Skip to main content Accessibility help
Covariant Loop Quantum Gravity
  • Cited by 147
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Quantum gravity is among the most fascinating problems in physics. It modifies our understanding of time, space and matter. The recent development of the loop approach has allowed us to explore domains ranging from black hole thermodynamics to the early Universe. This book provides readers with a simple introduction to loop quantum gravity, centred on its covariant approach. It focuses on the physical and conceptual aspects of the problem and includes the background material needed to enter this lively domain of research, making it ideal for researchers and graduate students. Topics covered include quanta of space; classical and quantum physics without time; tetrad formalism; Holst action; lattice QCD; Regge calculus; ADM and Ashtekar variables; Ponzano-Regge and Turaev-Viro amplitudes; kinematics and dynamics of 4D Lorentzian quantum gravity; spectrum of area and volume; coherent states; classical limit; matter couplings; graviton propagator; spinfoam cosmology and black hole thermodynamics.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


  • 1 - Spacetime as a quantum object
    pp 3-29
Adler, S. L. 1982. Einstein gravity as a symmetry breaking effect in quantum field theory. Rev. Mod. Phys., 54, 729.
Agullo, I., and Corichi, A. 2013. Loop quantum cosmology. arXiv:1302.3833.v1 [gr-gc]. [In Ashtekar, A. and Petkov, V. (eds.). 2014. The Springer Handbook of Spacetime. Springer.]
Agullo, I., Ashtekar, A., and Nelson, W. 2012. A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett., 109, 251301., arXiv:1209.1609.
Alesci, E., and Cianfrani, F. 2013. Quantum-reduced loop gravity: cosmology. Phys. Rev., D87, 83521., arXiv:1301.2245.
Alesci, E., and Rovelli, C. 2007. Complete LQG propagator: difficulties with the Barrett-Crane vertex. Phys. Rev., D76(10), 104012, arXiv:0708.0883.
Alesci, E., and Rovelli, C. 2008. The complete LQG propagator: II. Asymptotic behavior of the vertex. Phys. Rev., D77, 44024., arXiv:0711.1284.
Alexandrov, S. 2010. New vertices and canonical quantization. Phys. Rev., D82(July), 24024, arXiv:1004.2260.
Aquilanti, V., Haggard, H. M., Hedeman, A., Jeevanjee, N., Littlejohn, R. G., and Yu, L. 2010. Semiclassical mechanics of the Wigner 6j-symbol. arXiv:1009.2811.
Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Trincherini, E., and Villadoro, G. 2007. A measure of de Sitter entropy and eternal inflation. J. High. Energy. Phys., 0705, 55., arXiv:0704.1814.
Arnold, V. I. 1989. Mathematical Methods of Classical Mechanics. Springer Verlag.
Arnowitt, R. L., Deser, S., and Misner, C. W. 1962. The dynamics of general relativity. arXiv:0405109 [gr-qc].
Ashtekar, A. 1986. New variables for classical and quantum gravity. Phys. Rev. Lett., 57, 2244–2247.
Ashtekar, A. 1991. Lectures on Non-Perturbative Canonical Gravity. World Scientific.
Ashtekar, A. 2009. Loop quantum cosmology: an overview. Gen. Relat. Gravit., 41, 707–741, arXiv:0812.0177.
Ashtekar, A. 2011. Introduction to loop quantum gravity. In: Proceedings of the 3rd Quantum Gravity and Quantum Geometry School. PoS (QGQGS2011)001.
Ashtekar, A., and Krasnov, K. 1998 Quantum geometry and black holes. In: B. R., Iyer and B., Bhawal (eds.), ‘Black Holes, Gravitational Radiation and the Universe’, Essays in Honor of C. V. Vishveshwara (pp. 149–170). Kluwer.
Ashtekar, A., and Lewandowski, J. 1995. Projective techniques and functional integration for gauge theories. J. Math. Phys., 36, 2170–2191, arXiv:9411046 [gr-qc].
Ashtekar, A., and Lewandowski, J. 1997. Quantum theory of geometry. I: Area operators. Classical Quant. Grav., 14, A55–A82, arXiv:9602046 [gr-qc].
Ashtekar, A., and Lewandowski, J. 1998. Quantum theory of geometry. II: Volume operators. Adv. Theor. Math. Phys., 1, 388–429, arXiv:9711031 [gr-qc].
Ashtekar, A., and Lewandowski, J. 2004. Background independent quantum gravity: a status report. Classical Quant. Grav., 21, R53, arXiv:0404018 [gr-qc].
Ashtekar, A., and Petkov, V. 2014. Springer Handbook of Spacetime. Springer.
Ashtekar, A., and Singh, P. 2011. Loop quantum cosmology: a status report. Classical Quant. Grav., 28, 213001., arXiv:1108.0893.
Ashtekar, A., Rovelli, C., and Smolin, L. 1991. Gravitons and loops. Phys. Rev., D44, 1740–1755, arXiv:9202054 [hep-th].
Ashtekar, A., Rovelli, C., and Smolin, L. 1992. Weaving a classical geometry with quantum threads. Phys. Rev. Lett., 69(Mar.), 237–240, arXiv:9203079 [hep-th].
Ashtekar, A., Baez, J., Corichi, A., and Krasnov, K. 1998. Quantum geometry and black hole entropy. Phys. Rev. Lett., 80, 904–907, arXiv:9710007 [gr-qc].
Ashtekar, A., Engle, J., and Van Den Broeck, C. 2005. Quantum horizons and black hole entropy: inclusion of distortion and rotation. Classical Quant. Grav., 22, L27, arXiv:0412003 [gr-qc].
Ashtekar, A., Kaminski, W., and Lewandowski, J. 2009. Quantum field theory on a cosmological, quantum space-time. Phys. Rev., D79, 64030., arXiv:0901.0933 [gr-qc].
ATLAS Collaboration. 2012. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716(1), 1–29.
Baez, J. C. 1994a. Generalized measures in gauge theory. Lett. Math. Phys., 31, 213–223.
Baez, J. C. (ed.). 1994b. Knots and Quantum Gravity. Oxford Lecture Series in Mathematics and its Applications, vol. 1. Clarendon Press.
Baez, J. C., and Munian, J. P. 1994. Gauge Fields Knots, and Gravity. World Scientific, Singapore.
Bahr, B., and Thiemann, T. 2009. Gauge-invariant coherent states for loop quantum gravity II: Non-abelian gauge groups. Classical Quant. Grav., 26, 45012., arXiv:0709.4636.
Bahr, B., Hellmann, F., Kaminski, W., Kisielowski, M., and Lewandowski, J. 2011. Operator spin foam models. Classical Quant. Grav., 28, 105003., arXiv:1010.4787.
Baratin, A., Dittrich, B., Oriti, D., and Tambornino, J. 2010. Non-commutative flux representation for loop quantum gravity. arXiv:1004.3450 [hep-th].
Barbero, J. F. 1995. Real Ashtekar variables for Lorentzian signature space times. Phys. Rev., D51, 5507–5510, arXiv:9410014 [gr-qc].
Barbieri, A. 1998. Quantum tetrahedra and simplicial spin networks. Nucl. Phys., B518, 714–728, arXiv:9707010 [gr-qc].
Bardeen, J. M., Carter, B., and Hawking, S. W. 1973. The four laws of black hole mechanics. Commun. Math. Phys., 31, 161–170.
Barrau, A., and Rovelli, C. 2014. Fast Radio Bursts and White Hole Signals, arXiv:1409.4031.
Barrau, A., and Rovelli, C. 2014. Planck star phenomenology. arXive:1404.5821.
Barrett, J. W., and Crane, L. 1998. Relativistic spin networks and quantum gravity. J. Math. Phys., 39, 3296–3302, arXiv:9709028 [gr-qc].
Barrett, J. W., and Crane, L. 2000. A Lorentzian signature model for quantum general relativity. Classical Quant. Grav., 17, 3101–3118, arXiv:9904025 [gr-qc].
Barrett, J. W., and Naish-Guzman, I. 2009. The Ponzano–Regge model. Classical Quant. Grav., 26, 155014., arXiv:0803.3319.
Barrett, J. W., Dowdall, R. J., Fairbairn, W. J., Hellmann, F., and Pereira, R. 2010. Lorentzian spin foam amplitudes: graphical calculus and asymptotics. Classical Quant. Grav., 27, 165009., arXiv:0907.2440.
Barrett, J., Giesel, K., Hellmann, F., Jonke, L., Krajewski, T., et al. 2011a. Proceedings of 3rd Quantum Geometry and Quantum Gravity School. Proceedings ofScience, PoS, (QGQGS2011).
Barrett, J. W., Dowdall, R. J., Fairbairn, W. J., Hellmann, F., and Pereira, R. 2011b. Asymptotic analysis of Lorentzian spin foam models. In: Proceedings ofthe 3rd Quantum Gravity and Quantum Geometry School. PoS QGQGS2011009.
Battisti, M. V., Marciano, A., and Rovelli, C. 2010. Triangulated loop quantum cosmology: Bianchi IX and inhomogenous perturbations. Phys. Rev., D81, 64019.
Bekenstein, J. D. 1973. Black holes and entropy. Phys. Rev., D7, 2333–2346.
Ben Geloun, J., Gurau, R., and Rivasseau, V. 2010. EPRL/FK group field theory. Europhys. Lett., 92, 60008., arXiv:1008.0354 [hep-th].
Bertone, G. 2010. Particle Dark Matter. Cambridge University Press.
Bianchi, E. 2012a. Entropy of non-extremal black holes from loop gravity. arXiv:1204.5122.
Bianchi, E. 2012b. Horizon entanglement entropy and universality of the graviton coupling. arXiv:1211.0522.
Bianchi, E., and Ding, Y. 2012. Lorentzian spinfoam propagator. Phys. Rev., D86, 104040, arXiv:1109.6538.
Bianchi, E., and Rovelli, C. 2010a. Is dark energy really a mystery?Nature, 466, 321., arXiv:1003.3483.
Bianchi, E., and Rovelli, C. 2010b. Why all these prejudices against a constant?, arXiv:1002.3966.v3.
Bianchi, E., and Wieland, W. 2012. Horizon energy as the boost boundary term in general relativity and loop gravity. arXiv:1205.5325.
Bianchi, E., Magliaro, E., and Perini, C. 2009. LQG propagator from the new spin foams. Nucl. Phys., B822, 245–269, arXiv:0905.4082.
Bianchi, E., Magliaro, E., and Perini, C. 2010a. Coherent spin-networks. Phys. Rev., D82, 24012, arXiv:0912.4054.
Bianchi, E., Han, M., Magliaro, E., Perini, C., and Wieland, W. 2010b. Spinfoam fermions. arXiv:1012.4719.
Bianchi, E., Magliaro, E., and Perini, C. 2010c. Spinfoams in the holomorphic representation. Phys. Rev., D82, 124031., arXiv:1004.4550 [gr-qc].
Bianchi, E., Rovelli, C., and Vidotto, F. 2010d. Towards spinfoam cosmology. Phys. Rev., D82, 84035., arXiv:1003.3483.
Bianchi, E., Krajewski, T., Rovelli, C., and Vidotto, F. 2011a. Cosmological constant in spinfoam cosmology. Phys. Rev., D83, 104015., arXiv:1101.4049 [gr-qc].
Bianchi, E., Donà, P., and Speziale, S. 2011b. Polyhedra in loop quantum gravity. Phys. Rev., D83, 44035., arXiv:1009.3402.
Bianchi, E., Haggard, H. M., and Rovelli, C. 2013. The boundary is mixed. arXiv:1306.5206.
Bisognano, J. J., and Wichmann, E. H. 1976. On the duality condition for quantum fields. J. Math. Phys., 17, 303–321.
Bohr, N., and Rosenfeld, L. 1933. Det Kongelige Danske Videnskabernes Selskabs. Mathematiks-fysike Meddeleser, 12, 65.
Bojowald, M. 2001. The semiclassical limit of loop quantum cosmology. Classical Quant. Grav., 18 (Sept.), L109–L116, arXiv:0105113 [gr-qc].
Bojowald, M. 2005. Loop quantum cosmology. Living Rev. Relativ., 8, 11., arXiv:0601085[gr-qc].
Bojowald, M. 2011. Quantum cosmology. Lect. Notes Phys., 835, 1–308.
Bonzom, V. 2009. Spin foam models for quantum gravity from lattice path integrals. Phys. Rev., D80, 64028., arXiv:0905.1501.
Bonzom, V., and Livine, E. R. 2011. Yet another recursion relation for the 6j-symbol. arXiv:1103.3415 [gr-qc].
Borja, E. F., Diaz-Polo, J., Garay, I., and Livine, E. R. 2010. Dynamics for a 2-vertex quantum gravity model. Classical Quant. Grav., 27, 235010.
Borja, E. F., Garay, I., and Vidotto, F. 2011. Learning about quantum gravity with a couple of nodes. SIGMA, 8, 15.
Born, M, and Jordan, P. 1925. Zur Quantenmechanik. Zeitschrift für Physik, 34, 858–888.
Born, M, Jordan, P, and Heisenberg, W. 1926. Zur Quantenmechanik II. Zeitschrift fur Physik, 35, 557–615.
Boulatov, D. V. 1992. A model of three-dimensional lattice gravity. Mod. Phys. Lett., A7, 1629–1646, arXiv:9202074 [hep-th].
Bozza, V., Feoli, A., Papini, G., and Scarpetta, G. 2000. Maximal acceleration effects in Reissner-Nordstrom space. Phys. Lett., A271, 35–43, arXiv:0005124 [gr-qc].
Bozza, V.Feoli, A.Lambiase, G.Papini, G. and Scarpetta, G. 2001. Maximal acceleration effects in Kerr space. Phys. Lett., A283, 53–61, arXiv:0104058 [gr-qc].
Brandt, H. E. 1989. Maximal proper acceleration and the structure of space-time. Found. Phys. Lett., 2, 39.
Bronstein, M. P. 1936a. Kvantovanie gravitatsionnykh voln (Quantization of gravitational waves). Zh. Eksp. Teor. Fiz., 6, 195.
Bronstein, M. P. 1936b. Quantentheorie schwacher Gravitationsfelder. Phys. Z. Sowjetunion, 9, 140–157.
Buffenoir, E., and Roche, P. 1999. Harmonic analysis on the quantum Lorentz group. Commun. Math. Phys., 207(3), 499–555, arXiv:9710022 [q-alg].
Caianiello, E. R. 1981. Is there a maximal acceleration?Lett. Nuovo Cim., 32, 65.
Caianiello, E. R., and Landi, G. 1985. Maximal acceleration and Sakhrov's limiting temperature. Lett.Nuovo Cimento., 42, 70.
Caianiello, E. R., Feoli, A., Gasperini, M., and Scarpetta, G. 1990. Quantum corrections to the space-time metric from geometric phase space quantization. Int. J. Theor. Phys., 29, 131.
Caianiello, E. R., Gasperini, M., and Scarpetta, G. 1991. Inflation and singularity prevention in a model for extended-object-dominated cosmology. Classical and Quant. Grav., 8(4), 659.
Cailleteau, T., Mielczarek, J., Barrau, A., and Grain, J. 2012a. Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology. Classical Quant. Grav., 29, 95010., arXiv:1111.3535 [gr-qc].
Cailleteau, T., Barrau, A., Grain, J., and Vidotto, F. 2012b. Consistency of holonomy-corrected scalar, vector and tensor perturbations in loop quantum cosmology. Phys. Rev., D86, 87301., arXiv:1206.6736.
Carlip, S., and Teitelboim, C., 1995. The off-shell black hole. Classical Quant. Grav., 12, 1699–1704, arXiv:9312002 [gr-qc].
Carter, J. S., Flath, D. E., and Saito, M. 1995. The Classical and Quantum 6j-Symbol. Princeton University Press.
Chandia, O., and Zanelli, J. 1997. Torsional topological invariants (and their relevance for real life). arXiv:hep-th/9708138 [hep-th].
Chirco, G., Haggard, H. M., and Rovelli, C. 2013. Coupling and equilibrium for general-covariant systems. Phys. Rev. D88, 084027., arXiv:1309.0777.
Choquet-Bruhat, Y., and Dewitt-Morette, C. 2000. Analysis, Manifolds and Physics, Part II. North-Holland.
Choquet-Bruhat, Y., and Dewitt-Morette, C. 2004. Analysis, Manifolds and Physics, Part I. 2 edn. North-Holland.
Christodoulou, M., Riello, A., and Rovelli, C. 2012. How to detect an anti-spacetime. Int. J. Mod. Phys., D21, 1242014., arXiv:1206.3903 [gr-qc].
Christodoulou, M., Langvik, M., Riello, A., Röken, C., and Rovelli, C. 2013. Divergences and orientation in spinfoams. Classical Quantum. Grav., 30, 055009., arXiv:1207.5156.
CMS Collaboration. 2012. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B, 716(1), 30–61.
Colosi, D., and Rovelli, C. 2003. A simple background-independent Hamiltonian quantum model. Phys. Rev., D68, 104008., arXiv:0306059 [gr-qc].
Colosi, D., and Rovelli, C. 2009. What is a particle?Classical Quant. Grav., 26, 25002., arXiv:0409054 [gr-qc].
Connes, A., and Rovelli, C. 1994. Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Classical Quant. Grav., 11, 2899–2918, arXiv:9406019 [gr-qc].
Conrady, F., and Freidel, L. 2008. Path integral representation of spin foam models of 4d gravity. Classical Quant. Grav., 25, 245010., arXiv:0806.4640.
De, Pietri|R., Freidel, L., Krasnov, K., and Rovelli, C. 2000. Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys., B574, 785–806, arXiv:9907154 [hep-th].
DeWitt, B. S. 1967. Quantum theory of gravity. 1. The canonical theory. Phys. Rev., 160, 1113–1148.
Ding, Y., and Han, M. 2011. On the asymptotics of quantum group spinfoam model. arXiv:1103.1597.
Ding, Y., and Rovelli, C. 2010a. Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory. Classical Quant. Grav., 27, 205003., arXiv:1006.1294.
Ding, Y., and Rovelli, C. 2010b. The volume operator in covariant quantum gravity. Classical Quant. Grav., 27, 165003., arXiv:0911.0543.
Dirac, P. A. M. 1950. Generalized Hamiltonian dynamics. Can. J. Math., 2, 129–148.
Dirac, P. A. M. 1956. Electrons and the vacuum. In: Dirac Papers. Florida State University Libraries, Tallahassee, Florida, USA.
Dirac, P. A. M. 1958. Generalized Hamiltonian dynamics. Proc. R. Soc. Lond., 246, 326332.
Dirac, P. 2001. Lectures on Quantum Mechanics. Dover Books on Physics. New York: Belfer Graduate School of Science, Yeshiva University, New York.
Dittrich, B., Martin-Benito, M., and Steinhaus, S. 2013. Quantum group spin nets: refinement limit and relation to spin foams. arXiv:1312.0905.
Doná, P., and Speziale, S. 2013. Introductory lectures to loop quantum gravity. In: Bounames, A., and Makhlouf, A. (eds.), TVC 79. Gravitation: théorie et expérience. Hermann.
Durr, S., Fodor, Z., Frison, J., Hoelbling, C., Hoffmann, R., et al. 2008. Ab-initio determination of light hadron masses. Science, 322, 1224–1227, arXiv:0906.3599 [hep-lat].
Einstein, A. 1905a. On a heuristic viewpoint of the creation and modification of light. Annalen der Physik, 1905 (17), 133–148.
Einstein, A. 1905b. Zur Elektrodynamik bewegter Körper. Annalen der Physik, 1905(10), 891–921.
Einstein, A. 1915. Zur Allgemeinen Relativitatstheorie. Sitzungsher. Preuss. Akad: Wiss. Berlin (Math. Phys.), 1915, 778–786.
Einstein, A. 1916. Grundlage der allgemeinen Relativitatstheorie. Annalen der Physik, 49, 769–822.
Einstein, A. 1917. Cosmological considerations in the general theory of relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1917, 142–152.
Engle, J., and Pereira, R. 2009. Regularization and finiteness of the Lorentzian LQG vertices. Phys. Rev., D79, 84034., arXiv:0805.4696.
Engle, J., Pereira, R., and Rovelli, Carlo. 2007. The loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett., 99, 161301., arXiv:0705.2388.
Engle, J., Pereira, R., and Rovelli, C. 2008a. Flipped spinfoam vertex and loop gravity. Nucl. Phys., B798, 251–290, arXiv:0708.1236.
Engle, J., Livine, E., Pereira, R., and Rovelli, C. 2008b. LQG vertex with finite Immirzi parameter. Nucl. Phys., B799, 136–149, arXiv:0711.0146.
Fairbairn, W. J., and Meusburger, C. 2012. Quantum deformation of two four-dimensional spin foam models. J. Math. Phys., 53, 22501., arXiv:1012.4784 [gr-qc].
Farmelo, G. 2009. The Strangest Man. The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber.
Feoli, A., Lambiase, G., Papini, G., and Scarpetta, G. 1999. Schwarzschild field with maximal acceleration corrections. Phys. Lett., A263, 147–153, arXiv:9912089 [gr-qc].
Feynman, R. P. 1948. Space-time approach to nonrelativistic quantum mechanics. Rev. Mod. Phys., 20, 367–387.
Flanders, H. 1963. Differential Forms: With Applications to the Physical Sciences. Dover.
Folland, G. B. 1995. A Course in Abstract Harmonic Analysis. CRC Press.
Frankel, T. 2003. The Geometry of Physics: An Introduction. 2 edn. Cambridge University Press.
Freidel, L., and Krasnov, K. 2008. A new spin foam model for 4d gravity. Classical Quant Grav., 25, 125018., arXiv:0708.1595.
Freidel, L., and Speziale, S. 2010a. From twistors to twisted geometries. Phys. Rev., D82, 84041, arXiv:1006.0199 [gr-qc].
Freidel, L., and Speziale, S. 2010b. Twisted geometries: A geometric parametrisation of SU(2) phase space. Phys. Rev., D82, 84040., arXiv:1001.2748.
Freidel, L., Krasnov, K., and Livine, E. R. 2009. Holomorphic factorization for a quantum tetrahedron. arXiv:0905.3627.
Frodden, E., Ghosh, A., and Perez, A. 2011. Black hole entropy in LQG: Recent developments. AIP Conf. Proc., 1458, 100–115.
Frodden, E., Geiller, M., Noui, K., and Perez, A. 2012. Black hole entropy from complex Ashtekar variables. arXiv:1212.4060.
Gambini, R., and Pullin, J. 2010. Introduction to Loop Quantum Gravity. Oxford University Press.
Gel'fand, I. M., and Shilov, G. E. 1968. Generalized functions 1–5. Academic Press.
Gel'fand, I. M., Minlos, R. A., and Shapiro, Z.Ya. 1963. Representations of the Rotation and Lorentz Groups and Their Applications. Pergamon Press.
Ghosh, A., and Perez, A. 2011. Black hole entropy and isolated horizons thermodynamics. Phys. Rev. Lett., 107, 241301., arXiv:1107.1320.
Ghosh, A., Noui, K., and Perez, A. 2013. Statistics, holography, and black hole entropy in loop quantum gravity. arXiv:1309.4563.
Gibbons, G. W., and Hawking, S. W. 1977. Action integrals and partition functions in quantum gravity. Phys. Rev., D15(10), 2752–2756.
Gorelik, G., and Frenkel, V. 1994. Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties. Birkhäuser Verlag.
Haag, R. 1996. Local Quantum Physics: Fields, Particles, Algebras. Springer.
Haggard, H. M. 2011. Asymptotic analysis of spin networks with applications to quantum gravity. PhD dissertation, University of California, Berkeley.
Haggard, H. M., and Rovelli, C. 2013. Death and resurrection of the zeroth principle of thermodynamics. J. Mod. Phys., D22, 1342007., arXiv:1302.0724.
Haggard, H. M., and Rovelli, C. 2014. Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunnelling. arXives 1407.0989.
Haggard, H. M., Rovelli, C., Wieland, W., and Vidotto, F. 2013. The spin connection of twisted geometry. Phys. Rev., D87, 24038., arXiv:1211.2166.
Halliwell, J. J., and Hawking, S. W. 1985. The origin of structure in the universe. Phys. Rev., D31, 1777.
Han, M. 2011a. 4-Dimensional spin-foam model with quantum lorentz group. J. Math. Phys., 52, 72501., arXiv:1012.4216 [gr-qc].
Han, M. 2011b. Cosmological constant in LQG vertex amplitude. Phys. Rev., D84, 64010., arXiv:1105.2212.
Han, M. 2013. Covariant loop quantum gravity, low energy perturbation theory, and Einstein gravity. arXiv:1308.4063.
Han, M. 2014. Black hole entropy in loop quantum gravity, analytic continuation, and dual holography. arXiv:1402.2084.
Han, M., and Rovelli, C. 2013. Spin-foam fermions: PCT symmetry, Dirac determinant, and correlation functions. Classical Quant. Grav., 30, 75007., arXiv:1101.3264.
Han, M., and Zhang, M. 2013. Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory. Classical Quant. Grav., 30, 165012., arXiv:1109.0499 [gr-qc].
Hartle, J. B., and Hawking, S. W. 1983. Wave function of the universe. Phys. Rev., D28, 2960–2975.
Hawking, S. W. 1974. Black hole explosions?Nature, 248, 30–31.
Hawking, S.W. 1975. Particle creation by black holes. Commun. Math. Phys., 43, 199–220.
Hawking, S. W. 1980. The path integral approach to quantum gravity. In: Hawking, S. W., Israel, W. (eds.) General Relativity. Cambridge University Press; 746–789.
Hawking, S. W., and Ellis, G. F. R. 1973. The Large Scale Structure of Space-time. Cambridge Monographs on Mathematical Physics. Cambridge University Press.
Heisenberg, W. 1925. Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33(1), 879–893.
Hellmann, F., and Kaminski, W. 2013. Holonomy spin foam models: asymptotic geometry of the partition function. arXiv:1307.1679.
Hojman, R., Mukku, C., and Sayed, W. A. 1980. Parity violation in metric torsion theories of gravity. Phys. Rev., D22, 1915–1921.
Hollands, S., and Wald, R. M. 2008. Quantum field theory in curved spacetime, the operator product expansion, and dark energy. Gen. Relat. Gravit., 40, 2051–2059, arXiv:0805.3419.
Holst, S. 1996. Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev., D53, 5966–5969, arXiv:9511026 [gr-qc].
Kaminski, W. 2010. All 3-edge-connected relativistic BC and EPRL spin networks are integrable. arXiv:1010.5384 [gr-qc].
Kaminski, W., Kisielowski, M., and Lewandowski, J. 2010a. Spin-foams for all loop quantum gravity. Classical Quant. Grav., 27, 95006., arXiv:0909.0939.
Kaminski, W., Kisielowski, M., and Lewandowski, J. 2010b. The EPRL intertwiners and corrected partition function. Classical Quant. Grav., 27, 165020., arXiv:0912.0540.
Kauffman, L. H., and Lins, S. L. 1994. Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies, vol. 134. Princeton University Press.
Kiefer, C. 2007. Quantum Gravity (International Series of Monographs on Physics). 2 edn. Oxford University Press.
Kobayashi, S., and Nomizu, K.Foundations of Differential Geometry, Interscience (John Wiley), vol. 1 (1963) and vol. 2 (1968).
Kogut, J. B., and Susskind, L. 1975. Hamiltonian formulation of Wilson's lattice gauge theories. Phys. Rev., D11, 395.
Krajewski, T. 2011. Group field theories. In: Proceedings of the 3rd Quantum Gravity and Quantum Geometry School. PoS (QGQGS2011)005.
Krajewski, T., Magnen, J., Rivasseau, V., Tanasa, A., and Vitale, P. 2010. Quantum corrections in the group field theory formulation of the EPRL/FK models. Phys. Rev., D82, 124069., arXiv:1007.3150 [gr-qc].
Landau, L. D., and Lifshitz, E. M. 1951. The Classical Theory ofFields. Pergamon Press.
Landau, L. D., and Lifshitz, E. M. 1959. Quantum Mechanics. Pergamon Press.
Landau, L., and Peierls, R. 1931. Erweiterung des Unbestimmheitsprinzips fur die relativistische Quantentheorie. Zeitschrift für Physik, 69, 56–69.
Lewandowski, J. 1994. Topological measure and graph-differential geometry on the quotient space of connections. Int. J. Mod. Phys. D, 3, 207–210.
Liberati, S., and Maccione, L. 2009. Lorentz violation: motivation and new constraints. Annu. Rev. Nucl. Part. Sci., 59, 245–267, arXiv:0906.0681 [astro-ph.HE].
Littlejohn, R. 2013. Lectures in Marseille. [To appear.]
Littlejohn, R. G. 1992. The Van Vleck formula, Maslov theory, and phase space geometry. J. Stat. Phys., 68, 7–50.
Livine, E. R., and Speziale, S. 2007. A new spinfoam vertex for quantum gravity. Phys. Rev., D76, 84028., arXiv:0705.0674.
Magliaro, E., and Perini, C. 2011a. Emergence of gravity from spinfoams. EPL (Europhysics Letters), 95(3), 30007, arXiv:1108.2258.
Magliaro, E., and Perini, C. 2011b. Regge gravity from spinfoams. arXiv:1105.0216.
Magliaro, E., and Perini, C. 2012. Local spin foams. Int. J. Mod. Phys., D21, 1250090., arXiv:1010.5227 [gr-qc].
Magliaro, E., and Perini, C. 2013. Regge gravity from spinfoams. Int. J. Mod. Phys. D, 22(Feb.), 1350001, arXiv:1105.0216.
Magliaro, E., Marciano, A., and Perini, C. 2011. Coherent states for FLRW space-times in loop quantum gravity. Phys. Rev. D, 83, 44029.
Misner, C. W. 1957. Feynman quantization of general relativity. Rev. Mod. Phys., 29, 497.
Misner, C. W., Thorne, K., and Wheeler, J. A. 1973. Gravitation (Physics Series). W. H. Freeman.
Mizoguchi, S., and Tada, T. 1992. Three-dimensional gravity from the Turaev–Viro invariant. Phys. Rev. Lett., 68, 1795–1798, arXiv:9110057 [hep-th].
Morales-Tecotl, H. A., and Rovelli, C. 1994. Fermions in quantum gravity. Phys. Rev. Lett., 72, 3642–3645, arXiv:9401011 [gr-qc].
Morales-Tecotl, H. A., and Rovelli, C. 1995. Loop space representation of quantum fermions and gravity. Nucl. Phys., B451, 325–361.
Mukhanov, V. F, Feldman, H. A., and Brandenberger, R. H. 1992. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep., 215, 203–333.
Noui, K., and Roche, P. 2003. Cosmological deformation of Lorentzian spin foam models. Classical Quant. Grav., 20, 3175–3214, arXiv:0211109 [gr-qc].
Oeckl, R. 2003. A ‘general boundary’ formulation for quantum mechanics and quantum gravity. Phys. Lett., B575, 318–324, arXiv:0306025 [hep-th].
Oeckl, R. 2008. General boundary quantum field theory: foundations and probability interpretation. Adv. Theor. Math. Phys., 12, 319–352, arXiv:0509122 [hep-th].
Ooguri, H. 1992. Topological lattice models in four-dimensions. Mod. Phys. Lett., A7, 2799–2810, arXiv:9205090 [hep-th].
Perez, A. 2012. The spin foam approach to quantum gravity. Living Rev. Relativ., 16, 3, arXiv:1205.2019.
Perez, A., and Rovelli, C. 2001. A spin foam model without bubble divergences. Nucl. Phys., B599, 255–282, arXiv:0006107 [gr-qc].
Perini, C., Rovelli, C., and Speziale, S. 2009. Self-energy and vertex radiative corrections in LQG. Phys. Lett., B682, 78–84, arXiv:0810.1714.
Planck Collaboration. 2013. Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062.
Ponzano, G., and Regge, Tullio. 1968. Semiclassical limit of Racah coefficients. In: Bloch, F. (ed.), Spectroscopy and Group Theoretical Methods in Physics. North-Holland.
Regge, T. 1961. General relativity without coordinates. Nuovo Cimento., 19, 558–571.
Reisenberger, M. P., and Rovelli, C. 1997. “Sum over surfaces” form of loop quantum gravity. Phys. Rev., D56, 3490–3508, arXiv: 9612035.
Rennert, J., and Sloan, D. 2013. Towards anisotropic spinfoam cosmology. arXiv:1304.6688 [gr-qc].
Riello, A. 2013. Self-energy of the Lorentzian EPRL-FK spin foam model of quantum gravity. Phys. Rev., D88, 24011., arXiv: 1302.1781.
Roberts, J. 1999. Classical 6j-symbols and the tetrahedron. Geom. Topol., 3, 21–66, arXiv:9812013 [math-ph].
Rovelli, C. 1993a. Statistical mechanics of gravity and the thermodynamical origin of time. Classical Quant. Grav., 10, 1549–1566.
Rovelli, C. 1993b. The basis of the Ponzano–Regge–Turaev–Viro–Ooguri model is the loop representation basis. Phys. Rev., D48, 2702–2707, arXiU:math_ph:9304164vl.
Rovelli, C. 1993c. The statistical state of the universe. Classical Quant. Grav., 10, 1567.
Rovelli, C. 1996a. Black hole entropy from loop quantum gravity. Phys. Rev. Lett., 77(16), 3288–3291, arXiv:9603063 [gr-qc].
Rovelli, C. 1996b. Relational quantum mechanics. Int. J. Theor. Phys., 35(9), 1637, arXiv:9609002 [quant-ph].
Rovelli, C. 2004. Quantum Gravity. Cambridge University Press.
Rovelli, C. 2006. Graviton propagator from background-independent quantum gravity. Phys. Rev. Lett., 97, 151301., arXiv:0508124 [gr-qc].
Rovelli, C. 2011. Zakopane lectures on loop gravity. In: Proceedings ofthe 3rd Quantum Gravity and Quantum Geometry School. PoS (QGQGS2011)003.
Rovelli, C. 2013a. General relativistic statistical mechanics. Phys, Rev, D., D87, 84055, arXiV:1209.0065 [gr-gc].
Rovelli, C. 2013b. Why Gauge? arXiv:1308.5599.
Rovelli, C., and Smerlak, M. 2010. Thermal time and the Tolman–Ehrenfest effect: temperature as the “speed of time”. Classical Quant. Grav. 28, 075007, arXiv:1005.2985.
Rovelli, C., and Smerlak, M. 2012. In quantum gravity, summing is refining. Classical Quant. Grav., 29, 55004., arXiv:1010.5437 [gr-qc].
Rovelli, C., and Smolin, L. 1988. Knot theory and quantum gravity. Phys. Rev. Lett., 61, 1155.
Rovelli, C., and Smolin, L. 1990. Loop space representation of quantum general relativity. Nucl. Phys., B331, 80.
Rovelli, C., and Smolin, L. 1995a. Discreteness of area and volume in quantum gravity. Nucl. Phys., B442, 593–622, arXiv:9411005 [gr-qc].
Rovelli, C., and Smolin, L. 1995b. Spin networks and quantum gravity, arXiv:9505006 [gr-qc].
Rovelli, C., and Speziale, S. 2010. On the geometry of loop quantum gravity on a graph. Phys. Rev., D82, 44018., arXiv:1005.2927.
Rovelli, C., and Speziale, S. 2011. Lorentz covariance of loop quantum gravity. Phys. Rev., D83, 104029, arXiv:1012.1739.
Rovelli, C., and Vidotto, F. 2008. Stepping out of homogeneity in loop quantum cosmology, arXiv:0805.4585.
Rovelli, C., and Vidotto, F. 2010. Single particle in quantum gravity and BGS entropy of aspinnetwork. Phys. Rev., D81, 44038, arXiv:0905.2983.
Rovelli, C., and Vidotto, F. 2013. Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity. Phys. Rev. Lett., 111(9), 091303, arXiv:1307.3228.
Rovelli, C., and Vidotto, F. 2014. Planck stars. arXiv:1401.6562.
Rovelli, C., and Zhang, M. 2011. Euclidean three-point function in loop and perturbative gravity. Classical Quant. Grav., 28, 175010, arXiv:1105.0566 [gr-qc].
Ruhl, W. 1970. The Lorentz Group and Harmonic Analysis. W.A. Benjamin.
Schrödinger, E. 1926. Quantisierung als Eigenwertproblem. Annalen der Physik, 13, 29.
Sen, A. 1982. Gravity as a spin system. Phys. Lett. B, 119, 89–91.
Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal, XXVII(3), 379.
Singh, P. 2009. Are loop quantum cosmos never singular? Classical Quant. Grav., 26, 125005, arXiv:0901.2750.
Singh, P., and Vidotto, F. 2011. Exotic singularities and spatially curved loop quantum cosmology. Phys. Rev., D83, 64027, arXiv:1012.1307.
Smolin, L. 1994. Fermions and topology. arXiv:9404010 [gr-qc].
Smolin, L. 2012. General relativity as the equation of state of spin foam. arXiv:1205.5529.
Sorkin, R. D. 1977. On the relation between charge and topology. J. Phys. A: Math. Gen., 10, 717.
Stone, D. 2013. Einstein and the Quantum: The Quest of the Valiant Swabian. Princeton University Press.
Sundermeyer, K. 1982. Constrained Dynamics : With Applications to Yang–Mills Theory, General Relativity, Classical Spin, Dual String Model. Springer-Verlag.
Thiemann, T. 2006. Complexifier coherent states for quantum general relativity. Classical Quant. Grav., 23, 2063–2118, arXiv:0206037 [gr-qc].
Thiemann, T. 2007. Modern Canonical Quantum General Relativity. Cambridge University Press.
Toller, M. 2003. Geometries of maximal acceleration. arXiv:0312016 [hep-th].
Tolman, R. C. 1930. On the weight of heat and thermal equilibrium in general relativity. Phys. Rev., 35, 904–924.
Tolman, R. C., and Ehrenfest, P. 1930. Temperature equilibrium in a static gravitational field. Phys. Rev., 36(12), 1791–1798.
Turaev, V. G., and Viro, O. Y. 1992. State sum invariants of 3 manifolds and quantum 6j symbols. Topology, 31, 865–902.
Unruh, W. G. 1976. Notes on black hole evaporation. Phys. Rev., D14, 870.
Vidotto, F. 2011. Many-nodes/many-links spinfoam: the homogeneous and isotropic case. Classical Quant Grav., 28(245005), arXiv:1107.2633.
Wald, R. M. 1984. General relativity. Chicago, University Press.
Wheeler, J. A. 1962. Geometrodynamics. New York: Academic Press.
Wheeler, J. A. 1968. Superspace and the nature of quantum geometrodynamics. In: DeWitt, B. S, and Wheeler, J. A. (eds.), Batelles Rencontres. Benjamin.
Wieland, W. 2012. Complex Ashtekar variables and reality conditions for Holst's action. Annales Henri Poincare, 13, 425, arXiv:1012.1738 [gr-qc].
Wightman, A. 1959. Quantum field theory in terms of vacuum expectation values. Phys. Rev., 101(860).
Wilson, K. G. 1974. Confinement of quarks. Phys. Rev., D10, 2445–2459.
York, J. W. 1972. Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett., 28, 1082.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.