Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T01:33:57.251Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2015

Carlo Rovelli
Affiliation:
Université d'Aix-Marseille
Francesca Vidotto
Affiliation:
Radboud Universiteit Nijmegen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Covariant Loop Quantum Gravity
An Elementary Introduction to Quantum Gravity and Spinfoam Theory
, pp. 240 - 251
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. L. 1982. Einstein gravity as a symmetry breaking effect in quantum field theory. Rev. Mod. Phys., 54, 729.CrossRefGoogle Scholar
Agullo, I., and Corichi, A. 2013. Loop quantum cosmology. arXiv:1302.3833.v1 [gr-gc]. [In Ashtekar, A. and Petkov, V. (eds.). 2014. The Springer Handbook of Spacetime. Springer.]Google Scholar
Agullo, I., Ashtekar, A., and Nelson, W. 2012. A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett., 109, 251301., arXiv:1209.1609.CrossRefGoogle ScholarPubMed
Alesci, E., and Cianfrani, F. 2013. Quantum-reduced loop gravity: cosmology. Phys. Rev., D87, 83521., arXiv:1301.2245.Google Scholar
Alesci, E., and Rovelli, C. 2007. Complete LQG propagator: difficulties with the Barrett-Crane vertex. Phys. Rev., D76(10), 104012, arXiv:0708.0883.Google Scholar
Alesci, E., and Rovelli, C. 2008. The complete LQG propagator: II. Asymptotic behavior of the vertex. Phys. Rev., D77, 44024., arXiv:0711.1284.Google Scholar
Alexandrov, S. 2010. New vertices and canonical quantization. Phys. Rev., D82(July), 24024, arXiv:1004.2260.Google Scholar
Aquilanti, V., Haggard, H. M., Hedeman, A., Jeevanjee, N., Littlejohn, R. G., and Yu, L. 2010. Semiclassical mechanics of the Wigner 6j-symbol. arXiv:1009.2811.
Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Trincherini, E., and Villadoro, G. 2007. A measure of de Sitter entropy and eternal inflation. J. High. Energy. Phys., 0705, 55., arXiv:0704.1814.CrossRefGoogle Scholar
Arnold, V. I. 1989. Mathematical Methods of Classical Mechanics. Springer Verlag.CrossRefGoogle Scholar
Arnowitt, R. L., Deser, S., and Misner, C. W. 1962. The dynamics of general relativity. arXiv:0405109 [gr-qc].
Ashtekar, A. 1986. New variables for classical and quantum gravity. Phys. Rev. Lett., 57, 2244–2247.CrossRefGoogle ScholarPubMed
Ashtekar, A. 1991. Lectures on Non-Perturbative Canonical Gravity. World Scientific.CrossRefGoogle Scholar
Ashtekar, A. 2009. Loop quantum cosmology: an overview. Gen. Relat. Gravit., 41, 707–741, arXiv:0812.0177.CrossRefGoogle Scholar
Ashtekar, A. 2011. Introduction to loop quantum gravity. In: Proceedings of the 3rd Quantum Gravity and Quantum Geometry School. PoS (QGQGS2011)001.Google Scholar
Ashtekar, A., and Krasnov, K. 1998 Quantum geometry and black holes. In: B. R., Iyer and B., Bhawal (eds.), ‘Black Holes, Gravitational Radiation and the Universe’, Essays in Honor of C. V. Vishveshwara (pp. 149–170). Kluwer.Google Scholar
Ashtekar, A., and Lewandowski, J. 1995. Projective techniques and functional integration for gauge theories. J. Math. Phys., 36, 2170–2191, arXiv:9411046 [gr-qc].CrossRefGoogle Scholar
Ashtekar, A., and Lewandowski, J. 1997. Quantum theory of geometry. I: Area operators. Classical Quant. Grav., 14, A55–A82, arXiv:9602046 [gr-qc].CrossRefGoogle Scholar
Ashtekar, A., and Lewandowski, J. 1998. Quantum theory of geometry. II: Volume operators. Adv. Theor. Math. Phys., 1, 388–429, arXiv:9711031 [gr-qc].Google Scholar
Ashtekar, A., and Lewandowski, J. 2004. Background independent quantum gravity: a status report. Classical Quant. Grav., 21, R53, arXiv:0404018 [gr-qc].CrossRefGoogle Scholar
Ashtekar, A., and Petkov, V. 2014. Springer Handbook of Spacetime. Springer.CrossRefGoogle Scholar
Ashtekar, A., and Singh, P. 2011. Loop quantum cosmology: a status report. Classical Quant. Grav., 28, 213001., arXiv:1108.0893.CrossRefGoogle Scholar
Ashtekar, A., Rovelli, C., and Smolin, L. 1991. Gravitons and loops. Phys. Rev., D44, 1740–1755, arXiv:9202054 [hep-th].Google Scholar
Ashtekar, A., Rovelli, C., and Smolin, L. 1992. Weaving a classical geometry with quantum threads. Phys. Rev. Lett., 69(Mar.), 237–240, arXiv:9203079 [hep-th].CrossRefGoogle Scholar
Ashtekar, A., Baez, J., Corichi, A., and Krasnov, K. 1998. Quantum geometry and black hole entropy. Phys. Rev. Lett., 80, 904–907, arXiv:9710007 [gr-qc].CrossRefGoogle Scholar
Ashtekar, A., Engle, J., and Van Den Broeck, C. 2005. Quantum horizons and black hole entropy: inclusion of distortion and rotation. Classical Quant. Grav., 22, L27, arXiv:0412003 [gr-qc].CrossRefGoogle Scholar
Ashtekar, A., Kaminski, W., and Lewandowski, J. 2009. Quantum field theory on a cosmological, quantum space-time. Phys. Rev., D79, 64030., arXiv:0901.0933 [gr-qc].Google Scholar
ATLAS Collaboration. 2012. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716(1), 1–29.
Baez, J. C. 1994a. Generalized measures in gauge theory. Lett. Math. Phys., 31, 213–223.CrossRefGoogle Scholar
Baez, J. C. (ed.). 1994b. Knots and Quantum Gravity. Oxford Lecture Series in Mathematics and its Applications, vol. 1. Clarendon Press.
Baez, J. C., and Munian, J. P. 1994. Gauge Fields Knots, and Gravity. World Scientific, Singapore.CrossRefGoogle Scholar
Bahr, B., and Thiemann, T. 2009. Gauge-invariant coherent states for loop quantum gravity II: Non-abelian gauge groups. Classical Quant. Grav., 26, 45012., arXiv:0709.4636.CrossRefGoogle Scholar
Bahr, B., Hellmann, F., Kaminski, W., Kisielowski, M., and Lewandowski, J. 2011. Operator spin foam models. Classical Quant. Grav., 28, 105003., arXiv:1010.4787.CrossRefGoogle Scholar
Baratin, A., Dittrich, B., Oriti, D., and Tambornino, J. 2010. Non-commutative flux representation for loop quantum gravity. arXiv:1004.3450 [hep-th].
Barbero, J. F. 1995. Real Ashtekar variables for Lorentzian signature space times. Phys. Rev., D51, 5507–5510, arXiv:9410014 [gr-qc].Google Scholar
Barbieri, A. 1998. Quantum tetrahedra and simplicial spin networks. Nucl. Phys., B518, 714–728, arXiv:9707010 [gr-qc].Google Scholar
Bardeen, J. M., Carter, B., and Hawking, S. W. 1973. The four laws of black hole mechanics. Commun. Math. Phys., 31, 161–170.CrossRefGoogle Scholar
Barrau, A., and Rovelli, C. 2014. Fast Radio Bursts and White Hole Signals, arXiv:1409.4031.CrossRef
Barrau, A., and Rovelli, C. 2014. Planck star phenomenology. arXive:1404.5821.
Barrett, J. W., and Crane, L. 1998. Relativistic spin networks and quantum gravity. J. Math. Phys., 39, 3296–3302, arXiv:9709028 [gr-qc].CrossRefGoogle Scholar
Barrett, J. W., and Crane, L. 2000. A Lorentzian signature model for quantum general relativity. Classical Quant. Grav., 17, 3101–3118, arXiv:9904025 [gr-qc].CrossRefGoogle Scholar
Barrett, J. W., and Naish-Guzman, I. 2009. The Ponzano–Regge model. Classical Quant. Grav., 26, 155014., arXiv:0803.3319.CrossRefGoogle Scholar
Barrett, J. W., Dowdall, R. J., Fairbairn, W. J., Hellmann, F., and Pereira, R. 2010. Lorentzian spin foam amplitudes: graphical calculus and asymptotics. Classical Quant. Grav., 27, 165009., arXiv:0907.2440.CrossRefGoogle Scholar
Barrett, J., Giesel, K., Hellmann, F., Jonke, L., Krajewski, T., et al. 2011a. Proceedings of 3rd Quantum Geometry and Quantum Gravity School. Proceedings ofScience, PoS, (QGQGS2011).Google Scholar
Barrett, J. W., Dowdall, R. J., Fairbairn, W. J., Hellmann, F., and Pereira, R. 2011b. Asymptotic analysis of Lorentzian spin foam models. In: Proceedings ofthe 3rd Quantum Gravity and Quantum Geometry School. PoS QGQGS2011009.Google Scholar
Battisti, M. V., Marciano, A., and Rovelli, C. 2010. Triangulated loop quantum cosmology: Bianchi IX and inhomogenous perturbations. Phys. Rev., D81, 64019.Google Scholar
Bekenstein, J. D. 1973. Black holes and entropy. Phys. Rev., D7, 2333–2346.Google Scholar
Ben Geloun, J., Gurau, R., and Rivasseau, V. 2010. EPRL/FK group field theory. Europhys. Lett., 92, 60008., arXiv:1008.0354 [hep-th].CrossRefGoogle Scholar
Bertone, G. 2010. Particle Dark Matter. Cambridge University Press.CrossRefGoogle Scholar
Bianchi, E. 2012a. Entropy of non-extremal black holes from loop gravity. arXiv:1204.5122.
Bianchi, E. 2012b. Horizon entanglement entropy and universality of the graviton coupling. arXiv:1211.0522.
Bianchi, E., and Ding, Y. 2012. Lorentzian spinfoam propagator. Phys. Rev., D86, 104040, arXiv:1109.6538.Google Scholar
Bianchi, E., and Rovelli, C. 2010a. Is dark energy really a mystery?Nature, 466, 321., arXiv:1003.3483.CrossRefGoogle ScholarPubMed
Bianchi, E., and Rovelli, C. 2010b. Why all these prejudices against a constant?, arXiv:1002.3966.v3.
Bianchi, E., and Wieland, W. 2012. Horizon energy as the boost boundary term in general relativity and loop gravity. arXiv:1205.5325.
Bianchi, E., Magliaro, E., and Perini, C. 2009. LQG propagator from the new spin foams. Nucl. Phys., B822, 245–269, arXiv:0905.4082.Google Scholar
Bianchi, E., Magliaro, E., and Perini, C. 2010a. Coherent spin-networks. Phys. Rev., D82, 24012, arXiv:0912.4054.Google Scholar
Bianchi, E., Han, M., Magliaro, E., Perini, C., and Wieland, W. 2010b. Spinfoam fermions. arXiv:1012.4719.
Bianchi, E., Magliaro, E., and Perini, C. 2010c. Spinfoams in the holomorphic representation. Phys. Rev., D82, 124031., arXiv:1004.4550 [gr-qc].Google Scholar
Bianchi, E., Rovelli, C., and Vidotto, F. 2010d. Towards spinfoam cosmology. Phys. Rev., D82, 84035., arXiv:1003.3483.Google Scholar
Bianchi, E., Krajewski, T., Rovelli, C., and Vidotto, F. 2011a. Cosmological constant in spinfoam cosmology. Phys. Rev., D83, 104015., arXiv:1101.4049 [gr-qc].Google Scholar
Bianchi, E., Donà, P., and Speziale, S. 2011b. Polyhedra in loop quantum gravity. Phys. Rev., D83, 44035., arXiv:1009.3402.Google Scholar
Bianchi, E., Haggard, H. M., and Rovelli, C. 2013. The boundary is mixed. arXiv:1306.5206.
Bisognano, J. J., and Wichmann, E. H. 1976. On the duality condition for quantum fields. J. Math. Phys., 17, 303–321.CrossRefGoogle Scholar
Bohr, N., and Rosenfeld, L. 1933. Det Kongelige Danske Videnskabernes Selskabs. Mathematiks-fysike Meddeleser, 12, 65.Google Scholar
Bojowald, M. 2001. The semiclassical limit of loop quantum cosmology. Classical Quant. Grav., 18 (Sept.), L109–L116, arXiv:0105113 [gr-qc].CrossRefGoogle Scholar
Bojowald, M. 2005. Loop quantum cosmology. Living Rev. Relativ., 8, 11., arXiv:0601085[gr-qc].CrossRefGoogle ScholarPubMed
Bojowald, M. 2011. Quantum cosmology. Lect. Notes Phys., 835, 1–308.Google Scholar
Bonzom, V. 2009. Spin foam models for quantum gravity from lattice path integrals. Phys. Rev., D80, 64028., arXiv:0905.1501.Google Scholar
Bonzom, V., and Livine, E. R. 2011. Yet another recursion relation for the 6j-symbol. arXiv:1103.3415 [gr-qc].
Borja, E. F., Diaz-Polo, J., Garay, I., and Livine, E. R. 2010. Dynamics for a 2-vertex quantum gravity model. Classical Quant. Grav., 27, 235010.CrossRefGoogle Scholar
Borja, E. F., Garay, I., and Vidotto, F. 2011. Learning about quantum gravity with a couple of nodes. SIGMA, 8, 15.Google Scholar
Born, M, and Jordan, P. 1925. Zur Quantenmechanik. Zeitschrift für Physik, 34, 858–888.CrossRefGoogle Scholar
Born, M, Jordan, P, and Heisenberg, W. 1926. Zur Quantenmechanik II. Zeitschrift fur Physik, 35, 557–615.CrossRefGoogle Scholar
Boulatov, D. V. 1992. A model of three-dimensional lattice gravity. Mod. Phys. Lett., A7, 1629–1646, arXiv:9202074 [hep-th].Google Scholar
Bozza, V., Feoli, A., Papini, G., and Scarpetta, G. 2000. Maximal acceleration effects in Reissner-Nordstrom space. Phys. Lett., A271, 35–43, arXiv:0005124 [gr-qc].Google Scholar
Bozza, V.Feoli, A.Lambiase, G.Papini, G. and Scarpetta, G. 2001. Maximal acceleration effects in Kerr space. Phys. Lett., A283, 53–61, arXiv:0104058 [gr-qc].Google Scholar
Brandt, H. E. 1989. Maximal proper acceleration and the structure of space-time. Found. Phys. Lett., 2, 39.CrossRefGoogle Scholar
Bronstein, M. P. 1936a. Kvantovanie gravitatsionnykh voln (Quantization of gravitational waves). Zh. Eksp. Teor. Fiz., 6, 195.Google Scholar
Bronstein, M. P. 1936b. Quantentheorie schwacher Gravitationsfelder. Phys. Z. Sowjetunion, 9, 140–157.Google Scholar
Buffenoir, E., and Roche, P. 1999. Harmonic analysis on the quantum Lorentz group. Commun. Math. Phys., 207(3), 499–555, arXiv:9710022 [q-alg].CrossRefGoogle Scholar
Caianiello, E. R. 1981. Is there a maximal acceleration?Lett. Nuovo Cim., 32, 65.CrossRefGoogle Scholar
Caianiello, E. R., and Landi, G. 1985. Maximal acceleration and Sakhrov's limiting temperature. Lett.Nuovo Cimento., 42, 70.CrossRefGoogle Scholar
Caianiello, E. R., Feoli, A., Gasperini, M., and Scarpetta, G. 1990. Quantum corrections to the space-time metric from geometric phase space quantization. Int. J. Theor. Phys., 29, 131.CrossRefGoogle Scholar
Caianiello, E. R., Gasperini, M., and Scarpetta, G. 1991. Inflation and singularity prevention in a model for extended-object-dominated cosmology. Classical and Quant. Grav., 8(4), 659.CrossRefGoogle Scholar
Cailleteau, T., Mielczarek, J., Barrau, A., and Grain, J. 2012a. Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology. Classical Quant. Grav., 29, 95010., arXiv:1111.3535 [gr-qc].CrossRefGoogle Scholar
Cailleteau, T., Barrau, A., Grain, J., and Vidotto, F. 2012b. Consistency of holonomy-corrected scalar, vector and tensor perturbations in loop quantum cosmology. Phys. Rev., D86, 87301., arXiv:1206.6736.Google Scholar
Carlip, S., and Teitelboim, C., 1995. The off-shell black hole. Classical Quant. Grav., 12, 1699–1704, arXiv:9312002 [gr-qc].CrossRefGoogle Scholar
Carter, J. S., Flath, D. E., and Saito, M. 1995. The Classical and Quantum 6j-Symbol. Princeton University Press.Google Scholar
Chandia, O., and Zanelli, J. 1997. Torsional topological invariants (and their relevance for real life). arXiv:hep-th/9708138 [hep-th].
Chirco, G., Haggard, H. M., and Rovelli, C. 2013. Coupling and equilibrium for general-covariant systems. Phys. Rev. D88, 084027., arXiv:1309.0777.Google Scholar
Choquet-Bruhat, Y., and Dewitt-Morette, C. 2000. Analysis, Manifolds and Physics, Part II. North-Holland.Google Scholar
Choquet-Bruhat, Y., and Dewitt-Morette, C. 2004. Analysis, Manifolds and Physics, Part I. 2 edn. North-Holland.Google Scholar
Christodoulou, M., Riello, A., and Rovelli, C. 2012. How to detect an anti-spacetime. Int. J. Mod. Phys., D21, 1242014., arXiv:1206.3903 [gr-qc].CrossRefGoogle Scholar
Christodoulou, M., Langvik, M., Riello, A., Röken, C., and Rovelli, C. 2013. Divergences and orientation in spinfoams. Classical Quantum. Grav., 30, 055009., arXiv:1207.5156.CrossRefGoogle Scholar
CMS Collaboration. 2012. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B, 716(1), 30–61.
Colosi, D., and Rovelli, C. 2003. A simple background-independent Hamiltonian quantum model. Phys. Rev., D68, 104008., arXiv:0306059 [gr-qc].Google Scholar
Colosi, D., and Rovelli, C. 2009. What is a particle?Classical Quant. Grav., 26, 25002., arXiv:0409054 [gr-qc].CrossRefGoogle Scholar
Connes, A., and Rovelli, C. 1994. Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Classical Quant. Grav., 11, 2899–2918, arXiv:9406019 [gr-qc].CrossRefGoogle Scholar
Conrady, F., and Freidel, L. 2008. Path integral representation of spin foam models of 4d gravity. Classical Quant. Grav., 25, 245010., arXiv:0806.4640.CrossRefGoogle Scholar
De, Pietri|R., Freidel, L., Krasnov, K., and Rovelli, C. 2000. Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys., B574, 785–806, arXiv:9907154 [hep-th].Google Scholar
DeWitt, B. S. 1967. Quantum theory of gravity. 1. The canonical theory. Phys. Rev., 160, 1113–1148.CrossRefGoogle Scholar
Ding, Y., and Han, M. 2011. On the asymptotics of quantum group spinfoam model. arXiv:1103.1597.
Ding, Y., and Rovelli, C. 2010a. Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory. Classical Quant. Grav., 27, 205003., arXiv:1006.1294.CrossRefGoogle Scholar
Ding, Y., and Rovelli, C. 2010b. The volume operator in covariant quantum gravity. Classical Quant. Grav., 27, 165003., arXiv:0911.0543.CrossRefGoogle Scholar
Dirac, P. A. M. 1950. Generalized Hamiltonian dynamics. Can. J. Math., 2, 129–148.CrossRefGoogle Scholar
Dirac, P. A. M. 1956. Electrons and the vacuum. In: Dirac Papers. Florida State University Libraries, Tallahassee, Florida, USA.Google Scholar
Dirac, P. A. M. 1958. Generalized Hamiltonian dynamics. Proc. R. Soc. Lond., 246, 326332.CrossRefGoogle Scholar
Dirac, P. 2001. Lectures on Quantum Mechanics. Dover Books on Physics. New York: Belfer Graduate School of Science, Yeshiva University, New York.Google Scholar
Dittrich, B., Martin-Benito, M., and Steinhaus, S. 2013. Quantum group spin nets: refinement limit and relation to spin foams. arXiv:1312.0905.
Doná, P., and Speziale, S. 2013. Introductory lectures to loop quantum gravity. In: Bounames, A., and Makhlouf, A. (eds.), TVC 79. Gravitation: théorie et expérience. Hermann.Google Scholar
Durr, S., Fodor, Z., Frison, J., Hoelbling, C., Hoffmann, R., et al. 2008. Ab-initio determination of light hadron masses. Science, 322, 1224–1227, arXiv:0906.3599 [hep-lat].CrossRefGoogle ScholarPubMed
Einstein, A. 1905a. On a heuristic viewpoint of the creation and modification of light. Annalen der Physik, 1905 (17), 133–148.Google Scholar
Einstein, A. 1905b. Zur Elektrodynamik bewegter Körper. Annalen der Physik, 1905(10), 891–921.Google Scholar
Einstein, A. 1915. Zur Allgemeinen Relativitatstheorie. Sitzungsher. Preuss. Akad: Wiss. Berlin (Math. Phys.), 1915, 778–786.Google Scholar
Einstein, A. 1916. Grundlage der allgemeinen Relativitatstheorie. Annalen der Physik, 49, 769–822.Google Scholar
Einstein, A. 1917. Cosmological considerations in the general theory of relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1917, 142–152.Google Scholar
Engle, J., and Pereira, R. 2009. Regularization and finiteness of the Lorentzian LQG vertices. Phys. Rev., D79, 84034., arXiv:0805.4696.Google Scholar
Engle, J., Pereira, R., and Rovelli, Carlo. 2007. The loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett., 99, 161301., arXiv:0705.2388.CrossRefGoogle Scholar
Engle, J., Pereira, R., and Rovelli, C. 2008a. Flipped spinfoam vertex and loop gravity. Nucl. Phys., B798, 251–290, arXiv:0708.1236.Google Scholar
Engle, J., Livine, E., Pereira, R., and Rovelli, C. 2008b. LQG vertex with finite Immirzi parameter. Nucl. Phys., B799, 136–149, arXiv:0711.0146.Google Scholar
Fairbairn, W. J., and Meusburger, C. 2012. Quantum deformation of two four-dimensional spin foam models. J. Math. Phys., 53, 22501., arXiv:1012.4784 [gr-qc].CrossRefGoogle Scholar
Farmelo, G. 2009. The Strangest Man. The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber.
Feoli, A., Lambiase, G., Papini, G., and Scarpetta, G. 1999. Schwarzschild field with maximal acceleration corrections. Phys. Lett., A263, 147–153, arXiv:9912089 [gr-qc].Google Scholar
Feynman, R. P. 1948. Space-time approach to nonrelativistic quantum mechanics. Rev. Mod. Phys., 20, 367–387.CrossRefGoogle Scholar
Flanders, H. 1963. Differential Forms: With Applications to the Physical Sciences. Dover.Google Scholar
Folland, G. B. 1995. A Course in Abstract Harmonic Analysis. CRC Press.Google Scholar
Frankel, T. 2003. The Geometry of Physics: An Introduction. 2 edn. Cambridge University Press.CrossRefGoogle Scholar
Freidel, L., and Krasnov, K. 2008. A new spin foam model for 4d gravity. Classical Quant Grav., 25, 125018., arXiv:0708.1595.CrossRefGoogle Scholar
Freidel, L., and Speziale, S. 2010a. From twistors to twisted geometries. Phys. Rev., D82, 84041, arXiv:1006.0199 [gr-qc].Google Scholar
Freidel, L., and Speziale, S. 2010b. Twisted geometries: A geometric parametrisation of SU(2) phase space. Phys. Rev., D82, 84040., arXiv:1001.2748.Google Scholar
Freidel, L., Krasnov, K., and Livine, E. R. 2009. Holomorphic factorization for a quantum tetrahedron. arXiv:0905.3627.
Frodden, E., Ghosh, A., and Perez, A. 2011. Black hole entropy in LQG: Recent developments. AIP Conf. Proc., 1458, 100–115.Google Scholar
Frodden, E., Geiller, M., Noui, K., and Perez, A. 2012. Black hole entropy from complex Ashtekar variables. arXiv:1212.4060.
Gambini, R., and Pullin, J. 2010. Introduction to Loop Quantum Gravity. Oxford University Press.Google Scholar
Gel'fand, I. M., and Shilov, G. E. 1968. Generalized functions 1–5. Academic Press.Google Scholar
Gel'fand, I. M., Minlos, R. A., and Shapiro, Z.Ya. 1963. Representations of the Rotation and Lorentz Groups and Their Applications. Pergamon Press.Google Scholar
Ghosh, A., and Perez, A. 2011. Black hole entropy and isolated horizons thermodynamics. Phys. Rev. Lett., 107, 241301., arXiv:1107.1320.CrossRefGoogle ScholarPubMed
Ghosh, A., Noui, K., and Perez, A. 2013. Statistics, holography, and black hole entropy in loop quantum gravity. arXiv:1309.4563.
Gibbons, G. W., and Hawking, S. W. 1977. Action integrals and partition functions in quantum gravity. Phys. Rev., D15(10), 2752–2756.Google Scholar
Gorelik, G., and Frenkel, V. 1994. Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties. Birkhäuser Verlag.
Haag, R. 1996. Local Quantum Physics: Fields, Particles, Algebras. Springer.CrossRefGoogle Scholar
Haggard, H. M. 2011. Asymptotic analysis of spin networks with applications to quantum gravity. PhD dissertation, University of California, Berkeley.http://bohr.physics.berkeley.edu/hal/pubs/Thesis/.
Haggard, H. M., and Rovelli, C. 2013. Death and resurrection of the zeroth principle of thermodynamics. J. Mod. Phys., D22, 1342007., arXiv:1302.0724.Google Scholar
Haggard, H. M., and Rovelli, C. 2014. Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunnelling. arXives 1407.0989.
Haggard, H. M., Rovelli, C., Wieland, W., and Vidotto, F. 2013. The spin connection of twisted geometry. Phys. Rev., D87, 24038., arXiv:1211.2166.Google Scholar
Halliwell, J. J., and Hawking, S. W. 1985. The origin of structure in the universe. Phys. Rev., D31, 1777.Google Scholar
Han, M. 2011a. 4-Dimensional spin-foam model with quantum lorentz group. J. Math. Phys., 52, 72501., arXiv:1012.4216 [gr-qc].CrossRefGoogle Scholar
Han, M. 2011b. Cosmological constant in LQG vertex amplitude. Phys. Rev., D84, 64010., arXiv:1105.2212.Google Scholar
Han, M. 2013. Covariant loop quantum gravity, low energy perturbation theory, and Einstein gravity. arXiv:1308.4063.
Han, M. 2014. Black hole entropy in loop quantum gravity, analytic continuation, and dual holography. arXiv:1402.2084.
Han, M., and Rovelli, C. 2013. Spin-foam fermions: PCT symmetry, Dirac determinant, and correlation functions. Classical Quant. Grav., 30, 75007., arXiv:1101.3264.CrossRefGoogle Scholar
Han, M., and Zhang, M. 2013. Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory. Classical Quant. Grav., 30, 165012., arXiv:1109.0499 [gr-qc].CrossRefGoogle Scholar
Hartle, J. B., and Hawking, S. W. 1983. Wave function of the universe. Phys. Rev., D28, 2960–2975.Google Scholar
Hawking, S. W. 1974. Black hole explosions?Nature, 248, 30–31.CrossRefGoogle Scholar
Hawking, S.W. 1975. Particle creation by black holes. Commun. Math. Phys., 43, 199–220.CrossRefGoogle Scholar
Hawking, S. W. 1980. The path integral approach to quantum gravity. In: Hawking, S. W., Israel, W. (eds.) General Relativity. Cambridge University Press; 746–789.Google Scholar
Hawking, S. W., and Ellis, G. F. R. 1973. The Large Scale Structure of Space-time. Cambridge Monographs on Mathematical Physics. Cambridge University Press.CrossRefGoogle Scholar
Heisenberg, W. 1925. Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33(1), 879–893.CrossRefGoogle Scholar
Hellmann, F., and Kaminski, W. 2013. Holonomy spin foam models: asymptotic geometry of the partition function. arXiv:1307.1679.
Hojman, R., Mukku, C., and Sayed, W. A. 1980. Parity violation in metric torsion theories of gravity. Phys. Rev., D22, 1915–1921.Google Scholar
Hollands, S., and Wald, R. M. 2008. Quantum field theory in curved spacetime, the operator product expansion, and dark energy. Gen. Relat. Gravit., 40, 2051–2059, arXiv:0805.3419.CrossRefGoogle Scholar
Holst, S. 1996. Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev., D53, 5966–5969, arXiv:9511026 [gr-qc].Google Scholar
Kaminski, W. 2010. All 3-edge-connected relativistic BC and EPRL spin networks are integrable. arXiv:1010.5384 [gr-qc].
Kaminski, W., Kisielowski, M., and Lewandowski, J. 2010a. Spin-foams for all loop quantum gravity. Classical Quant. Grav., 27, 95006., arXiv:0909.0939.CrossRefGoogle Scholar
Kaminski, W., Kisielowski, M., and Lewandowski, J. 2010b. The EPRL intertwiners and corrected partition function. Classical Quant. Grav., 27, 165020., arXiv:0912.0540.CrossRefGoogle Scholar
Kauffman, L. H., and Lins, S. L. 1994. Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies, vol. 134. Princeton University Press.Google Scholar
Kiefer, C. 2007. Quantum Gravity (International Series of Monographs on Physics). 2 edn. Oxford University Press.Google Scholar
Kobayashi, S., and Nomizu, K.Foundations of Differential Geometry, Interscience (John Wiley), vol. 1 (1963) and vol. 2 (1968).Google Scholar
Kogut, J. B., and Susskind, L. 1975. Hamiltonian formulation of Wilson's lattice gauge theories. Phys. Rev., D11, 395.Google Scholar
Krajewski, T. 2011. Group field theories. In: Proceedings of the 3rd Quantum Gravity and Quantum Geometry School. PoS (QGQGS2011)005.Google Scholar
Krajewski, T., Magnen, J., Rivasseau, V., Tanasa, A., and Vitale, P. 2010. Quantum corrections in the group field theory formulation of the EPRL/FK models. Phys. Rev., D82, 124069., arXiv:1007.3150 [gr-qc].Google Scholar
Landau, L. D., and Lifshitz, E. M. 1951. The Classical Theory ofFields. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1959. Quantum Mechanics. Pergamon Press.Google Scholar
Landau, L., and Peierls, R. 1931. Erweiterung des Unbestimmheitsprinzips fur die relativistische Quantentheorie. Zeitschrift für Physik, 69, 56–69.CrossRefGoogle Scholar
Lewandowski, J. 1994. Topological measure and graph-differential geometry on the quotient space of connections. Int. J. Mod. Phys. D, 3, 207–210.CrossRefGoogle Scholar
Liberati, S., and Maccione, L. 2009. Lorentz violation: motivation and new constraints. Annu. Rev. Nucl. Part. Sci., 59, 245–267, arXiv:0906.0681 [astro-ph.HE].CrossRefGoogle Scholar
Littlejohn, R. 2013. Lectures in Marseille. [To appear.]
Littlejohn, R. G. 1992. The Van Vleck formula, Maslov theory, and phase space geometry. J. Stat. Phys., 68, 7–50.CrossRefGoogle Scholar
Livine, E. R., and Speziale, S. 2007. A new spinfoam vertex for quantum gravity. Phys. Rev., D76, 84028., arXiv:0705.0674.Google Scholar
Magliaro, E., and Perini, C. 2011a. Emergence of gravity from spinfoams. EPL (Europhysics Letters), 95(3), 30007, arXiv:1108.2258.CrossRefGoogle Scholar
Magliaro, E., and Perini, C. 2011b. Regge gravity from spinfoams. arXiv:1105.0216.
Magliaro, E., and Perini, C. 2012. Local spin foams. Int. J. Mod. Phys., D21, 1250090., arXiv:1010.5227 [gr-qc].CrossRefGoogle Scholar
Magliaro, E., and Perini, C. 2013. Regge gravity from spinfoams. Int. J. Mod. Phys. D, 22(Feb.), 1350001, arXiv:1105.0216.CrossRefGoogle Scholar
Magliaro, E., Marciano, A., and Perini, C. 2011. Coherent states for FLRW space-times in loop quantum gravity. Phys. Rev. D, 83, 44029.CrossRefGoogle Scholar
Misner, C. W. 1957. Feynman quantization of general relativity. Rev. Mod. Phys., 29, 497.CrossRefGoogle Scholar
Misner, C. W., Thorne, K., and Wheeler, J. A. 1973. Gravitation (Physics Series). W. H. Freeman.Google Scholar
Mizoguchi, S., and Tada, T. 1992. Three-dimensional gravity from the Turaev–Viro invariant. Phys. Rev. Lett., 68, 1795–1798, arXiv:9110057 [hep-th].CrossRefGoogle ScholarPubMed
Morales-Tecotl, H. A., and Rovelli, C. 1994. Fermions in quantum gravity. Phys. Rev. Lett., 72, 3642–3645, arXiv:9401011 [gr-qc].CrossRefGoogle ScholarPubMed
Morales-Tecotl, H. A., and Rovelli, C. 1995. Loop space representation of quantum fermions and gravity. Nucl. Phys., B451, 325–361.Google Scholar
Mukhanov, V. F, Feldman, H. A., and Brandenberger, R. H. 1992. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep., 215, 203–333.Google Scholar
Noui, K., and Roche, P. 2003. Cosmological deformation of Lorentzian spin foam models. Classical Quant. Grav., 20, 3175–3214, arXiv:0211109 [gr-qc].CrossRefGoogle Scholar
Oeckl, R. 2003. A ‘general boundary’ formulation for quantum mechanics and quantum gravity. Phys. Lett., B575, 318–324, arXiv:0306025 [hep-th].Google Scholar
Oeckl, R. 2008. General boundary quantum field theory: foundations and probability interpretation. Adv. Theor. Math. Phys., 12, 319–352, arXiv:0509122 [hep-th].CrossRefGoogle Scholar
Ooguri, H. 1992. Topological lattice models in four-dimensions. Mod. Phys. Lett., A7, 2799–2810, arXiv:9205090 [hep-th].Google Scholar
Perez, A. 2012. The spin foam approach to quantum gravity. Living Rev. Relativ., 16, 3, arXiv:1205.2019.Google Scholar
Perez, A., and Rovelli, C. 2001. A spin foam model without bubble divergences. Nucl. Phys., B599, 255–282, arXiv:0006107 [gr-qc].Google Scholar
Perini, C., Rovelli, C., and Speziale, S. 2009. Self-energy and vertex radiative corrections in LQG. Phys. Lett., B682, 78–84, arXiv:0810.1714.Google Scholar
Planck Collaboration. 2013. Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062.
Ponzano, G., and Regge, Tullio. 1968. Semiclassical limit of Racah coefficients. In: Bloch, F. (ed.), Spectroscopy and Group Theoretical Methods in Physics. North-Holland.Google Scholar
Regge, T. 1961. General relativity without coordinates. Nuovo Cimento., 19, 558–571.CrossRefGoogle Scholar
Reisenberger, M. P., and Rovelli, C. 1997. “Sum over surfaces” form of loop quantum gravity. Phys. Rev., D56, 3490–3508, arXiv: 9612035.Google Scholar
Rennert, J., and Sloan, D. 2013. Towards anisotropic spinfoam cosmology. arXiv:1304.6688 [gr-qc].
Riello, A. 2013. Self-energy of the Lorentzian EPRL-FK spin foam model of quantum gravity. Phys. Rev., D88, 24011., arXiv: 1302.1781.Google Scholar
Roberts, J. 1999. Classical 6j-symbols and the tetrahedron. Geom. Topol., 3, 21–66, arXiv:9812013 [math-ph].Google Scholar
Rovelli, C. 1993a. Statistical mechanics of gravity and the thermodynamical origin of time. Classical Quant. Grav., 10, 1549–1566.CrossRefGoogle Scholar
Rovelli, C. 1993b. The basis of the Ponzano–Regge–Turaev–Viro–Ooguri model is the loop representation basis. Phys. Rev., D48, 2702–2707, arXiU:math_ph:9304164vl.Google Scholar
Rovelli, C. 1993c. The statistical state of the universe. Classical Quant. Grav., 10, 1567.CrossRefGoogle Scholar
Rovelli, C. 1996a. Black hole entropy from loop quantum gravity. Phys. Rev. Lett., 77(16), 3288–3291, arXiv:9603063 [gr-qc].CrossRefGoogle ScholarPubMed
Rovelli, C. 1996b. Relational quantum mechanics. Int. J. Theor. Phys., 35(9), 1637, arXiv:9609002 [quant-ph].CrossRefGoogle Scholar
Rovelli, C. 2004. Quantum Gravity. Cambridge University Press.CrossRefGoogle Scholar
Rovelli, C. 2006. Graviton propagator from background-independent quantum gravity. Phys. Rev. Lett., 97, 151301., arXiv:0508124 [gr-qc].CrossRefGoogle ScholarPubMed
Rovelli, C. 2011. Zakopane lectures on loop gravity. In: Proceedings ofthe 3rd Quantum Gravity and Quantum Geometry School. PoS (QGQGS2011)003.Google Scholar
Rovelli, C. 2013a. General relativistic statistical mechanics. Phys, Rev, D., D87, 84055, arXiV:1209.0065 [gr-gc].CrossRefGoogle Scholar
Rovelli, C. 2013b. Why Gauge? arXiv:1308.5599.
Rovelli, C., and Smerlak, M. 2010. Thermal time and the Tolman–Ehrenfest effect: temperature as the “speed of time”. Classical Quant. Grav. 28, 075007, arXiv:1005.2985.CrossRefGoogle Scholar
Rovelli, C., and Smerlak, M. 2012. In quantum gravity, summing is refining. Classical Quant. Grav., 29, 55004., arXiv:1010.5437 [gr-qc].CrossRefGoogle Scholar
Rovelli, C., and Smolin, L. 1988. Knot theory and quantum gravity. Phys. Rev. Lett., 61, 1155.CrossRefGoogle ScholarPubMed
Rovelli, C., and Smolin, L. 1990. Loop space representation of quantum general relativity. Nucl. Phys., B331, 80.CrossRefGoogle Scholar
Rovelli, C., and Smolin, L. 1995a. Discreteness of area and volume in quantum gravity. Nucl. Phys., B442, 593–622, arXiv:9411005 [gr-qc].Google Scholar
Rovelli, C., and Smolin, L. 1995b. Spin networks and quantum gravity, arXiv:9505006 [gr-qc].
Rovelli, C., and Speziale, S. 2010. On the geometry of loop quantum gravity on a graph. Phys. Rev., D82, 44018., arXiv:1005.2927.Google Scholar
Rovelli, C., and Speziale, S. 2011. Lorentz covariance of loop quantum gravity. Phys. Rev., D83, 104029, arXiv:1012.1739.Google Scholar
Rovelli, C., and Vidotto, F. 2008. Stepping out of homogeneity in loop quantum cosmology, arXiv:0805.4585.
Rovelli, C., and Vidotto, F. 2010. Single particle in quantum gravity and BGS entropy of aspinnetwork. Phys. Rev., D81, 44038, arXiv:0905.2983.Google Scholar
Rovelli, C., and Vidotto, F. 2013. Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity. Phys. Rev. Lett., 111(9), 091303, arXiv:1307.3228.CrossRefGoogle ScholarPubMed
Rovelli, C., and Vidotto, F. 2014. Planck stars. arXiv:1401.6562.
Rovelli, C., and Zhang, M. 2011. Euclidean three-point function in loop and perturbative gravity. Classical Quant. Grav., 28, 175010, arXiv:1105.0566 [gr-qc].CrossRefGoogle Scholar
Ruhl, W. 1970. The Lorentz Group and Harmonic Analysis. W.A. Benjamin.Google Scholar
Schrödinger, E. 1926. Quantisierung als Eigenwertproblem. Annalen der Physik, 13, 29.Google Scholar
Sen, A. 1982. Gravity as a spin system. Phys. Lett. B, 119, 89–91.CrossRefGoogle Scholar
Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal, XXVII(3), 379.CrossRefGoogle Scholar
Singh, P. 2009. Are loop quantum cosmos never singular? Classical Quant. Grav., 26, 125005, arXiv:0901.2750.CrossRefGoogle Scholar
Singh, P., and Vidotto, F. 2011. Exotic singularities and spatially curved loop quantum cosmology. Phys. Rev., D83, 64027, arXiv:1012.1307.Google Scholar
Smolin, L. 1994. Fermions and topology. arXiv:9404010 [gr-qc].
Smolin, L. 2012. General relativity as the equation of state of spin foam. arXiv:1205.5529.
Sorkin, R. D. 1977. On the relation between charge and topology. J. Phys. A: Math. Gen., 10, 717.CrossRefGoogle Scholar
Stone, D. 2013. Einstein and the Quantum: The Quest of the Valiant Swabian. Princeton University Press.Google Scholar
Sundermeyer, K. 1982. Constrained Dynamics : With Applications to Yang–Mills Theory, General Relativity, Classical Spin, Dual String Model. Springer-Verlag.Google Scholar
Thiemann, T. 2006. Complexifier coherent states for quantum general relativity. Classical Quant. Grav., 23, 2063–2118, arXiv:0206037 [gr-qc].CrossRefGoogle Scholar
Thiemann, T. 2007. Modern Canonical Quantum General Relativity. Cambridge University Press.CrossRefGoogle Scholar
Toller, M. 2003. Geometries of maximal acceleration. arXiv:0312016 [hep-th].
Tolman, R. C. 1930. On the weight of heat and thermal equilibrium in general relativity. Phys. Rev., 35, 904–924.CrossRefGoogle Scholar
Tolman, R. C., and Ehrenfest, P. 1930. Temperature equilibrium in a static gravitational field. Phys. Rev., 36(12), 1791–1798.CrossRefGoogle Scholar
Turaev, V. G., and Viro, O. Y. 1992. State sum invariants of 3 manifolds and quantum 6j symbols. Topology, 31, 865–902.CrossRefGoogle Scholar
Unruh, W. G. 1976. Notes on black hole evaporation. Phys. Rev., D14, 870.Google Scholar
Vidotto, F. 2011. Many-nodes/many-links spinfoam: the homogeneous and isotropic case. Classical Quant Grav., 28(245005), arXiv:1107.2633.CrossRefGoogle Scholar
Wald, R. M. 1984. General relativity. Chicago, University Press.CrossRefGoogle Scholar
Wheeler, J. A. 1962. Geometrodynamics. New York: Academic Press.Google Scholar
Wheeler, J. A. 1968. Superspace and the nature of quantum geometrodynamics. In: DeWitt, B. S, and Wheeler, J. A. (eds.), Batelles Rencontres. Benjamin.Google Scholar
Wieland, W. 2012. Complex Ashtekar variables and reality conditions for Holst's action. Annales Henri Poincare, 13, 425, arXiv:1012.1738 [gr-qc].CrossRefGoogle Scholar
Wightman, A. 1959. Quantum field theory in terms of vacuum expectation values. Phys. Rev., 101(860).Google Scholar
Wilson, K. G. 1974. Confinement of quarks. Phys. Rev., D10, 2445–2459.Google Scholar
York, J. W. 1972. Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett., 28, 1082.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Carlo Rovelli, Université d'Aix-Marseille, Francesca Vidotto, Radboud Universiteit Nijmegen
  • Book: Covariant Loop Quantum Gravity
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706910.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Carlo Rovelli, Université d'Aix-Marseille, Francesca Vidotto, Radboud Universiteit Nijmegen
  • Book: Covariant Loop Quantum Gravity
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706910.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Carlo Rovelli, Université d'Aix-Marseille, Francesca Vidotto, Radboud Universiteit Nijmegen
  • Book: Covariant Loop Quantum Gravity
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706910.016
Available formats
×