Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T01:35:59.706Z Has data issue: false hasContentIssue false

10 - Active to absorbing state transitions

from Part II - Scale invariance in non-equilibrium systems

Published online by Cambridge University Press:  05 June 2014

Uwe C. Täuber
Affiliation:
Virginia Polytechnic Institute and State University
Get access

Summary

Continuous phase transitions from active to inactive, absorbing states represent prime examples of genuine non-equilibrium processes whose properties are strongly influenced by fluctuations. They arise in a broad variety of macroscopic phenomena, ranging from extinction thresholds in population dynamics and epidemic spreading models to certain diffusion-limited chemical reactions, and even turbulent kinetics in magnetic fluids. Intriguingly, the generic universality class for such active to absorbing phase transitions is intimately related to the scaling properties of critical directed percolation clusters. After elucidating this remarkable connection of stochastic kinetics with an originally geometric problem through mappings of both a specific microscopic interacting particle model and a more general mesoscopic Langevin description onto the corresponding Reggeon field theory action, we exploit the mathematical and conceptual techniques developed in previous chapters to compute the associated critical exponents to lowest non-trivial order in a dimensional expansion about the upper critical dimension dc = 4. We then set out to explore generalizations to systems with multiple particle species, and to investigate the dynamic percolation model variant that generates isotropic critical percolation clusters in the quasi-static limit. Particle spreading via long-range Lévy flights rather than nearest-neighbor hopping and coupling to an additional conserved field that may cause a fluctuation-induced first-order transition are also discussed. Motivated by the domain wall kinetics in non-equilibrium Ising systems, we address more general stochastic reaction systems of branching and annihilating random walks, and study the ensuing non-equilibrium phase diagrams and continuous transitions, including the parity-conserving universality class.

Type
Chapter
Information
Critical Dynamics
A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior
, pp. 400 - 442
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Hammal, O., H., Chaté, I., Domic, and M.A., Muñoz, 2005, Langevin description of critical phenomena with two symmetric absorbing states, Phys. Rev. Lett. 94, 230601-1–4.CrossRefGoogle ScholarPubMed
Benitez, F. and N., Wschebor, 2012, Branching-rate expansion around annihilating random walks, Phys. Rev. E 86, 010104(R)-1–5.CrossRefGoogle ScholarPubMed
Benitez, F. and N., Wschebor, 2013, Branching and annihilating random walks: exact results at low branching rate, Phys. Rev. E 87, 052132-1–18.CrossRefGoogle ScholarPubMed
Benzoni, J. and J. L., Cardy, 1984, A hyperscaling relation in site-bond correlated percolation, J. Phys. A: Math. Gen. 17, 179–196.CrossRefGoogle Scholar
Canet, L., H., Chaté, and B., Delamotte, 2004, Quantitative phase diagrams of branching and annihilating random walks, Phys. Rev. Lett. 92, 255703-1–4.CrossRefGoogle ScholarPubMed
Canet, L., H., Chaté, B., Delamotte, I., Dornic, and M. A., Muñoz, 2005, Nonperturbative fixed point in a nonequilibrium phase transition, Phys. Rev. Lett. 95, 100601, 1–4.CrossRefGoogle Scholar
Canet, L., B., Delamotte, O., Deloubrière, and N., Wschebor, 2004, Nonperturbative renormalization-group study of reaction-diffusion processes, Phys. Rev. Lett. 92, 195703-1–4.CrossRefGoogle ScholarPubMed
Cardy, J. L. and P., Grassberger, 1985, Epidemic models and percolation, J. Phys. A: Math. Gen. 18, L267–L272.CrossRefGoogle Scholar
Cardy, J. L. and R. L., Sugar, 1980, Directed percolation and Reggeon field theory, J. Phys. A: Math. Gen. 13, L423–L427.CrossRefGoogle Scholar
Cardy, J. L. and U. C., Täuber, 1996, Theory of branching and annihilating random walks, Phys. Rev. Lett. 77, 4780–1783.CrossRefGoogle ScholarPubMed
Cardy, J. L. and U. C., Täuber, 1998, Field theory of branching and annihilating random walks, J. Stat. Phys. 90, 1–56.CrossRefGoogle Scholar
Elgart, V. and A., Kamenev, 2006, Classification of phase transitions in reaction-diffusion models, Phys. Rev. E 74, 041101-1–16.CrossRefGoogle ScholarPubMed
Frey, E., U. C., Täuber, and F., Schwabl, 1994a, Crossover from self-similar to self-affine structures in percolation, Europhys. Lett. 26, 413–418.CrossRefGoogle Scholar
Frey, E., U. C., Täuber, and F., Schwabl, 1994b, Crossover from isotropic to directed percolation, Phys. Rev. E 49, 5058–5072.CrossRefGoogle ScholarPubMed
Goldschmidt Y., Y., H., Hinrichsen, M., Howard, and U. C., Tauber, 1999, Nonequilibrium critical behavior in unidirectionally coupled stochastic processes, Phys. Rev. E 59, 6381–6408.CrossRefGoogle ScholarPubMed
Grassberger, P., 1982, On phase transitions in Schlögl's second model, Z. Phys. B Cond. Matt. 47, 365–374.CrossRefGoogle Scholar
Grassberger, P., 1983, On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci. 63, 157–172.CrossRefGoogle Scholar
Grassberger, P., F., Krause, and T., von der Twer, 1984, A new type of kinetic critical phenomenon, J. Phys. A: Math. Gen. 17, L105–110.CrossRefGoogle Scholar
Henkel, M. and H., Hinrichsen, 2004, The non-equilibrium phase transition of the pair-contact process with diffusion, J. Phys. A: Math. Gen. 37, R117–R159.CrossRefGoogle Scholar
Henkel, M., H., Hinrichsen, and S., Lübeck, 2008, Non-equilibrium Phase Transitions, Vol. 1: Absorbing phase transitions, Dordrecht: Springer.Google Scholar
Hinrichsen, H., 2001, Nonequilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys. 49, 815–958.Google Scholar
Hinrichsen, H. and M., Howard, 1999, A model for anomalous directed percolation, Eur. Phys. J. B 7, 635–643.CrossRefGoogle Scholar
Hooyberghs, J., F., Iglói, and C., Vanderzande, 2003, Strong disorder fixed point in absorbing-state phase transitions, Phys. Rev. Lett. 90, 100601-1–4.CrossRefGoogle ScholarPubMed
Hooyberghs, J., F., Iglói, and C., Vanderzande, 2004, Absorbing state phase transitions with quenched disorder, Phys. Rev. E 69, 066140-1–16.CrossRefGoogle ScholarPubMed
Howard, M. J. and U. C., Täuber, 1997, ‘Real’ vs ‘imaginary’ noise in diffusion-limited reactions, J. Phys. A: Math. Gen. 30, 7721–7731.CrossRefGoogle Scholar
Janssen, H. K., 1981, On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state, Z. Phys. B Cond. Matt. 42, 151–154.CrossRefGoogle Scholar
Janssen, H. K., 1985, Renormalized field theory of dynamical percolation, Z. Phys. B Cond. Matt. 58, 311–317.CrossRefGoogle Scholar
Janssen, H. K., 1997a, Spontaneous symmetry breaking in directed percolation with many colors: differentiation of species in the Gribov process, Phys. Rev. Lett. 78, 2890–2893.CrossRefGoogle Scholar
Janssen, H. K., 1997b, Renormalized field theory of the Gribov process with quenched disorder, Phys. Rev. E 55, 6253–6256.CrossRefGoogle Scholar
Janssen, H. K., K., Oerding, F., van Wijland, and H. J., Hilhorst, 1999, Lévy-flight spreading of epidemic processes leading to percolating clusters, Eur. Phys. J. B 7, 137–147.CrossRefGoogle Scholar
Janssen H., K. and O., Stenull, 2000, Random resistor-diode networks and the crossover from isotropic to directed percolation, Phys. Rev. E 62, 3173–3185.CrossRefGoogle ScholarPubMed
Janssen, H. K., 2001, Directed percolation with colors and flavors, J. Stat. Phys. 103, 801–839.CrossRefGoogle Scholar
Janssen, H. K., F., van Wijland, O., Deloubrière, and U. C., Täuber, 2004, Pair contact process with diffusion: failure of master equation field theory, Phys. Rev. E 70, 056114-1–7.CrossRefGoogle ScholarPubMed
Janssen, H. K. and U. C., Tauber, 2005, The field theory approach to percolation processes, Ann. Phys. (NY) 315, 147–192.Google Scholar
Janssen, H. K. and O., Stenull, 2008, Field theory of directed percolation with long-range spreading, Phys. Rev. E 78, 061117-1–12.CrossRefGoogle ScholarPubMed
Kinzel, W., 1983, Directed percolation, in: Percolation Structures and Processes, eds. G., Deutsch, R., Zallen, and J., Adler, Bristol: Adam Hilger.Google Scholar
Kockelkoren, J. and H., Chaté, 2003, Absorbing phase transitions of branching-annihilating random walks, Phys. Rev. Lett. 90, 125701-1–4.CrossRefGoogle ScholarPubMed
Kree, R., B., Schaub, and B., Schmittmann, 1989, Effects of pollution on critical population dynamics, Phys. Rev. A 39, 2214–2221.CrossRefGoogle ScholarPubMed
Mobilia, M., I. T., Georgiev, and U. C., Täuber, 2007, Phase transitions and spatio-temporal fluctuations in stochastic lattice Lotka–Volterra models, J. Stat. Phys. 128, 447–483.CrossRefGoogle Scholar
Moshe, M., 1978, Recent developments in Reggeon field theory, Phys. Rep. 37, 255–345.CrossRefGoogle Scholar
Murray, J. D., 2002, Mathematical Biology, Vols. I and II, New York: Springer, 3rd edn.Google Scholar
Obukhov, S. P., 1980, The problem of directed percolation, Physica A 101, 145–155.CrossRefGoogle Scholar
Ódor, G., 2004, Phase transition universality classes of classical, nonequilibrium systems, Rev. Mod. Phys. 76, 663–724.CrossRefGoogle Scholar
Oerding, K., F., van Wijland, J.-P., Leroy, and H. J., Hilhorst, 2000, Fluctuation-induced first-order transition in a nonequilibrium steady state, J. Stat. Phys. 99, 1365–1395.CrossRefGoogle Scholar
Rupp, P., R., Richter, and I., Rehberg, 2003, Critical exponents of directed percolation measured in spatiotemporal intermittency, Phys. Rev. E 67, 036209-1–7.CrossRefGoogle ScholarPubMed
Stauffer, D. and A., Aharony, 1994, Introduction to Percolation Theory, London: Taylor and Francis, 2nd edn.Google Scholar
Takayasu, H. and A. Yu., Tretyakov, 1992, Extinction, survival, and dynamical phase transition of branching annihilating random walk, Phys. Rev. Lett. 68, 3060–3063.CrossRefGoogle ScholarPubMed
Takeuchi, K. A., M., Kuroda, H., Chaté, and M., Sano, 2007, Directed percolation criticality in turbulent liquid crystals, Phys. Rev. Lett. 99, 234503-1–5.CrossRefGoogle ScholarPubMed
Takeuchi, K. A., M., Kuroda, H., Chaté, and M., Sano, 2009, Experimental realization of directed percolation criticality in turbulent liquid crystals, Phys. Rev. E 80, 051116-1–12.CrossRefGoogle ScholarPubMed
Täuber, U. C., 2012, Population oscillations in spatial stochastic Lotka–Volterra models: a field-theoretic perturbational analysis, J. Phys. A: Math. Theor. 45, 405002-1–34.CrossRefGoogle Scholar
Täuber, U. C., M. J., Howard, and H., Hinrichsen, 1998, Multicritical behavior in coupled directed percolation processes, Phys. Rev. Lett. 80, 2165–2168.CrossRefGoogle Scholar
Täuber, U. C., M. J., Howard, and B. P., Vollmayr-Lee, 2005, Applications of field-theoretic renormalization group methods to reaction-diffusion problems, J. Phys. A: Math. Gen. 38, R79–R131.CrossRefGoogle Scholar
van Wijland, F., K., Oerding, and H. J., Hilhorst, 1998, Wilson renormalization of a reaction-diffusion process, Physica A 251, 179–201.CrossRefGoogle Scholar
Vernon, D. and M., Howard, 2001, Branching and annihilating Lévy flights, Phys. Rev. E 63, 041116-1–8.CrossRefGoogle ScholarPubMed
Al Hammal, O., J. A., Bonachela, and M. A., Muñoz, 2007, Absorbing state phase transitions with a non-accessible vacuum, J. Stat. Mech., P12007-1–14.Google Scholar
Antonov, N. V., V. I., Iglovikov, and A. S., Kapustin, 2009, Effects of turbulent mixing on the nonequilibrium critical behaviour, J. Phys. A: Math. Theor. 42, 135001-1–19.CrossRefGoogle Scholar
Barkema, G. T. and E., Carlon, 2003, Universality in the pair contact process with diffusion, Phys.Rev. E 68, 036113-1–7.CrossRefGoogle ScholarPubMed
Cafiero, R., A., Gabrielli, and M. A., Muñoz, 1998, Disordered one-dimensional contact process, Phys.Rev. E 57, 5060–5068.CrossRefGoogle Scholar
Canet, L. and H., Hilhorst, 2006, Single-site approximation for reaction-diffusion processes, J. Stat. Phys. 125, 517–531.CrossRefGoogle Scholar
Canet, L., H., Chaté, and B., Delamotte, 2011, General framework of the non-perturbative renormalization group for non-equilibrium steady states, J. Phys. A: Math. Theor. 44, 495001-1–26.CrossRefGoogle Scholar
Ciafaloni, M., M., Le Bellac, and G. C., Rossi, 1977, Reggeon quantum mechanics: a critical discussion, Nucl. Phys. B 130, 388–128.CrossRefGoogle Scholar
Ciafaloni, M. and E., Onofri, 1979, Path integral formulation of Reggeon quantum mechanics, Nucl. Phys. B 151, 118–146.CrossRefGoogle Scholar
Dickman, R. and A. G., Moreira, 1998, Violation of scaling in the contact process with quenched disorder, Phys. Rev. E 57, 1263–1268.CrossRefGoogle Scholar
Grassberger, P., 2013, On the continuum time limit of reaction-diffusion systems, EPL 103, 50009-1–3.CrossRefGoogle Scholar
Janssen, H. K., Ü., Kutbay, and K., Oerding, 1999, Equation of state for directed percolation, J. Phys. A: Math. Gen. 32, 1809–1818.CrossRefGoogle Scholar
Janssen, H. K., S., Lübeck, and O, Stenull, 2007, Finite-size scaling of directed percolation in the steady state, Phys. Rev. E 76, 041126-1–18.CrossRefGoogle ScholarPubMed
Janssen, H. K., M., Müller, and O., Stenull, 2004, Generalized epidemic process and tricritical dynamic percolation, Phys. Rev. E 70, 026114-1–20.CrossRefGoogle ScholarPubMed
Moreira, A. G. and R., Dickman, 1996, Critical dynamics of the contact process with quenched disorder, Phys. Rev. E 54, R3090–R3093.CrossRefGoogle ScholarPubMed
Ohtsuki, T. and T., Keyes, 1987a, Nonequilibrium critical phenomena in one-component reaction-diffusion systems, Phys. Rev. A 35, 2697–2703.CrossRefGoogle ScholarPubMed
Ohtsuki, T. and T., Keyes, 1987b, Crossover in nonequilibrium multicritical phenomena of reaction-diffusion systems, Phys. Rev. A 36, 4434–4438.CrossRefGoogle ScholarPubMed
Sarkar, N. and A., Basu, 2012, Active-to-absorbing-state phase transition in the presence of fluctuating environments: weak and strong dynamic scaling, Phys. Rev. E 86, 021122-1–13.CrossRefGoogle ScholarPubMed
Schram, R. D. and G. T., Barkema, 2012, Critical exponents of the pair contact process with diffusion, J. Stat. Mech., P03009-1–9.Google Scholar
Schram, R. D. and G. T., Barkema, 2013, Universality of the triplet contact process with diffusion, J. Stat. Mech., P04020-1–7.Google Scholar
Smallenburg, F. and G. T., Barkema, 2008, Universality class of the pair contact process with diffusion, Phys. Rev. E 78, 031129-1–8.CrossRefGoogle ScholarPubMed
Vojta, T., 2004, Broadening of a nonequilibrium phase transition by extended structural defects, Phys. Rev. E 70, 026108-1–4.CrossRef
Vojta, T., 2012, Monte Carlo simulations of the clean and disordered contact process in three dimensions, Phys. Rev. E 86, 051137-1–11.CrossRefGoogle ScholarPubMed
Vojta, T. and M., Dickison, 2005, Critical behavior and Griffiths effects in the disordered contact process, Phys. Rev. E 72, 036126-1–9.CrossRefGoogle ScholarPubMed
Vojta, T. and M. Y., Lee, 2006, Nonequilibrium phase transition on a randomly diluted lattice, Phys. Rev. Lett. 96, 035701-1–4.CrossRefGoogle ScholarPubMed
Zhou, Z., J., Yang, R. M., Ziff, and Y., Deng, 2012, Crossover from isotropic to directed percolation, Phys. Rev. E 86, 021102-1–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×