Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T12:05:00.690Z Has data issue: false hasContentIssue false

3 - Damage in composite materials

Published online by Cambridge University Press:  05 July 2012

Ramesh Talreja
Affiliation:
Texas A & M University
Chandra Veer Singh
Affiliation:
University of Toronto
Get access

Summary

All structures are designed for a purpose. If the purpose is to carry loads, then a designer must assure that the structure has sufficient load-bearing capacity. If the structure is to function over a period of time, then it must be designed to meet its functionality over that period without losing its integrity.

These are generic structural design issues irrespective of the material used. There are, however, significant differences in design procedures depending on whether the material used is a so-called monolithic material, e.g., a metal or a ceramic, or whether it is a composite material with distinctly different constituents. The heterogeneity of microstructure as well as the anisotropy of properties provide significantly different characteristics to composite materials in how they deform and fail when compared to metals or ceramics. This chapter will review those characteristics. However, before proceeding we need to introduce certain definitions.

  • Fracture: Conventionally, fracture is understood to be “breakage” of material, or at a more fundamental level, breakage of atomic bonds, manifesting itself in formation of internal surfaces. Examples of fracture in composites are fiber breakage, cracks in matrix, fiber/matrix debonds, and separation of bonded plies (delamination). The field known as fracture mechanics deals with conditions for formation and enlargement of the surfaces of material separation.

  • Damage: Damage, on the other hand, refers to a collection of all the irreversible changes brought about in a material by a set of energy dissipating physical or chemical processes, resulting from the application of thermomechanical loadings. Damage may inherently be manifested by atomic bond breakage. Unless specified differently, damage is understood to refer to distributed changes. Examples of damage in composites are multiple fiber-bridged matrix cracking in a unidirectional composite, multiple intralaminar cracking in a laminate, local delamination distributed in an interlaminar plane, and fiber/matrix interfacial slip associated with multiple matrix cracking. These damage mechanisms will be explained in some detail later in this chapter. The field of damage mechanics deals with conditions for initiation and progression of distributed changes as well as with consequences of those changes on the response of a material (and by implication, a structure) to external loading.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Military handbookMIL-HDBK-17–3f: Composite Materials Handbook 3 Department of DefenseUSA 2002Google Scholar
Gamstedt, E. K.Sjögren, B. A.Micromechanisms in tension-compression fatigue of composite laminates containing transverse pliesCompos Sci Technol 59 1999 167CrossRefGoogle Scholar
Hsueh, C. H.Interfacial debonding and fiber pull-out stresses of fiber-reinforced compositesMater Sci Eng A 154 1992 125CrossRefGoogle Scholar
Hsueh, C. H.Elastic load transfer from partially embedded axially loaded fibre to matrixJ Mater Sci Lett 7 1988 497CrossRefGoogle Scholar
Hsueh, C. H.Modeling of elastic stress transfer in fiber-reinforced compositesTrends Polym Sci 3 1995 336Google Scholar
Lauke, B.Beckert, W.Singletary, J.Energy release rate and stress field calculation for debonding crack extension at the fibre-matrix interface during single-fibre pull-outCompos Interfaces 3 1996 263CrossRefGoogle Scholar
Zhou, L. M.Kim, J. K.Mai, Y. W.Interfacial debonding and fiber pull-out stressesJ Mater Sci 27 1992 3155CrossRefGoogle Scholar
Drzal, L. T.The effect of polymer matrix mechanical properties on the fibre-matrix interfacial strengthMater Sci Eng A 126 1990 2890CrossRefGoogle Scholar
Whitney, J. M.Drzal, L. T.Axisymmetric stress distribution around an isolated fibre fragmentToughened CompositesJohnston, N. J.Philadelphia, PAASTM 1987 179CrossRefGoogle Scholar
Fabre, J. P.Sigety, P.Jacques, D.Stress transfer by shear in carbon fiber model compositesJ Mater Sci 26 1991 189Google Scholar
Henstenburg, R. B.Phoenix, S. L.Interfacial shear strength studies using single filament composite testPolym Compos 10 1989 389CrossRefGoogle Scholar
Hsueh, C. H.Interfacial debonding and fiber pull-out stresses of fiber-reinforced compositesMater Sci Eng A 123 1990 1CrossRefGoogle Scholar
Ghosh, S.Ling, Y.Majumdar, B.Kim, R.Interfacial debonding analysis in multiple fiber reinforced compositesMech Mater 32 2000 561CrossRefGoogle Scholar
Raghavan, P.Ghosh, S.A continuum damage mechanics model for unidirectional composites undergoing interfacial debondingMech Mater 37 2005 955Google Scholar
Chandra, N.Ghonem, H.Interfacial mechanics of push-out tests: Theory and experimentsCompos A 32 3 2001 575CrossRefGoogle Scholar
Lin, G.Geubelle, P. H.Sottos, N. R.Simulation of fiber debonding with friction in a model composite pushout testInt J Solids Struct 38 46 2001 8547CrossRefGoogle Scholar
Liu, Y. F.Kagawa, Y.Analysis of debonding and frictional sliding in fiber-reinforced brittle matrix composites: Basic problemsMater Sci Eng A 212 1996 75CrossRefGoogle Scholar
Harris, B.Micromechanisms of crack extension in compositesMetal Sci 14 1980 351CrossRefGoogle Scholar
Nairn, J. A.Matrix microcracking in compositesPolymer Matrix CompositesTalreja, R.Manson, J. A. E.Elsevier Science 2000 403Google Scholar
Wood, C. A.Bradley, W. L.Determination of the effect of seawater on the interfacial strength of an interlayer E-glass/graphite/epoxy composite by in-situ observation of transverse cracking in an environmental semCompos Sci Technol 57 1997 1033CrossRefGoogle Scholar
Katerelos, D. T. G.Varna, J.Galiotis, C.Energy criterion for modelling damage evolution in cross-ply composite laminatesCompos Sci Technol 68 2008 2318CrossRefGoogle Scholar
Talreja, R.
Marshall, D. B.Evans, A. G.Failure mechanisms in ceramic-fiber/ceramic-matrix compositesJ Amer Ceram Soc 68 1985 225CrossRefGoogle Scholar
Cantwell, W. J.Morton, J.The impact resistance of composite materials – a reviewComposites 22 1991 347CrossRefGoogle Scholar
Chung, W. C.Fracture behaviour in stitched multidirectional compositesMater Sci Eng A 112 1989 157CrossRefGoogle Scholar
Liu, D.Delamination resistance in stitched and unstitched composite planes subjected to composite loadingJ Reinf Plast Compos 9 1990 59CrossRefGoogle Scholar
Prichard, J. C.Hogg, P. J.The role of impact damage in post-impacted compression testingComposites 21 1990 503CrossRefGoogle Scholar
Jang, B. Z.Cholakara, M.Jang, B. P.Shih, W. K.Mechanical properties in multidimensional compositesPolym Eng Sci 31 1991 40CrossRefGoogle Scholar
Su, K. B.Delamination resistance of stitched thermoplastic matrix composite laminatesAdvances in Thermoplastic Matrix Composite MaterialsPhiladelphia, PAASTM 1989 279CrossRefGoogle Scholar
Choi, N. S.Kinloch, A. J.Williams, J. G.Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loadingJ Compos Mater 33 1999 73CrossRefGoogle Scholar
Verpoest, I.Wevers, M.DeMeester, P.Declereq, P.2.5D and 3D fabrics for delamination resistant composite laminates and sandwich structureSAMPE J 25 1989 51Google Scholar
Elder, D. J.Thomson, R. S.Nguyen, M. Q.Scott, M. L.Review of delamination predictive methods for low speed impact of composite laminatesCompos Struct 66 2004 677CrossRefGoogle Scholar
Chan, W. S.Design approaches for edge delamination resistance in laminated compositesJ Compos Tech Res 14 1991 91Google Scholar
Mayadas, A.Pastore, C.Ko, F. K.Tensile and shear properties of composites by various reinforcement conceptsAdvancing Technology in Materials and ProcessesSAMPE 30th National Meeting 1985 1284Google Scholar
Jamison, R.On the interrelationship between fiber fracture and ply cracking in graphite/epoxy laminatesComposite Materials: Fatigue and FractureHahn, H. T.Philadelphia, PAASTM 1986 252CrossRefGoogle Scholar
Pagano, N. J.On the micromechanical failure modes in a class of ideal brittle matrix composites. Part 1. Coated-fiber compositesCompos B 29 1998 93CrossRefGoogle Scholar
Pagano, N. J.On the micromechanical failure modes in a class of ideal brittle matrix composites. Part 2. Uncoated-fiber compositesCompos B 29 1998 121CrossRefGoogle Scholar
Kim, J. K.Mai, Y. W.High strength, high fracture toughness fibre composites with interface control – a reviewCompos Sci Technol 41 1991 333CrossRefGoogle Scholar
Rosen, B. W.Tensile failure of fibrous compositesAIAA J 2 1964 1985CrossRefGoogle Scholar
Argon, A.Fracture of compositesTreatise on Materials Science and TechnologyHerman, H.New YorkLondon: Academic Press 1972 79Google Scholar
Budiansky, B.MicromechanicsComputers & Structures 16 1983 3CrossRefGoogle Scholar
Niu, K.Talreja, R.Modeling of compressive failure in fiber reinforced compositesInt J Solids Struct 37 2000 2405CrossRefGoogle Scholar
Broeckmann, C.Pandorf, R.Influence of particle cleavage on the creep behaviour of metal matrix compositesComput Mater Sci 9 1997 48CrossRefGoogle Scholar
Antretter, T.Fischer, F. D.Particle cleavage and ductile crack growth in a two-phase composite on a microscaleComput Mater Sci 13 1998 1CrossRefGoogle Scholar
Böhm, H. J.Eckschlager, A.Han, W.Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcementsComput Mater Sci 25 2002 42CrossRefGoogle Scholar
Eckschlager, A.Han, W.Böhm, H. J.A unit cell model for brittle fracture of particles embedded in a ductile matrixComput Mater Sci 25 2002 85CrossRefGoogle Scholar
Segurado, J.Llorca, J.A new three-dimensional interface finite element to simulate fracture in compositesInt J Solids Struct 41 2004 2977CrossRefGoogle Scholar
Mori, T.Tanaka, K.Average stress in matrix and average elastic energy of materials with misfitting inclusionsActa Metall 21 1973 571CrossRefGoogle Scholar
Huang, H.Talreja, R.Effects of void geometry on elastic properties of unidirectional fiber reinforced compositesCompos Sci Technol 65 2005 1964CrossRefGoogle Scholar
Rice, J. R.Tracey, D. M.On the ductile enlargement of voids in triaxial stress fieldsJ Mech Phys Solids 17 1969 201CrossRefGoogle Scholar
Huang, H. S.Talreja, R.Numerical simulation of matrix micro-cracking in short fiber reinforced polymer composites: initiation and propagationCompos Sci Technol 66 2006 2743CrossRefGoogle Scholar
Sirivedin, S.Fenner, D. N.Nath, R. B.Galiotis, C.Matrix crack propagation criteria for model short-carbon fibre/epoxy compositesCompos Sci Technol 60 2000 2835CrossRefGoogle Scholar
Ravichandran, G.Liu, C. T.Modeling constitutive behavior of particulate composites undergoing damageInt J Solids Struct 32 1995 979CrossRefGoogle Scholar
Cornwell, L. R.Schapery, R. A.SEM study of microcracking in strained solid propellantMetallography 8 1975 445CrossRefGoogle Scholar
Reifsnider, K. L.Talug, A.Analysis of fatigue damage in composite laminatesInt J Fatigue 2 1980 3CrossRefGoogle Scholar
Stinchcomb, W. W.Reifsnider, K. L.Yeung, P.Masters, J. M.Effect of ply constraint on fatigue damage development in composite material laminatesFatigue of Fibrous Composite MaterialsPhiladelphia, PAASTM 1981 64CrossRefGoogle Scholar
Masters, J. M.Reifsnider, K. L.An investigation of cumulative damage development in quasi-isotropic graphite/epoxy laminatesDamage in Composite MaterialsReifsnider, K. L.Philadelphia, PAASTM 1982 40Google Scholar
Reifsnider, K. L.Jamison, R.Fracture of fatigue-loaded composite laminatesInt J Fatigue 4 1982 187CrossRefGoogle Scholar
Highsmith, A. L.Reifsnider, K. L.Stiffness-reduction mechanisms in composite laminatesDamage in Composite MaterialsReifsnider, K. L.Philadelphia, PAASTM 1982 103Google Scholar
Jamison, R. D.Schulte, K.Reifsnider, K. L.Stinchcomb, W. W.Characterization and analysis of damage mechanisms in tension–tension fatigue of graphite/epoxy laminatesEffects of Defects in Composite MaterialsPhiladelphia, PAASTM 1984 21CrossRefGoogle Scholar
Akshantala, N. V.Talreja, R.A micromechanics based model for predicting fatigue life of composite laminatesMater Sci Eng A 285 1 2000 303CrossRefGoogle Scholar
Talreja, R.Internal variable damage mechanics of composite materialsYielding, Damage, and Failure of Anisotropic SolidsBoehler, J. P.LondonMechanical Engineering Publications 1990 509Google Scholar
Hashin, Z.Analysis of damage in composite materialsYielding, Damage, and Failure of Anisotropic SolidsBoehler, J. P.LondonMechanical Engineering Publications 1990 3Google Scholar
Wang, A. S. D.Fracture mechanics of sublaminate cracks in composite materialsComposites Technology ReviewPhiladelphia, PAASTM 1984 45Google Scholar
Broutman, L. J.Sahu, S.Progressive damage of a glass reinforced plastic during fatigueSPI, 24th Annual Technical ConferenceWashington, DC 1969Google Scholar
Aveston, J.Cooper, G. A.Kelly, A.Single and multiple fractureThe Properties of Fiber CompositesSurrey, UKIPC Science and Technology PressNational Physical Laboratory 1971Google Scholar
Aveston, J.Kelly, A.Theory of multiple fracture of fibrous compositesJ Mater Sci 8 1973 352CrossRefGoogle Scholar
Garrett, K. W.Bailey, J. E.Effect of resin failure strain on tensile properties of glass fiber-reinforced polyester cross-ply laminatesJ Mater Sci 12 1977 2189CrossRefGoogle Scholar
Garrett, K. W.Bailey, J. E.Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyesterJ Mater Sci 12 1977 157CrossRefGoogle Scholar
Parvizi, A.Garrett, K. W.Bailey, J. E.Constrained cracking in glass fibre-reinforced epoxy cross-ply laminatesJ Mater Sci 13 1978 195CrossRefGoogle Scholar
Bader, M. G.Bailey, J. E.Curtis, P. T.Parvizi, A.The mechanisms of initiation and development of damage in multi-axial fibre-reinforced plastic laminatesProc Third Int Conf Mech Behav Mater 3 Cambridge 1979 227Google Scholar
Bailey, J. E.Curtis, P. T.Parvizi, A.On the transverse cracking and longitudinal splitting behaviour of glass and carbon fibre reinforced epoxy cross-ply laminates and the effect of Poisson and thermally generated strainProc R Soc London A 366 1979 599CrossRefGoogle Scholar
Bailey, J. E.Parvizi, A.On fiber debonding effects and the mechanism of transverse-ply failure in cross-ply laminates of glass fiber-thermoset compositesJ Mater Sci 16 1981 649CrossRefGoogle Scholar
Parvizi, A.Bailey, J. E.Multiple transverse cracking in glass-fiber epoxy cross-ply laminatesJ Mater Sci 13 1978 2131CrossRefGoogle Scholar
Talreja, R.Transverse cracking and stiffness reduction in composite laminatesJ Compos Mater 19 1985 355CrossRefGoogle Scholar
Manders, P. W.Chou, T. W.Jones, F. R.Rock, J. W.Statistical analysis of multiple fracture in [0/90/0] glass fiber/epoxy resin laminatesJ Mater Sci 19 1983 2876CrossRefGoogle Scholar
Fukunaga, H.Chou, T. W.Peters, P. W. M.Schulte, K.Probabilistic failure strength analysis of graphite epoxy cross-ply laminatesJ Compos Mater 18 1984 339CrossRefGoogle Scholar
Fukunaga, H.Chou, T. W.Schulte, K.Peters, P. W. M.Probabilistic initial failure strength of hybrid and non-hybrid laminatesJ Mater Sci 19 1984 3546CrossRefGoogle Scholar
Steif, P. S.s 1984
Nuismer, R. J.Tan, S. C.Constitutive relations of a cracked composite laminaJ Compos Mater 22 1988 306CrossRefGoogle Scholar
Tan, S. C.Nuismer, R. J.A theory for progressive matrix cracking in composite laminatesJ Compos Mater 23 1989 1029CrossRefGoogle Scholar
Hashin, Z.Analysis of cracked laminates: a variational approachMech Mater 4 1985 121CrossRefGoogle Scholar
Nairn, J. A.The strain energy release rate of composite microcracking: a variational approachJ Compos Mater 23 1989 1106CrossRefGoogle Scholar
Varna, J.Berglund, L. A.Multiple transverse cracking and stiffness reduction in cross-ply laminatesJ Compos Tech Res 13 1991 97Google Scholar
McCartney, L. N.Theory of stress transfer in a 0-degrees-90-degrees-0-degrees cross-ply laminate containing a parallel array of transverse cracksJ Mech Phys Solids 40 1992 27CrossRefGoogle Scholar
Gudmundson, P.Zang, W. L.An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracksInt J Solids Struct 30 1993 3211CrossRefGoogle Scholar
Adolfsson, E.Gudmundson, P.Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracksInt J Solids Struct 34 1997 2035CrossRefGoogle Scholar
Lundmark, P.Varna, J.Constitutive relationships for laminates with ply cracks in in-plane loadingInt J Damage Mech 14 2005 235CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×