Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T12:19:04.269Z Has data issue: false hasContentIssue false

11 - The Most Volatile Elements and Compounds

Ices, Noble Gases, and Organic Matter

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Condensation of ices, noble gas isotope components and organic matter in extraterrestrial materials

Type
Chapter
Information
Cosmochemistry , pp. 271 - 297
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Lunine, J. I. (2005) Origin of water ice in the solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 309319, University of Arizona Press, Tucson. A thoughtful review of the condensation of ices in the nebula and the delivery of ices to the terrestrial planets.Google Scholar
Several comprehensive reviews provide excellent summaries of the complicated cosmochemistry of noble gases; here are two:Google Scholar
Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Chemie der Erde, 74, 519544.Google Scholar
Podosek, F. A. (2004) Noble gases. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 381405, Elsevier, Oxford.Google Scholar
Pizzarello, S., and Shock, E. (2010) The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. In Cold Spring Harbor Perspectives in Biology, Deamer, D., and Szostak, J. W., editors, Cold Spring Harbor Laboratory Press, Long Island, NY, doi:10.1101/cshperspect.a002105. A comprehensive review of organic matter in carbonaceous chondrites.Google Scholar
Alexander, C. M. O’D., Cody, G. D., De Gregorio, B. T., et al. (2017) The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chemie der Erde-Geochemistry, 77, 227256.CrossRefGoogle ScholarPubMed
Atreya, S. K., Trainer, M. G., Franz, H. B., et al. (2013) Primordial argon isotope fractionation in the atmosphere of Mars as measured by the SAM instrument on Curiosity, and implications for atmospheric loss. Geophysical Research Letters, 40, 56055609.CrossRefGoogle Scholar
Bekaert, D. V., Avice, G., Marty, B., et al. (2017) Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component of the Moon. Geochimica et Cosmochimica Acta, 218, 114131.Google Scholar
Bertaux, J.-L., and Lallement, R. (2017) Diffuse interstellar bands carriers and cometary organic material. Monthly Notices of the Royal Astronomical Society, 469, S646S660.Google Scholar
Bockelée-Morvan, D., and Crovisier, J. (2002) Lessons of comet Hale-Bopp for coma chemistry. Earth, Moon, & Planets, 89, 5371.Google Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., and Weaver, H. A. (2003) The composition of cometary volatiles. In Comets II, Festou, M., Keller, H. U., Weaver, H. A., editors, pp. 391423, University of Arizona Press, Tucson.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., et al. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 105124, Cambridge University Press, Cambridge.Google Scholar
Busemann, H., Young, A. F., Alexander, C. M. O’D., et al. (2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science, 312, 727730.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.CrossRefGoogle ScholarPubMed
Cartwright, J. A. (2015) Noble gas chemistry of planetary materials. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 165212.Google Scholar
Chan, H.-S., Martins, Z., and Sephton, M. A. (2012) Amino acid analyses of type 3 chondrites Colony, Ornans, Chainpur, and Bishunpur. Meteoritics & Planetary Science, 47, 15021516.Google Scholar
Changela, H. G., Le Guillou, C., Bernard, S., and Brearley, A. J. (2018) Hydrothermal evolution of the morphology, molecular composition, and distribution of organic matter in CR (Renazzo-type) chondrites. Meteoritics & Planetary Science, 53, 10061029.Google Scholar
Claus, G., and Nagy, B. (1961) A microbiological examination of some carbonaceous chondrites. Nature, 192, 594596.CrossRefGoogle Scholar
Cody, G., and Alexander, C. M. O’D. (2005) NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 69, 10851097.Google Scholar
Cody, G., Alexander, C. M. O’D., and Tera, F. (2002) Solid state (1H and 13C) NMR spectroscopy of the insoluble organic residue in the Murchison meteorite: A self-consistent quantitative analysis. Geochimica et Cosmochimica Acta, 66, 18511865.Google Scholar
Conrad, P. G., Malespin, C. A., Franz, H. B., et al. (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth & Planetary Science Letters, 454, 19.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360, 10961101.Google Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004) The global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006.Google Scholar
Flynn, G. J., Wirick, S., and Keller, L. P. (2013) Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the solar nebula. Earth, Planets, & Space, 65, 11591166.CrossRefGoogle Scholar
Freissinet, C., Glavin, D. P., Mahaffy, P. R., et al. (2015) Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. Journal of Geophysical Research, Planets, 120, 495514.Google Scholar
Garvie, L. A. J., and Buseck, P. R. (2004). Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth & Planetary Science Letters, 184, 921.Google Scholar
Gilmour, I. (2004) Structural and isotopic analysis of organic matter in carbonaceous chondrites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 269290, Elsevier, Oxford.Google Scholar
Glavin, D. P., McLain, H. L., Dworkin, J. P., et al. (2020) Abundant extraterrestrial amino acids in the primitive CM carbonaceous chondrite Asuka 12236. Meteoritics & Planetary Science, 55, 19792006.Google Scholar
Goessmann, F., Rosenbauer, H., Bredehoft, J. H., et al. (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science, 349, doi:10.1126/science.aab0689.CrossRefGoogle Scholar
Horst, S. M. (2017) Titan’s atmosphere and climate. Journal of Geophysical Research, Planets, 122, 432482.Google Scholar
Huss, G. R., and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115160.Google Scholar
Kaplan, H. H., Milliken, R. E., Alexander, C. M. O’D., and Herd, C. D. K. (2019) Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous chondrites. Meteoritics & Planetary Science, 54, 10511068.CrossRefGoogle Scholar
Lawrence, D. J. (2017) A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. Journal of Geophysical Research, Planets, 122, 2152.CrossRefGoogle Scholar
Le Roy, L., Atwegg, K., Balsiger, H., et al. (2015) Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astronomy & Astrophysics, 583, A1.Google Scholar
Licandro, J., Campins, H., Kelly, M., Hargrove, K., et al. (2011) 65 Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy & Astrophysics, 525, A34.CrossRefGoogle Scholar
Mahaffy, P. R., Niemann, H. B., Alpert, A., et al. (2000) Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. Journal of Geophysical Research, Planets, 105, 1506115071.CrossRefGoogle Scholar
Marty, B., Palma, R. L., Pepin, R. O., et al. (2008) Helium and neon abundances and compositions in cometary matter. Science, 319, 7578.Google Scholar
Marty, B., Altwegg, K., Balsinger, H., et al. (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science, 354, 10691072.CrossRefGoogle Scholar
McCubbin, F. M., Boyce, J. W., Srinivasan, P., et al. (2016) Heterogeneous distribution of H2O in the martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics & Planetary Science, 51, 20362060.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924930.CrossRefGoogle ScholarPubMed
McKeegan, K. D., Aléon, J., Bradley, J., et al. (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McSween, H. Y. (2019) The search for biosignatures in martian meteorite Allan Hills 84001. In Biosignatures for Astrobiology, Cavalazzi, B., and Westall, F., editors, pp. 167182, Springer Nature, Switzerland.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Meshik, A., Hohenberg, C., Pravdivtseva, O., and Burnett, D. (2014) Heavy noble gases in solar wind delivered by Genesis mission. Geochimica et Cosmochimica Acta, 127, 326347.Google Scholar
Millot, M., Hamel, S., Rugg, J. R., et al. (2018) Experimental evidence for superionic water ice using shock compression. Nature Physics, 14, 297302.Google Scholar
Nagao, K., Okazaki, R., Miura, Y. N., et al. (2013) Noble gas analysis of two Hayabusa samples as the first international A/OP investigation: a progress report. Lunar and Planetary Science, 44, abstract #1976.Google Scholar
Nagy, B., Meinschein, W. G., and Henessy, D. J. (1961) Mass spectroscopic analysis of the Orgueil meteorite: Evidence for biogenic hydrocarbons. Annals of the New York Academy of Sciences, 93, 2735.Google Scholar
Naraoka, H., Mita, H., Hamase, M., et al. (2012) Preliminary organic compound analysis of microparticles returned from asteroid 25143 Itokawa by the Hayabusa mission. Geochemical Journal, 46, 6172.CrossRefGoogle Scholar
Nier, A. O., and Schlutter, D. J. (1993) The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, 675681.Google Scholar
Nimmo, F., and Pappalardo, R. T. (2016) Ocean worlds in the outer solar system. Journal of Geophysical Research, Planets, 121, 13781399.Google Scholar
Orosei, R., Lauro, S. E., Pettinelli, E., et al. (2018) Radar evidence of subglacial liquid water on Mars. Science, 361, 490493.Google Scholar
Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Chemie der Erde, 74, 519544.Google Scholar
Ott, U., Swindle, T. D., and Schwenzer, S. P. (2019) Noble gases in martian meteorites: Budget, sources, sinks, and processes. In Volatiles in the Martian Crust, Filiberto, J., and Schwenzer, S. P., editors, pp. 3570, Elsevier, Oxford.CrossRefGoogle Scholar
Ozima, M., and Podosek, F. (2002) Noble Gas Geochemistry, 2nd edition, Cambridge University Press, Cambridge, 286 pp.Google Scholar
Pepin, R. O. (2006) Atmospheres on the terrestrial planets: Clues to origin and evolution. Earth & Planetary Science Letters, 252, 114.CrossRefGoogle Scholar
Pepin, R. O., Schlutter, D. J., Becker, R. H., and Reisenfeld, D. B. (2012) Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochimica et Cosmochimica Acta, 89, 6280.CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., Becker, L., et al. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 22362239.Google Scholar
Pizzarello, S., Cooper, G. W., and Flynn, G. J. (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 625651,University of Arizona Press, Tucson.CrossRefGoogle Scholar
Pizzarello, S., Davidowski, S. K., Holland, G. P., and Williams, L. B. (2013) Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. Proceedings of the National Academy of Sciences, USA, 110, 1561415619.Google Scholar
Porcelli, D., and Pepin, R. O. (2004) The origin of noble gases and major volatiles in the terrestrial planets. In Treatise on Geochemistry, Vol. 4: The Atmosphere, Keeling, R. F., editor, pp. 319344, Elsevier, Oxford.Google Scholar
Postberg, F. S., Kempf, J., Schmidt, N. et al. (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Quirico, E., Bonal, L., Beck, P., Alexander, C. M. O’D., et al. (2018) Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica et Cosmochimica Acta, 241, 1737.CrossRefGoogle Scholar
Remusat, L. (2015) Organics in primitive meteorites. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 3365.Google Scholar
Rubin, M., Altwegg, K., Balsiger, H., et al. (2018) Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 4, doi:10.1126/sciadv.aar6297.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Sandford, S. A., and 56 coauthors (2006) Organics captured from Comet 81P/Wild 2 by the Stardust spacecraft. Science, 314, 17201724.Google Scholar
Schultz, P. H., Hermalyn, B., Colaprete, A., et al. (2010) The LCROSS cratering experiment. Science, 330, 468472.CrossRefGoogle ScholarPubMed
Sephton, M., and Gilmour, I. (2000) Aromatic moieties in meteorites: Relicts of interstellar grain processes? Astrophysical Journal, 540, 588591.Google Scholar
Shuai, L., Lucey, P. G., Milliken, R. E., et al. (2018) Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences, USA, 115, 89078912.Google Scholar
Signer, P., and Suess, H. (1963) Rare gases in the Sun, in the atmosphere, and in meteorites. In Earth Science and Meteorites, Geiss, J., and Goldberg, E. D., editors, pp. 241272, North Holland, Amsterdam.Google Scholar
Steele, A., McCubbin, F. M., Fries, M., et al. (2012) A reduced organic carbon component in martian basalts. Science, 337, 212215.Google Scholar
Steele, A., McCubbin, F. M., and Fries, M. D. (2016) The provenance, formation, and implications of reduced carbon phases in martian meteorites. Meteoritics & Planetary Science, 51, 22032225.Google Scholar
Stern, S. A., Grundy, W. M., McKinnon, W. G., et al. (2018) The Pluto system after New Horizons. Annual Review of Astronomy and Astrophysics, 56, 357392.Google Scholar
Stone, S. W., Yelle, R. V., Benna, M., et al. (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 824831.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2018) Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science, 360, 10931096.Google Scholar
Wieler, R., Busemann, H., and Franchi, I. A. (2006) Trapping and modification processes of noble gases and nitrogen in meteorites and their parent bodies. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 499517, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Alexander, C. M. O’D., Cody, G. D., De Gregorio, B. T., et al. (2017) The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chemie der Erde-Geochemistry, 77, 227256.CrossRefGoogle ScholarPubMed
Atreya, S. K., Trainer, M. G., Franz, H. B., et al. (2013) Primordial argon isotope fractionation in the atmosphere of Mars as measured by the SAM instrument on Curiosity, and implications for atmospheric loss. Geophysical Research Letters, 40, 56055609.CrossRefGoogle Scholar
Bekaert, D. V., Avice, G., Marty, B., et al. (2017) Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component of the Moon. Geochimica et Cosmochimica Acta, 218, 114131.Google Scholar
Bertaux, J.-L., and Lallement, R. (2017) Diffuse interstellar bands carriers and cometary organic material. Monthly Notices of the Royal Astronomical Society, 469, S646S660.Google Scholar
Bockelée-Morvan, D., and Crovisier, J. (2002) Lessons of comet Hale-Bopp for coma chemistry. Earth, Moon, & Planets, 89, 5371.Google Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., and Weaver, H. A. (2003) The composition of cometary volatiles. In Comets II, Festou, M., Keller, H. U., Weaver, H. A., editors, pp. 391423, University of Arizona Press, Tucson.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., et al. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 105124, Cambridge University Press, Cambridge.Google Scholar
Busemann, H., Young, A. F., Alexander, C. M. O’D., et al. (2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science, 312, 727730.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.CrossRefGoogle ScholarPubMed
Cartwright, J. A. (2015) Noble gas chemistry of planetary materials. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 165212.Google Scholar
Chan, H.-S., Martins, Z., and Sephton, M. A. (2012) Amino acid analyses of type 3 chondrites Colony, Ornans, Chainpur, and Bishunpur. Meteoritics & Planetary Science, 47, 15021516.Google Scholar
Changela, H. G., Le Guillou, C., Bernard, S., and Brearley, A. J. (2018) Hydrothermal evolution of the morphology, molecular composition, and distribution of organic matter in CR (Renazzo-type) chondrites. Meteoritics & Planetary Science, 53, 10061029.Google Scholar
Claus, G., and Nagy, B. (1961) A microbiological examination of some carbonaceous chondrites. Nature, 192, 594596.CrossRefGoogle Scholar
Cody, G., and Alexander, C. M. O’D. (2005) NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 69, 10851097.Google Scholar
Cody, G., Alexander, C. M. O’D., and Tera, F. (2002) Solid state (1H and 13C) NMR spectroscopy of the insoluble organic residue in the Murchison meteorite: A self-consistent quantitative analysis. Geochimica et Cosmochimica Acta, 66, 18511865.Google Scholar
Conrad, P. G., Malespin, C. A., Franz, H. B., et al. (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth & Planetary Science Letters, 454, 19.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360, 10961101.Google Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004) The global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006.Google Scholar
Flynn, G. J., Wirick, S., and Keller, L. P. (2013) Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the solar nebula. Earth, Planets, & Space, 65, 11591166.CrossRefGoogle Scholar
Freissinet, C., Glavin, D. P., Mahaffy, P. R., et al. (2015) Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. Journal of Geophysical Research, Planets, 120, 495514.Google Scholar
Garvie, L. A. J., and Buseck, P. R. (2004). Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth & Planetary Science Letters, 184, 921.Google Scholar
Gilmour, I. (2004) Structural and isotopic analysis of organic matter in carbonaceous chondrites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 269290, Elsevier, Oxford.Google Scholar
Glavin, D. P., McLain, H. L., Dworkin, J. P., et al. (2020) Abundant extraterrestrial amino acids in the primitive CM carbonaceous chondrite Asuka 12236. Meteoritics & Planetary Science, 55, 19792006.Google Scholar
Goessmann, F., Rosenbauer, H., Bredehoft, J. H., et al. (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science, 349, doi:10.1126/science.aab0689.CrossRefGoogle Scholar
Horst, S. M. (2017) Titan’s atmosphere and climate. Journal of Geophysical Research, Planets, 122, 432482.Google Scholar
Huss, G. R., and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115160.Google Scholar
Kaplan, H. H., Milliken, R. E., Alexander, C. M. O’D., and Herd, C. D. K. (2019) Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous chondrites. Meteoritics & Planetary Science, 54, 10511068.CrossRefGoogle Scholar
Lawrence, D. J. (2017) A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. Journal of Geophysical Research, Planets, 122, 2152.CrossRefGoogle Scholar
Le Roy, L., Atwegg, K., Balsiger, H., et al. (2015) Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astronomy & Astrophysics, 583, A1.Google Scholar
Licandro, J., Campins, H., Kelly, M., Hargrove, K., et al. (2011) 65 Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy & Astrophysics, 525, A34.CrossRefGoogle Scholar
Mahaffy, P. R., Niemann, H. B., Alpert, A., et al. (2000) Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. Journal of Geophysical Research, Planets, 105, 1506115071.CrossRefGoogle Scholar
Marty, B., Palma, R. L., Pepin, R. O., et al. (2008) Helium and neon abundances and compositions in cometary matter. Science, 319, 7578.Google Scholar
Marty, B., Altwegg, K., Balsinger, H., et al. (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science, 354, 10691072.CrossRefGoogle Scholar
McCubbin, F. M., Boyce, J. W., Srinivasan, P., et al. (2016) Heterogeneous distribution of H2O in the martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics & Planetary Science, 51, 20362060.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924930.CrossRefGoogle ScholarPubMed
McKeegan, K. D., Aléon, J., Bradley, J., et al. (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McSween, H. Y. (2019) The search for biosignatures in martian meteorite Allan Hills 84001. In Biosignatures for Astrobiology, Cavalazzi, B., and Westall, F., editors, pp. 167182, Springer Nature, Switzerland.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Meshik, A., Hohenberg, C., Pravdivtseva, O., and Burnett, D. (2014) Heavy noble gases in solar wind delivered by Genesis mission. Geochimica et Cosmochimica Acta, 127, 326347.Google Scholar
Millot, M., Hamel, S., Rugg, J. R., et al. (2018) Experimental evidence for superionic water ice using shock compression. Nature Physics, 14, 297302.Google Scholar
Nagao, K., Okazaki, R., Miura, Y. N., et al. (2013) Noble gas analysis of two Hayabusa samples as the first international A/OP investigation: a progress report. Lunar and Planetary Science, 44, abstract #1976.Google Scholar
Nagy, B., Meinschein, W. G., and Henessy, D. J. (1961) Mass spectroscopic analysis of the Orgueil meteorite: Evidence for biogenic hydrocarbons. Annals of the New York Academy of Sciences, 93, 2735.Google Scholar
Naraoka, H., Mita, H., Hamase, M., et al. (2012) Preliminary organic compound analysis of microparticles returned from asteroid 25143 Itokawa by the Hayabusa mission. Geochemical Journal, 46, 6172.CrossRefGoogle Scholar
Nier, A. O., and Schlutter, D. J. (1993) The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, 675681.Google Scholar
Nimmo, F., and Pappalardo, R. T. (2016) Ocean worlds in the outer solar system. Journal of Geophysical Research, Planets, 121, 13781399.Google Scholar
Orosei, R., Lauro, S. E., Pettinelli, E., et al. (2018) Radar evidence of subglacial liquid water on Mars. Science, 361, 490493.Google Scholar
Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Chemie der Erde, 74, 519544.Google Scholar
Ott, U., Swindle, T. D., and Schwenzer, S. P. (2019) Noble gases in martian meteorites: Budget, sources, sinks, and processes. In Volatiles in the Martian Crust, Filiberto, J., and Schwenzer, S. P., editors, pp. 3570, Elsevier, Oxford.CrossRefGoogle Scholar
Ozima, M., and Podosek, F. (2002) Noble Gas Geochemistry, 2nd edition, Cambridge University Press, Cambridge, 286 pp.Google Scholar
Pepin, R. O. (2006) Atmospheres on the terrestrial planets: Clues to origin and evolution. Earth & Planetary Science Letters, 252, 114.CrossRefGoogle Scholar
Pepin, R. O., Schlutter, D. J., Becker, R. H., and Reisenfeld, D. B. (2012) Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochimica et Cosmochimica Acta, 89, 6280.CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., Becker, L., et al. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 22362239.Google Scholar
Pizzarello, S., Cooper, G. W., and Flynn, G. J. (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 625651,University of Arizona Press, Tucson.CrossRefGoogle Scholar
Pizzarello, S., Davidowski, S. K., Holland, G. P., and Williams, L. B. (2013) Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. Proceedings of the National Academy of Sciences, USA, 110, 1561415619.Google Scholar
Porcelli, D., and Pepin, R. O. (2004) The origin of noble gases and major volatiles in the terrestrial planets. In Treatise on Geochemistry, Vol. 4: The Atmosphere, Keeling, R. F., editor, pp. 319344, Elsevier, Oxford.Google Scholar
Postberg, F. S., Kempf, J., Schmidt, N. et al. (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Quirico, E., Bonal, L., Beck, P., Alexander, C. M. O’D., et al. (2018) Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica et Cosmochimica Acta, 241, 1737.CrossRefGoogle Scholar
Remusat, L. (2015) Organics in primitive meteorites. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 3365.Google Scholar
Rubin, M., Altwegg, K., Balsiger, H., et al. (2018) Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 4, doi:10.1126/sciadv.aar6297.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Sandford, S. A., and 56 coauthors (2006) Organics captured from Comet 81P/Wild 2 by the Stardust spacecraft. Science, 314, 17201724.Google Scholar
Schultz, P. H., Hermalyn, B., Colaprete, A., et al. (2010) The LCROSS cratering experiment. Science, 330, 468472.CrossRefGoogle ScholarPubMed
Sephton, M., and Gilmour, I. (2000) Aromatic moieties in meteorites: Relicts of interstellar grain processes? Astrophysical Journal, 540, 588591.Google Scholar
Shuai, L., Lucey, P. G., Milliken, R. E., et al. (2018) Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences, USA, 115, 89078912.Google Scholar
Signer, P., and Suess, H. (1963) Rare gases in the Sun, in the atmosphere, and in meteorites. In Earth Science and Meteorites, Geiss, J., and Goldberg, E. D., editors, pp. 241272, North Holland, Amsterdam.Google Scholar
Steele, A., McCubbin, F. M., Fries, M., et al. (2012) A reduced organic carbon component in martian basalts. Science, 337, 212215.Google Scholar
Steele, A., McCubbin, F. M., and Fries, M. D. (2016) The provenance, formation, and implications of reduced carbon phases in martian meteorites. Meteoritics & Planetary Science, 51, 22032225.Google Scholar
Stern, S. A., Grundy, W. M., McKinnon, W. G., et al. (2018) The Pluto system after New Horizons. Annual Review of Astronomy and Astrophysics, 56, 357392.Google Scholar
Stone, S. W., Yelle, R. V., Benna, M., et al. (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 824831.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2018) Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science, 360, 10931096.Google Scholar
Wieler, R., Busemann, H., and Franchi, I. A. (2006) Trapping and modification processes of noble gases and nitrogen in meteorites and their parent bodies. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 499517, University of Arizona Press, Tucson.CrossRefGoogle Scholar

Other References

Alexander, C. M. O’D., Cody, G. D., De Gregorio, B. T., et al. (2017) The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chemie der Erde-Geochemistry, 77, 227256.CrossRefGoogle ScholarPubMed
Atreya, S. K., Trainer, M. G., Franz, H. B., et al. (2013) Primordial argon isotope fractionation in the atmosphere of Mars as measured by the SAM instrument on Curiosity, and implications for atmospheric loss. Geophysical Research Letters, 40, 56055609.CrossRefGoogle Scholar
Bekaert, D. V., Avice, G., Marty, B., et al. (2017) Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component of the Moon. Geochimica et Cosmochimica Acta, 218, 114131.Google Scholar
Bertaux, J.-L., and Lallement, R. (2017) Diffuse interstellar bands carriers and cometary organic material. Monthly Notices of the Royal Astronomical Society, 469, S646S660.Google Scholar
Bockelée-Morvan, D., and Crovisier, J. (2002) Lessons of comet Hale-Bopp for coma chemistry. Earth, Moon, & Planets, 89, 5371.Google Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., and Weaver, H. A. (2003) The composition of cometary volatiles. In Comets II, Festou, M., Keller, H. U., Weaver, H. A., editors, pp. 391423, University of Arizona Press, Tucson.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., et al. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 105124, Cambridge University Press, Cambridge.Google Scholar
Busemann, H., Young, A. F., Alexander, C. M. O’D., et al. (2006) Interstellar chemistry recorded in organic matter from primitive meteorites. Science, 312, 727730.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., et al. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature, 464, 13201321.CrossRefGoogle ScholarPubMed
Cartwright, J. A. (2015) Noble gas chemistry of planetary materials. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 165212.Google Scholar
Chan, H.-S., Martins, Z., and Sephton, M. A. (2012) Amino acid analyses of type 3 chondrites Colony, Ornans, Chainpur, and Bishunpur. Meteoritics & Planetary Science, 47, 15021516.Google Scholar
Changela, H. G., Le Guillou, C., Bernard, S., and Brearley, A. J. (2018) Hydrothermal evolution of the morphology, molecular composition, and distribution of organic matter in CR (Renazzo-type) chondrites. Meteoritics & Planetary Science, 53, 10061029.Google Scholar
Claus, G., and Nagy, B. (1961) A microbiological examination of some carbonaceous chondrites. Nature, 192, 594596.CrossRefGoogle Scholar
Cody, G., and Alexander, C. M. O’D. (2005) NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 69, 10851097.Google Scholar
Cody, G., Alexander, C. M. O’D., and Tera, F. (2002) Solid state (1H and 13C) NMR spectroscopy of the insoluble organic residue in the Murchison meteorite: A self-consistent quantitative analysis. Geochimica et Cosmochimica Acta, 66, 18511865.Google Scholar
Conrad, P. G., Malespin, C. A., Franz, H. B., et al. (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth & Planetary Science Letters, 454, 19.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360, 10961101.Google Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004) The global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006.Google Scholar
Flynn, G. J., Wirick, S., and Keller, L. P. (2013) Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the solar nebula. Earth, Planets, & Space, 65, 11591166.CrossRefGoogle Scholar
Freissinet, C., Glavin, D. P., Mahaffy, P. R., et al. (2015) Organic molecules in the Sheepbed mudstone, Gale Crater, Mars. Journal of Geophysical Research, Planets, 120, 495514.Google Scholar
Garvie, L. A. J., and Buseck, P. R. (2004). Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth & Planetary Science Letters, 184, 921.Google Scholar
Gilmour, I. (2004) Structural and isotopic analysis of organic matter in carbonaceous chondrites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 269290, Elsevier, Oxford.Google Scholar
Glavin, D. P., McLain, H. L., Dworkin, J. P., et al. (2020) Abundant extraterrestrial amino acids in the primitive CM carbonaceous chondrite Asuka 12236. Meteoritics & Planetary Science, 55, 19792006.Google Scholar
Goessmann, F., Rosenbauer, H., Bredehoft, J. H., et al. (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science, 349, doi:10.1126/science.aab0689.CrossRefGoogle Scholar
Horst, S. M. (2017) Titan’s atmosphere and climate. Journal of Geophysical Research, Planets, 122, 432482.Google Scholar
Huss, G. R., and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115160.Google Scholar
Kaplan, H. H., Milliken, R. E., Alexander, C. M. O’D., and Herd, C. D. K. (2019) Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous chondrites. Meteoritics & Planetary Science, 54, 10511068.CrossRefGoogle Scholar
Lawrence, D. J. (2017) A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. Journal of Geophysical Research, Planets, 122, 2152.CrossRefGoogle Scholar
Le Roy, L., Atwegg, K., Balsiger, H., et al. (2015) Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astronomy & Astrophysics, 583, A1.Google Scholar
Licandro, J., Campins, H., Kelly, M., Hargrove, K., et al. (2011) 65 Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy & Astrophysics, 525, A34.CrossRefGoogle Scholar
Mahaffy, P. R., Niemann, H. B., Alpert, A., et al. (2000) Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. Journal of Geophysical Research, Planets, 105, 1506115071.CrossRefGoogle Scholar
Marty, B., Palma, R. L., Pepin, R. O., et al. (2008) Helium and neon abundances and compositions in cometary matter. Science, 319, 7578.Google Scholar
Marty, B., Altwegg, K., Balsinger, H., et al. (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science, 354, 10691072.CrossRefGoogle Scholar
McCubbin, F. M., Boyce, J. W., Srinivasan, P., et al. (2016) Heterogeneous distribution of H2O in the martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics & Planetary Science, 51, 20362060.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924930.CrossRefGoogle ScholarPubMed
McKeegan, K. D., Aléon, J., Bradley, J., et al. (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McSween, H. Y. (2019) The search for biosignatures in martian meteorite Allan Hills 84001. In Biosignatures for Astrobiology, Cavalazzi, B., and Westall, F., editors, pp. 167182, Springer Nature, Switzerland.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Meshik, A., Hohenberg, C., Pravdivtseva, O., and Burnett, D. (2014) Heavy noble gases in solar wind delivered by Genesis mission. Geochimica et Cosmochimica Acta, 127, 326347.Google Scholar
Millot, M., Hamel, S., Rugg, J. R., et al. (2018) Experimental evidence for superionic water ice using shock compression. Nature Physics, 14, 297302.Google Scholar
Nagao, K., Okazaki, R., Miura, Y. N., et al. (2013) Noble gas analysis of two Hayabusa samples as the first international A/OP investigation: a progress report. Lunar and Planetary Science, 44, abstract #1976.Google Scholar
Nagy, B., Meinschein, W. G., and Henessy, D. J. (1961) Mass spectroscopic analysis of the Orgueil meteorite: Evidence for biogenic hydrocarbons. Annals of the New York Academy of Sciences, 93, 2735.Google Scholar
Naraoka, H., Mita, H., Hamase, M., et al. (2012) Preliminary organic compound analysis of microparticles returned from asteroid 25143 Itokawa by the Hayabusa mission. Geochemical Journal, 46, 6172.CrossRefGoogle Scholar
Nier, A. O., and Schlutter, D. J. (1993) The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, 675681.Google Scholar
Nimmo, F., and Pappalardo, R. T. (2016) Ocean worlds in the outer solar system. Journal of Geophysical Research, Planets, 121, 13781399.Google Scholar
Orosei, R., Lauro, S. E., Pettinelli, E., et al. (2018) Radar evidence of subglacial liquid water on Mars. Science, 361, 490493.Google Scholar
Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Chemie der Erde, 74, 519544.Google Scholar
Ott, U., Swindle, T. D., and Schwenzer, S. P. (2019) Noble gases in martian meteorites: Budget, sources, sinks, and processes. In Volatiles in the Martian Crust, Filiberto, J., and Schwenzer, S. P., editors, pp. 3570, Elsevier, Oxford.CrossRefGoogle Scholar
Ozima, M., and Podosek, F. (2002) Noble Gas Geochemistry, 2nd edition, Cambridge University Press, Cambridge, 286 pp.Google Scholar
Pepin, R. O. (2006) Atmospheres on the terrestrial planets: Clues to origin and evolution. Earth & Planetary Science Letters, 252, 114.CrossRefGoogle Scholar
Pepin, R. O., Schlutter, D. J., Becker, R. H., and Reisenfeld, D. B. (2012) Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochimica et Cosmochimica Acta, 89, 6280.CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., Becker, L., et al. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 22362239.Google Scholar
Pizzarello, S., Cooper, G. W., and Flynn, G. J. (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 625651,University of Arizona Press, Tucson.CrossRefGoogle Scholar
Pizzarello, S., Davidowski, S. K., Holland, G. P., and Williams, L. B. (2013) Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. Proceedings of the National Academy of Sciences, USA, 110, 1561415619.Google Scholar
Porcelli, D., and Pepin, R. O. (2004) The origin of noble gases and major volatiles in the terrestrial planets. In Treatise on Geochemistry, Vol. 4: The Atmosphere, Keeling, R. F., editor, pp. 319344, Elsevier, Oxford.Google Scholar
Postberg, F. S., Kempf, J., Schmidt, N. et al. (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Quirico, E., Bonal, L., Beck, P., Alexander, C. M. O’D., et al. (2018) Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica et Cosmochimica Acta, 241, 1737.CrossRefGoogle Scholar
Remusat, L. (2015) Organics in primitive meteorites. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 3365.Google Scholar
Rubin, M., Altwegg, K., Balsiger, H., et al. (2018) Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 4, doi:10.1126/sciadv.aar6297.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Sandford, S. A., and 56 coauthors (2006) Organics captured from Comet 81P/Wild 2 by the Stardust spacecraft. Science, 314, 17201724.Google Scholar
Schultz, P. H., Hermalyn, B., Colaprete, A., et al. (2010) The LCROSS cratering experiment. Science, 330, 468472.CrossRefGoogle ScholarPubMed
Sephton, M., and Gilmour, I. (2000) Aromatic moieties in meteorites: Relicts of interstellar grain processes? Astrophysical Journal, 540, 588591.Google Scholar
Shuai, L., Lucey, P. G., Milliken, R. E., et al. (2018) Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences, USA, 115, 89078912.Google Scholar
Signer, P., and Suess, H. (1963) Rare gases in the Sun, in the atmosphere, and in meteorites. In Earth Science and Meteorites, Geiss, J., and Goldberg, E. D., editors, pp. 241272, North Holland, Amsterdam.Google Scholar
Steele, A., McCubbin, F. M., Fries, M., et al. (2012) A reduced organic carbon component in martian basalts. Science, 337, 212215.Google Scholar
Steele, A., McCubbin, F. M., and Fries, M. D. (2016) The provenance, formation, and implications of reduced carbon phases in martian meteorites. Meteoritics & Planetary Science, 51, 22032225.Google Scholar
Stern, S. A., Grundy, W. M., McKinnon, W. G., et al. (2018) The Pluto system after New Horizons. Annual Review of Astronomy and Astrophysics, 56, 357392.Google Scholar
Stone, S. W., Yelle, R. V., Benna, M., et al. (2020) Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 824831.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2018) Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science, 360, 10931096.Google Scholar
Wieler, R., Busemann, H., and Franchi, I. A. (2006) Trapping and modification processes of noble gases and nitrogen in meteorites and their parent bodies. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 499517, University of Arizona Press, Tucson.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×