Skip to main content Accessibility help
×
Home
  • Cited by 1
  • Print publication year: 2014
  • Online publication date: August 2014

6 - The evolutionary genetics of the creativity–psychosis connection

from Part II - Cognitive and neuroscientific perspectives on creativity and mental illness

Summary

Why is it that all those who have become eminent in philosophy or politics or poetry or the arts are clearly melancholics?

– Aristotle

Nothing in biology makes sense except in the light of evolution.

– Dobzhansky (1973)

Introduction

Schizophrenia, a debilitating mental illness affecting roughly 1 percent of the population worldwide, is widely accepted as being highly genetically influenced (Cardno et al., 1999; Gershon et al., 1988; Kendler and Diehl, 1993). Schizophrenia is often marked by distortions of reality, disorganized thought, emotional blunting, and/or social isolation that may interfere with optimal functioning (Cornblatt et al., 2012). Schizophrenia may be associated with creativity, although research findings are mixed (e.g., Andreasen, 2011; Kyaga et al., 2013). Evidence also points to adverse effects on fertility and reproductive success among (particularly) males with schizophrenia (Svensson et al., 2007), in part accounted for by marital status (McCabe et al., 2009), suggesting potential biological and social influences. Collectively, this raises an intriguing potential evolutionary puzzle: How does schizophrenia persist in the population at a stable prevalence rate too high to be explained by simple random mutation? (Doi et al., 2009; see also Del Giudice et al., 2010). Among various hypotheses, including in the context of the emerging field of evolutionary epidemiology, schizophrenia may represent “one extreme of a sexually selected fitness factor” (Shaner et al., 2004).

Related content

Powered by UNSILO
References
Abbar, M., Courtet, P., Bellivier, F., Leboyer, M., Boulenger, J. P., Castelhau, D., Ferreira, M., Lambercy, C., Mouthon, D., Paoloni-Giacobino, A., Vessaz, M., Malafosse, A. and Buresi, C. (2001). Suicide attempts and the tryptophan hydroxylase gene. Molecular Psychiatry, 6, 268–273.
Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., Smith, C. L., Shafa, R., Aeali, B., Carnevale, J., Pan, H., Papageorgis, P., Ponte, J. F., Sivaraman, V., Tsuang, M. T. and Thiagalingam, S. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15, 3132–3145.
Abdolmaleky, H. M., Smith, C. L., Faraone, S. V., Shafa, R., Stone, W., Glatt, S. J. and Tsuang, M. T. (2004). Methylomics in psychiatry: Modulation of gene–environment interactions may be through DNA methylation. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 127(1), 51–59.
Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview.
Andreasen, N. C. (1987). Creativity and mental illness: Prevalance rates in writers and their first-degree relatives. American Journal of Psychiatry, 144(10), 1288–1292.
Andreasen, N. C. (2008). The relationship between creativity and mood disorders. Dialogues in Clinical Neuroscience, 10(2), 251–255.
Andreasen, N. C. (2011). A journey into chaos: Creativity and the unconscious. Mens Sana Monographs, 9(1), 42–53.
Aristotle, (1984). The complete works of Aristotle: The revised Oxford translation (Vol. 2) (Foster, E. S., Trans.; Barnes, J., Ed.). Princeton University Press.
Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., Sella, S., Nemanov, L., Gritsenko, I., Lichtenberg, P., Granot, R. and Ebstein, R. P. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1(3), e42.
Barron, F. (1972). Artists in the making. New York: Seminar Press.
Barron, F. and Parisi, P. (1977). Twin resemblances in expressive behavior. Acta geneticae medicae et gemellologiae, Spring.
Batey, M. and Furnham, A. (2008). The relationship between measures of creativity and schizotypy. Personality and Individual Differences, 45, 816–821.
Beaussart, M. L., Kaufman, S. B. and Kaufman, J. C. (2012). Creative activity, personality, mental illness, and short-term mating success. Journal of Creative Behavior, 46, 151–167.
Bolling, M. Y. and Kohlenberg, R. J. (2004). Reasons for quitting serotonin reuptake inhibitor therapy: Paradoxical psychological side effects and patient satisfaction. Psychotherapy and Psychosomatics, 73(6), 380–385.
Buchsbaum, M., Christian, B. and Lehrer, D. (2006). D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia. Schizophrenia Research, 85, 232–244.
Burch, G. S. J., Pavelis, C., Hemsley, D. R. and Corr, P. J. (2006). Schizotypy and creativity in visual artists. British Journal of Psychology, 97, 177–190.
Burns, J. K. P. (2004). An evolutionary theory of schizophrenia: Cortical connectivity, metarepresentation and the social brain. Behavioral and Brain Sciences, 27, 831–885.
Burt, A. and Trivers, R. (2006). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Belknap.
Cardno, A. G. and Gottesman, I. I. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to star-wars Mx and functional genomics. American Journal of Medical Genetics, 97, 12–17.
Cardno, A. G., Marshall, E. J., Coid, B., Macdonald, A. M., Ribchester, T. R., Davies, N. J., Venturi, P., Jones, L. A., Lewis, S. W., Sham, P. C., Gottesman, I. I., Farmer, A. E., McGuffin, P., Reveley, A. M. and Murray, R. M. (1999). Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Archives of General Psychiatry, 56(2), 162–168.
Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. Canadian Journal of Psychiatry, 56, 144–153.
Carson, S. H., Peterson, J. B. and Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499–506.
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A. and Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.
Chávez-Eakle, R. A. (2007). Creativity, DNA, and cerebral blood flow. In Martindale, C., Locher, P. and Petrov, V. M. (Eds.), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts (pp. 209–224). Amityville, NY: Baywood.
Clegg, H., Nettle, D. and Miell, D. (2011). Status and mating success amongst visual artists. Frontiers in Psychology, 2, 1–4.
Colzato, L. S., Pratt, J. and Hommel, B. (2010). Dopaminergic control of attentional flexibility: Inhibition of return is associated with the dopamine transporter gene (DAT1). Frontiers in Human Neuroscience. doi:
Corfas, G., Roy, K. and Buxbaum, J. D. (2004). Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nature Neuroscience, 7, 575–580.
Cornblatt, B. A., Carrión, R. E., Addington, J., Seidman, L., Walker, E. F., Cannon, T. D., Cadenhead, K. S., McGlashan, T. H., Perkins, D. O., Tsuang, M. T., Woods, S. W., Heinssen, R. and Lencz, T. (2010). Risk factors for psychosis: Impaired social and role functioning. Schizophrenia Bulletin, 38(6), 1247–1257.
Crespi, B. and Badcock, C. (2008a). Psychosis and autism as diametrical disorders of the social brain. Behavioral and Brain Sciences, 31, 241–261.
Crespi, B. and Badcock, C. (2008b). The evolutionary social brain: From genes to psychiatric conditions. Behavioral and Brain Sciences, 31, 284–296.
Crow, T. J. (1993). Sexual selection, Machiavellian intelligence, and the origins of psychosis. The Lancet, 342, 594–598.
Crow, T. J. (1995). A Darwinian approach to the origins of psychosis. British Journal of Psychiatry, 167(1), 12–25.
Crow, T. J. (1997). Is schizophrenia the price that Homo sapiens pays for language? Schizophrenia Research, 28, 127–141.
Crow, T. J. (2008). The “big bang” theory of the origin of psychosis and the faculty of language. Schizophrenia Research, 102, 31–52.
Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In Sternberg, R. J. (Ed.), The nature of creativity: Contemporary psychological perspectives (pp. 325–339). New York: Cambridge University Press.
Daly, M. P., Afroz, S. and Walder, D. J. (2012). Schizotypal traits and neurocognitive functioning among nonclinical young adults. Psychiatry Research, 200, 635–640.
Del Giudice, M., Angeleri, R., Brizio, A. and Elena, M. R. (2010). The evolution of autistic-like and schizotypal traits: A sexual selection hypothesis. Frontiers in Psychology, 1, 41.
de Manzano, Ö., Cervenka, S., Karabanov, A. and Farde, L. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PloS ONE, 5(5): e10670.
Detera-Wadleigh, S. D. and McMahon, F. J. (2006). G72/G30 in schizophrenia and bipolar disorder: Review and meta-analysis. Biological Psychiatry, 60(2), 106–114.
DeYoung, C. G., Grazioplene, R. G. and Peterson, J. B. (2011). From madness to genius: The Openness/Intellect trait domain as a paradoxical simplex. Journal of Research in Personality, 46, 63–78.
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.
Dodgson, G. and Gordon, S. (2009). Avoiding false negatives: Are some auditory hallucinations an evolved design flaw? Behavioural and Cognitive Psychotherapy, 37, 325–334.
Doi, N., Hoshi, Y., Itokawa, M., Usui, C., Yoshikawa, T. and Tashikawa, H. (2009). Persistence criteria for susceptibility genes for schizophrenia: A discussion from an evolutionary viewpoint. PloS ONE, 4: e7799.
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., Goldman, D. and Weinberger, D. R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences USA, 98, 6917–6922.
Epstein, R., Novick, O., Umansky, R. and Priel, B. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nature Genetics, 12, 78–80.
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4(3), 147–178.
Fayena-Tawil, F., Kozbelt, A. and Sitaras, L. (2011). Think global, act local: A protocol analysis comparison of artists’ and non-artists’ cognitions, metacognitions, and evaluations while drawing. Psychology of Aesthetics, Creativity, and the Arts, 5, 135–145.
Fett, A. K., Viechtbauer, W., Dominguez, M. D., Penn, D. L., van Os, J. and Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience & Bio-behavioral Reviews, 35(3), 573–588.
Frazer, K., Ballinger, D., Cox, D., Hinds, D., Stuve, L., Gibbs, R. et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.
Gaddum, J. H. and Hameed, K. A. (1954). Drugs which antagonize 5-hydroxytryptamine. British Journal of Pharmacology, 9(2), 240–248.
Galton, F. (1869). Hereditary genius: An enquiry into its laws and consequences. London: Macmillan.
Garcia-Garcia, M., Barceló, F. and Clemente, I. (2010). The role of DAT1 gene on the rapid detection of task novelty. Neuropsychologia, 48, 4136–4141.
Gardner, H. (2001). Creators: Multiple intelligences. In Pfenninger, K. H. and Shubik, V. R. (Eds.), The origins of creativity (pp. 117–143). New York: Oxford University Press.
Gebicke-Haerter, P. J. (2012). Epigenetics of schizophrenia. Pharmacopsychiatry, 45, Supplement 1, S42–S48.
Geher, G. and Kaufman, S. B. (2011). Mating intelligence. In Sternberg, R. J. and Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence (pp. 603–622). Cambridge, UK: Cambridge University Press.
Gershon, E. S., DeLisi, L. E., Hamovit, J., Nurnberger, J. I., Maxwell, M. E., Schreiber, J., Dauphinais, D., Dingman, C. W. and Guroff, J. J. (1988). A controlled family study of chronic psychoses: Vs schizophrenia and schizoaffective disorder. Archives of General Psychiatry, 45(4), 328–336.
Goldman, D., Weinberger, D. R., Malhotra, A. K. and Goldberg, T. E. (2009). The role of COMT Val158Met in cognition. Biological Psychiatry, 65(1), e1–2.
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.
Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., Thomson, P. A., Porteous, D. J., Cunningham-Owens, D. G., Johnstone, E. C. and Lawrie, S. M. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 1477–1478.
Hammock, E. A. and Young, L. J. (2006). Oxytocin, vasopressin and pair bonding: Implications for autism. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 361, 2187–2198.
Harrison, P. J. and Law, A. J. (2006). Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60(2), 132–140.
Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. and Moyzis, R. K. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences, 104(52), 20753–20758.
Hennah, W., Thomson, P., Peltonen, L. and Porteous, D. (2006). Genes and schizophrenia. Beyond schizophrenia: The role of DISC1 in major mental illness. Schizophrenia Bulletin, 32(3), 409–416. doi:
Honea, R., Verchinski, B. A., Pezawas, L., Kolachana, B. S., Callicott, J. H., Mattay, V. S., Weinberger, D. R. and Meyer-Lindenberg, A. (2009). Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage, 45, 44–51.
Hyman, S. (2000). Mental illness: Genetically complex disorders of neural circuitry and neural communication. Neuron, 28(2), 321–323.
Jablensky, A., Sartorius, N., Ernberg, G., Anker, M., Korten, A., Cooper, J. E., Day, R. and Bertelsen, O. (1992). Schizophrenia: Manifestations, incidence and course in different cultures. A World Health Organization ten-country study. New York: Cambridge University Press.
Jamison, K. R. (1993). Touched with fire: Manic-depressive illness and the artistic temperament. New York: Simon & Schuster.
Joober, R., Boksa, P., Benkelfat, C. and Rouleau, G. (2002). Genetics of schizophrenia: From animal models to clinical studies. Journal of Psychiatry and Neuroscience, 27, 336–347.
Kandel, E. R. (1998). A new intellectual framework for psychiatry. American Journal of Psychiatry, 155(4), 457–469.
Kaufman, J. C. and Baer, J. (Eds.) (2005). Creativity across domains: Faces of the muse. Mahwah, NJ: Erlbaum.
Kaufman, J. C. and Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of General Psychology, 13, 1–12.
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jimenez, L., Brown, J. B. and Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116, 321–340.
Kelleher, I., Jenner, J. A. and Cannon, M. (2010). Psychotic symptoms in the general population: An evolutionary perspective. The British Journal of Psychiatry, 197, 167–169. doi:
Keller, M. and Miller, G. F. (2006). An evolutionary framework for mental disorders: Integrating adaptationist and evolutionary genetics models. Behavioral and Brain Sciences, 29, 429–452.
Kendler, K. S. and Diehl, S. R. (1993). The genetics of schizophrenia: A current, genetic-epidemiologic perspective. Schizophrenia Bulletin, 19, 261–285.
Kéri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20(9), 1070–1073.
Kirov, G., Gumus, D., Chen, W., Norton, N., Georgieva, L., Sari, M., O’Donovan, M. C., Erdogan, F., Owen, M. J., Ropers, H.-H. and Ullman, R. (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics, 17(3), 458–465.
Kottler, J. (2005). Divine madness. San Francisco, CA: Jossey-Bass.
Kozbelt, A. (2006). Dynamic evaluation of Matisse’s 1935 “Large Reclining Nude.” Empirical Studies of the Arts, 24, 119–137.
Kozbelt, A. (2007). A quantitative analysis of Beethoven as self-critic: Implications for psychological theories of musical creativity. Psychology of Music, 35, 147–172.
Kozbelt, A. (2008). Longitudinal hit ratios of classical composers: Reconciling “Darwinian” and expertise acquisition perspectives on lifespan creativity. Psychology of Aesthetics, Creativity, and the Arts, 2, 221–235.
Kozbelt, A. (2009). Ontogenetic heterochrony and the creative process in visual art: A précis. Psychology of Aesthetics, Creativity, and the Arts, 3, 35–37.
Kyaga, S., Landén, M., Boman, M., Hultman, C., Langstrom, N. and Lichtenstein, P. (2013). Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research, 47, 83–90.
Kyaga, S., Lichtenstein, P., Boman, M., Hultman, C., Langstrom, N. and Landén, M. (2011). Creativity and mental disorder: Family study of 300,000 people with severe mental disorder. British Journal of Psychiatry, 199, 373–379.
Lencz, T., Morgan, T., Athanasiou, M., Dain, B., Reed, C., Kane, J., Kucherlapati, R. and Malhotra, A. (2007). Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Molecular Psychiatry, 12(6), 572–580.
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Müller, C. R., Hamer, D. H. and Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274(5292), 1527–1531.
Lu, L. and Shi, J. (2010). Association between creativity and COMT genotype. National Natural Science Foundation of China, 30670716, 1–4. IEEE.
Ludwig, A. M. (1995). The price of greatness: Resolving the creativity and madness controversy. New York: Guilford Press.
McCabe, J. H., Koupil, I. and Leon, D. A. (2009). Lifetime reproductive output over two generations in patients with psychosis and their unaffected siblings: The Uppsala 1915–1929 Birth Cohort Multigenerational Study. Psychological Medicine, 39(10), 1667–1676.
McGrath, J. J., Hearle, J., Jenner, L., Plant, K., Drummond, A. and Barkla, J. M. (1999). The fertility and fecundity of patients with psychoses. Acta Psychiatrica Scandinavica, 99, 441–446.
Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T. and Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159, 652–654.
Martindale, C. (1990). The clockwork muse: The predictability of artistic change. New York: Basic Books.
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827–838.
Meehl, P. E. (1990). Toward an integrated theory of schizotaxia, schizotypy, and schizophrenia. Journal of Personality Disorders, 4, 1–99.
Mei, L. and Xiong, W. C. (2008). Neuregulin-1 signaling in neural development, synaptic plasticity and schizophrenia. Nature Reviews Neuroscience, 9, 437–452.
Miller, G. F. (2001). The mating mind: How sexual choice shaped the evolution of human nature. New York: Anchor.
Miller, G. F. (2010). Are pleiotropic mutations and Holocene selective sweeps the only evolutionary-genetic processes left for explaining heritable variation in human psychological traits? In Buss, D. M. and Hawley, P. H. (Eds.), The evolution of personality and individual differences (pp. 376–399). New York: Oxford University Press.
Miller, G. F. and Tal, I. (2007). Schizotypy versus intelligence and openness as predictors of creativity. Schizophrenia Research, 93(1–3), 317–324.
Murphy, K. C., Jones, L. A. and Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56, 940–945.
Nelson, B. and Rawlings, D. (2010). Relating schizotypy and personality to the phenomenology of creativity. Schizophrenia Bulletin, 36, 388–399.
Nesse, R. M. (2004). Cliff-edged fitness functions and the persistence of schizophrenia (commentary). Behavioral and Brain Sciences, 27, 862–863.
Nettle, D. (2001). Strong imagination: Madness, creativity and human nature. Oxford: Oxford University Press.
Nettle, D. (2006). Schizotypy and mental health amongst poets, visual artists, and mathematicians. Journal of Research in Personality, 40, 876–890.
Nettle, D. and Clegg, H. (2006). Schizotypy, creativity, and mating success in humans. Proceedings of the Royal Society, 273, 611–615.
Ng, M. Y., Levinson, D. F., Faraone, S. V., Suarez, B. K., DeLisi, L. E., Arinami, T. et al. (2009). Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 14(8), 774–785.
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.
Nuechterlein, K. H., Subotnik, K. L., Ventura, J., Green, M. F., Gretchen-Doorly, D. and Asarnow, R. F. (2012). The puzzle of schizophrenia: Tracking the core role of cognitive deficits. Developmental Psychopathology, 24(2), 529–536.
Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., Ozaki, N., Taguchi, T., Tatsumi, M., Kamijima, K., Straub, R. E., Weinberger, D. R., Kunugi, H. and Hashimoto, R. (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics, 13(21), 2699–2708.
O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V. et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40, 1053–1055.
Opbroek, A., Delgado, P. and Laukes, C. (2002). Emotional blunting associated with SSRI-induced sexual dysfunction: Do SSRIs inhibit emotional responses? The International Journal of Neuropsychopharmacology, 5, 147–151.
O’Reilly, T., Dunbar, R. and Bentall, R. (2001). Schizotypy and creativity: An evolutionary connection? Personality and Individual Differences, 31, 1067–1078.
Pidsley, R. and Mill, J. (2011) Research highlights: Epigenetic changes to serotonin receptor gene expression in schizophrenia and bipolar disorder. Epigenomics, 3(5), 521–523.
Pluess, M., Belsky, J., Way, B. M. and Taylor, S. E. (2010). 5-HTTLPR moderates effects of current life events on neuroticism: Differential susceptibility to environmental influences. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34, 1070–1074.
Polesskaya, O. O., Aston, C. and Sokolov, B. P. (2006). Allele C-specific methylation of the 5-HT2A receptor gene: Evidence for correlation with its expression and expression of DNA methylase DNMT1. Journal of Neuroscience Research, 83(3), 362–373. doi:.
Post, F. (1996). Verbal creativity, depression, and alcoholism: An investigation of one hundred American and British writers. British Journal of Psychiatry, 168, 545–555.
Prokosch, M. D., Yeo, R. A. and Miller, G. F. (2005). Intelligence tests with higher g-loadings show higher correlations with body symmetry: Evidence for a general fitness factor mediated by developmental stability. Intelligence, 33, 203−213.
Rawlings, D. and Locarnini, A. (2008). Dimensional schizotypy, autism, and unusual word associations in artists and scientists. Journal of Research in Personality, 42, 465–471.
Reuter, M., Panksepp, J., Schnabel, N., Kellerhoff, N., Kempel, P. and Hennig, J. (2005). Personality and biological markers of creativity. European Journal of Personality, 19, 83–95.
Reuter, M., Roth, S. and Holve, K. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069(1), 190–197.
Reznikoff, M., Domino, G., Bridges, C. and Honeyman, M. (1973). Creative abilities in identical and fraternal twins. Behavior Genetics, 3(4), 365–377.
Rodriguez-Murillo, L., Gogos, J. A. and Karayiorgou, M. (2012). The genetic architecture of schizophrenia: New mutations and emerging paradigms. Annual Review of Medicine, 63, 63–80.
Ross, C. A., Margolis, R. L., Reading, S. A., Pletnikov, M. and Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52(1), 139–153.
Rothenberg, A. (1990). Creativity and madness. Baltimore, MD: Johns Hopkins University Press.
Sawaguchi, T. and Goldman-Rakic, P. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251(4996), 947–950.
Sawyer, R. K. (2006). Explaining creativity: The science of human innovation. New York: Oxford University Press.
Schlesinger, J. (2009). Creative mythconceptions: A closer look at the evidence for the “mad genius” hypothesis. Psychology of Aesthetics, Creativity, and the Arts, 3(2), 62–72.
Shaner, A., Miller, G. and Mintz, J. (2004). Schizophrenia as one extreme of a sexually selected fitness indicator. Schizophrenia. Research, 70(1), 101–109.
Shaner, A., Miller, G. and Mintz, J. (2008). Mental disorders as catastrophic failures of mating intelligence. In Geher, G. and Miller, G. (Eds.), Mating intelligence: Sex, relationships, and the mind’s reproductive system (pp. 193–223). New York: Psychology Press.
Shifman, S., Johannesson, M., Bronstein, M., Chen, S. X., Collier, D. A., Craddock, N. J., Kendler, K. S., Li, T., O’Donovan, M., O’Neill, F. A., Owen, M. J., Walsh, D., Weinberger, D. R., Sun, C., Flint, J. and Darvasi, A. (2008). Genome-wide association identifies a common variant in the Reelin gene that increases the risk of schizophrenia only in women. PLoS Genetics, 4(2), e28. doi:
Silvia, P. J. (2008). Discernment and creativity: How well can people identify their most creative ideas? Psychology of Aesthetics, Creativity, and the Arts, 2, 139–146.
Silvia, P. J. and Kaufman, J. C. (2011). Creativity and mental illness. In Kaufman, J. C. and Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 381–394). New York: Cambridge University Press.
Simonton, D. K. (1984). Creative productivity and age: A mathematical model based on a two-step cognitive process. Developmental Review, 4, 77–111.
Simonton, D. K. (1994). Greatness: Who makes history and why. New York: Guilford Press.
Stefanis, N. C., Trikalinos, T. A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Ntzani, E. E., Ioannidis, J. P. and Stefanis, C. N. (2007). Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biological Psychiatry, 62, 784–792.
Sternberg, R. J. and Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.
Stoltenberg, S., Twitchell, G., Hanna, G., Cook, E., Fitzgerald, H., Zucker, R. and Little, K. (2002). Serotonin transporter promoter polymorphism, peripheral indexes of serotonin function, and personality measures in families with alcoholism. American Journal of Medical Genetics, 114(2), 230–234.
Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., Harris-Kerr, C., Wormley, B., Sadek, H., Kadambi, B., Cesare, A. J., Gibberman, A., Wang, X., O’Neill, F. A., Walsh, D. and Kendler, K. S. (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics, 71(2), 337–348.
Svensson, A. C., Lichtenstein, P., Sandin, S. and Hultman, C. M. (2007). Fertility of first-degree relatives of patients with schizophrenia: A three generation perspective. Schizophrenia Research, 91(1), 238–245.
Szatmari, P., Paterson, A., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39(3), 319–328.
Talvik, M., Nordström, A. and Olsson, H. (2003). Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: A PET study with [11C]FLB 457. The International Journal of Neuropsychopharmacology, 6(4), 361–370.
Thompson, R., Gupta, S., Miller, K., Mills, S. and Orr, S. (2004). The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology, 29, 35–48.
Torrance, E. P. (1969). Creativity: What research says to the teacher. Washington, DC: National Education Association.
Tsuang, M. T. (2000). Schizophrenia: Genes and environment. Biological Psychiatry, 47(3), 210–220.
Tunbridge, E. M., Harrison, P. J. and Weinberger, D. R. (2006). Catechol-o-Methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141–151.
Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K. and Järvelä, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLoS ONE, 4(5): e5534.
Vandenberg, S. G. (Ed.) (1968). Progress in human behavior genetics. Baltimore, MD: Johns Hopkins University Press.
Van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P. and Krabbendam, L. (2008). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis-proneness-persistence-impairment model of psychotic disorder. Psychological Medicine, 8, 1–17.
Venkatasubramanian, G. and Kalmady, S. V. (2010). Creativity, psychosis and human evolution: The exemplar case of neuregulin 1 gene. Indian Journal of Psychiatry 2010, 52, 282.
Vinkhuyzen, A. A. E., van der Sluis, S., Posthuma, D. and Boomsma, D. I. (2009). The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behavioral Genetics, 39(4), 380–392.
Volf, N., Kulikov, A. and Bortsov, C. (2009). Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neuroscience Letters, 463, 154–157.
Walder, D. J., Ospina, L., Daly, M. P., Statucka, M. and Raparia, E. (2012). Early neurodevelopment and psychosis risk: Role of neurohormones and biological sex in modulating genetic, prenatal and sensory processing factors in brain development. In Anastassiou-Hadjicharalambous, X. (Ed.), Psychosis: Causes, diagnosis and treatment (pp. 44–78). Hauppauge, NY: Nova Science.
Walder, D. J., Statucka, M., Daly, M. P., Axen, K. and Haber, M. (2012). Biological sex and menstrual cycle phase modulation of cortisol levels and psychiatric symptoms in a non-clinical sample of young adults. Psychiatry Research, 197, 314–321.
Walder, D. J., Trotman, H., Cubells, J., Brasfield, J. and Walker, E. F. (2010). Catechol-O-Methyltransferase (COMT) modulation of cortisol among adolescents at high-risk for psychopathology and healthy controls. Psychiatric Genetics, 20(4), 166–170.
Walker, E. and Diforio, D. (1997). Schizophrenia: A neural diasthesis-stress model. Psychological Review, 104, 667–685.
Walker, E., Kestler, L., Bollini, A. and Hochman, K. M. (2004). Schizophrenia: Etiology and course. Annual Review of Psychology, 55, 401–430.
Wang, H., Ng, K., Hayes, D., Gao, X., Forster, G., Blaha, C. and Yeomans, J. (2004). Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology, 29, 2126–2139.
Wang, W. Y., Barratt, B. J., Clayton, D. G. and Todd, J. A. (2005). Genome-wide association studies: Theoretical and practical concerns. Nature Reviews Genetics, 6, 109–118.
Ward, T. B., Smith, S. M. and Finke, R. A. (1999). Creative cognition. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 189–212). New York: Cambridge University Press.
Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: Wiley.
White, H. A. and Shah, P. (2006). Uninhibited imaginations: Creativity in adults with attention deficit/hyperactivity disorder. Personality and Individual Differences, 40(6), 1121–1131.
Woody, E. and Claridge, G. (1977). Psychoticism and thinking. British Journal of Social and Clinical Psychology, 16(3), 241–248.
Zaboli, G., Gizatullin, R., Nilsonne, A., Wilczek, A., Jonsson, E. G., Ahnemark, E., Asberg, M. and Leopardi, R. (2006). Tryptophan hydroxylase-1 gene variants associate with a group of suicidal borderline women. Neuropsychopharmacology, 31(9), 1982–1990.
Zeki, S. (2007). The neurobiology of love. Federation of European Biochemical Societies Letters, 581, 2575–2579.