Skip to main content Accessibility help
×
Home
    • Access
  • Print publication year: 2014
  • Online publication date: February 2015

1 - Spacetime as a quantum object

from Part I - FOUNDATIONS
    • Send chapter to Kindle

      To send this chapter to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats
      ×

      Send chapter to Dropbox

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

      Available formats
      ×

      Send chapter to Google Drive

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

      Available formats
      ×

Summary

This book introduces the reader to a theory of quantum gravity. The theory is covariant loop quantum gravity (covariant LQG). It is a theory that has grown historically via a long, indirect path, briefly summarized at the end of this chapter. The book does not follow the historical path. Rather, it is pedagogical, taking the reader through the steps needed to learn the theory.

The theory is still tentative for two reasons. First, some questions about its consistency remain open; these will be discussed later in the book. Second, a scientific theory must pass the test of experience before becoming a reliable description of a domain of the world; no direct empirical corroboration of the theory is available yet. The book is written in the hope that some of you, our readers, will be able to fill these gaps.

This first chapter clarifies what is the problem addressed by the theory and gives a simple and sketchy derivation of the core physical content of the theory, including its general consequences.

The problem

After the detection at CERN of a particle that appears to match the expected properties of the Higgs [ATLAS Collaboration (2012); CMS Collaboration (2012)], the demarcation line separating what we know about the elementary physical world from what we do not know is now traced in a particularly clear-cut way.

Related content

Powered by UNSILO