CrossRefGoogle Scholar
Cook, R.Malkus, D.Plesha, M.Witt, R.Concepts and Applications of Finite Element AnalysisJohn Wiley & Sons 2002Google Scholar
Reddy, J.Energy Principles and Variational Methods in Applied Mechanics, 4th ednHobokenNew Jersey: John Wiley & Sons, Inc. 2002Google Scholar
Reddy, J. N.Mechanics of Laminated Composite Plates and Shells: Theory and AnalysisBoca RatonCRC Press 2004Google Scholar
Robbins, D. H.Reddy, J. N.Analysis of piezoelectrically actuated beams using a layer-wise displacement theoryComputers & Structures 41 1991 265CrossRefGoogle Scholar
Robbins, D. H.Reddy, J. N.Rostam-Abadi, F.An efficient continuum damage model and its application to shear deformable laminated platesMech Adv Mater Struc 12 2005 391CrossRefGoogle Scholar
Garcao, J. E. S.Soares, C. M. M.Soares, C. A. M.Reddy, J. N.Analysis of laminated adaptive plate structures using layerwise finite element modelsComputers & Structures 82 2004 1939CrossRefGoogle Scholar
Reddy, J. N.An evaluation of equivalent-single-layer and layer-wise theories of composite laminatesCompos Struct 25 1993 21CrossRefGoogle Scholar
Reddy, Y. S. N.Moorthy, C. M. D.Reddy, J. N.Nonlinear progressive failure analysis of laminated composite platesInt J Non Linear Mech 30 1995 629CrossRefGoogle Scholar
Robbins, D. H.Reddy, J. N.Modeling of thick composites using a layerwise laminate theoryInt J Numer Methods Eng 36 1993 655CrossRefGoogle Scholar
Na, W. J.Reddy, J. N.Multiscale analysis of transverse cracking in cross-ply laminates beams using the layerwise theoryJ Solid Mech 2 2010 1Google Scholar
Na, W. J.Reddy, J. N.Delamination in cross-ply laminated beams using the layerwise theoryAsian J Civil Eng 10 2009 451Google Scholar
Aboudi, J.Lee, S. W.Herakovich, C. T.Three-dimensional analysis of laminates with cross cracksJ Appl Mech, Trans ASME 55 1988 389CrossRefGoogle Scholar
Lee, S. W.Aboudi, J.Analysis of Composites Laminates with Matrix CracksBlacksburgVirginia 1988Google Scholar
Lee, J. H.Hong, C. S.Refined two-dimensional analysis of cross-ply laminates with transverse cracks based on the assumed crack opening deformationCompos Sci Technol 46 1993 157CrossRefGoogle Scholar
Gamby, D.Rebiere, J. L.A two-dimensional analysis of multiple matrix cracking in a laminated composite close to its characteristic damage stateCompos Struc 25 1993 325CrossRefGoogle Scholar
Zhang, D.Ye, J.Lam, D.Properties degradation induced by transverse cracks in general symmetric laminatesInt J Solids Struct 44 2007 5499CrossRefGoogle Scholar
Zhang, D.Ye, J.Lam, D.Ply cracking and stiffness degradation in cross-ply laminates under biaxial extension, bending and thermal loadingCompos Struct 75 2006 121CrossRefGoogle Scholar
Pagano, N. J.On the micromechanical failure modes in a class of ideal brittle matrix composites. Part 1. Coated-fiber compositesCompos B 29 1998 93CrossRefGoogle Scholar
Pagano, N. J.Schoeppner, G. A.Kim, R.Abrams, F. L.Steady-state cracking and edge effects in thermo-mechanical transverse cracking of cross-ply laminatesCompos Sci Technol 58 1998 1811CrossRefGoogle Scholar
Schoeppner, G. A.Pagano, N. J.Stress fields and energy release rates in cross-ply laminatesInt J Solids Struc 35 1998 1025CrossRefGoogle Scholar
McCartney, L. N.Schoeppner, G. A.Becker, W.Comparison of models for transverse ply cracks in composite laminatesCompos Sci Technol 60 2000 2347CrossRefGoogle Scholar
Nairn, J. A.The strain-energy release rate of composite microcracking – a variational approachJ Compos Mater 23 1989 1106CrossRefGoogle Scholar
Kim, R. Y.Crasto, A. S.Schoeppner, G. A.Dimensional stability of composite in a space thermal environmentCompos Sci Technol 60 2000 2601CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×