Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T15:08:03.781Z Has data issue: false hasContentIssue false

13 - Chemistry of Planetesimals and Their Samples

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chemical compositions of asteroids, comets, and their samples

Type
Chapter
Information
Cosmochemistry , pp. 323 - 345
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Brearley, A. J., and Jones, R. H. (1998) Chondritic meteorites. In Planetary Materials, Papike, J. J, editor, Reviews in Mineralogy, 36, pp. 3-1 to 3-398, Mineralogical Society of America, Washington. A comprehensive review of the compositions of chondrites.Google Scholar
Mittlefehldt, D. W. (2014) Achondrites. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 235266, Elsevier, Oxford. A superb review of achondritic meteorites, containing many high-quality analyses.Google Scholar
Nittler, L. R., McCoy, T. J., Clark, P. E., et al. (2004) Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarctic Meteorite Research, 17, 231251. A comprehensive summary of meteorite compositions, compiled for comparison with spacecraft remote-sensing data.Google Scholar
Alexander, C. M. O’D., Bowden, R., Fogel, M. L., and Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.Google Scholar
Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al. (2013) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J. (2014) Iron and stony-iron meteorites. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 267285Elsevier, Oxford.Google Scholar
Bradley, J. P. (2014) Early solar nebula grains – interplanetary dust particles. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 287308, Elsevier, Oxford.CrossRefGoogle Scholar
Castillo-Rogez, J., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’ evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Chabot, N. L., and Haack, H. (2006) Evolution of asteroidal cores. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 747771, University of Arizona Press, Tucson.Google Scholar
Collinet, M., and Grove, T. L. (2020) Formation of primitive achondrites by partial melting of alkali-undepleted planetesimals in the inner solar system. Geochimica et Cosmochimica Acta, 277, 358376.CrossRefGoogle Scholar
Day, J. M. D., Ash, R. D., Liu, Y., et al. (2009) Early formation of evolved asteroid crust. Nature, 457, 179182.Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, G., et al. (2018) Ceres’ global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritics & Planetary Science, 53, 18441865.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research, 122, 22672293.Google Scholar
Evans, L. G., Starr, R. D., Bruckner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics & Planetary Science, 36, 16391660.Google Scholar
Flynn, G. J., and Sutton, S. R. (1992) Trace elements on chondritic stratospheric particles: Zinc depletion as a possible indicator of atmospheric entry heating. Proceedings of the Lunar and Planetary Science Conference, 22, 171184.Google Scholar
Flynn, G. J., Bleuet, P., Borg, J., et al. (2006) Elemental compositions of comet 81P/Wild2 samples collected by Stardust. Science, 314, 17311735.Google Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Scott, E. R. D., et al. (2014) Classification of meteorites and their genetic relationships. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 163, Elsevier, Oxford.Google Scholar
Lauretta, D. S., DellGiustina, D. N., Bennett, C. A., et al. (2019) The unexpected surface of asteroid (101955) Bennu. Nature, 568, 5560.Google Scholar
Lawler, M. E., Brownlee, D. E., Temple, S., and Wheelock, M. M. (1989). Iron, magnesium, and silicon in dust from comet Halley. Icarus, 80, 225242.Google Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., et al. (2018) Compositional variability on the surface of 1 Ceres revealed through GRaND measurements of high-energy gamma rays. Meteoritics & Planetary Science, 53, 18051819,Google Scholar
Lodders, K., and Fegley, B. Jr. (1998) The Planetary Scientist’s Companion, Oxford University Press, New York, 371 pp.CrossRefGoogle Scholar
Mandler, B. E., and Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
McCoy, T. J., plus 16 coauthors (2001) The composition of 433 Eros: A mineralogical-chemical synthesis. Meteoritics & Planetary Science, 36, 16611672.CrossRefGoogle Scholar
McKeegan, K. D., plus 45 coauthors (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McSween, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013). Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902114.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Planetary Materials, Papike, J. J., editor, Reviews in Mineralogy, 36, pp. 4-1 to 4-195, Mineralogical Society of America, Washington.Google Scholar
Mittlefehldt, D. W., Herrin, J. S., Quinn, J. E., et al. (2013) Composition and petrology of HED polymict breccias: The regolith of (4) Vesta. Meteoritics & Planetary Science, 48, 21052134.Google Scholar
Nittler, L. R., and 15 coauthors (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics & Planetary Science, 36, 16731695.Google Scholar
Ogliore, R. C., Nagashima, K., Huss, G. R., et al. (2015) Oxygen isotopic composition of coarse- and fine-grained material from comet 81P/Wild 2. Geochimica et Cosmochimica Acta, 166, 7491.Google Scholar
Okada, T., Shirai, K., Yamanoto, Y., et al. (2006) X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science, 312, 13381341.Google Scholar
Park, R. S., Konopliv, A. S., Bills, B. G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.CrossRefGoogle ScholarPubMed
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 258, 3952.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2018) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Raymond, C. A., Russell, C. T., and McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Planetesimals, Elkins-Tanton, L., and Weiss, B., editors, pp. 321340, Cambridge University Press, Tucson.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989) Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99112.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Yurimoto, H., Abe, K., Abe, M., et al. (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 333, 11161119.Google Scholar
Alexander, C. M. O’D., Bowden, R., Fogel, M. L., and Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.Google Scholar
Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al. (2013) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J. (2014) Iron and stony-iron meteorites. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 267285Elsevier, Oxford.Google Scholar
Bradley, J. P. (2014) Early solar nebula grains – interplanetary dust particles. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 287308, Elsevier, Oxford.CrossRefGoogle Scholar
Castillo-Rogez, J., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’ evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Chabot, N. L., and Haack, H. (2006) Evolution of asteroidal cores. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 747771, University of Arizona Press, Tucson.Google Scholar
Collinet, M., and Grove, T. L. (2020) Formation of primitive achondrites by partial melting of alkali-undepleted planetesimals in the inner solar system. Geochimica et Cosmochimica Acta, 277, 358376.CrossRefGoogle Scholar
Day, J. M. D., Ash, R. D., Liu, Y., et al. (2009) Early formation of evolved asteroid crust. Nature, 457, 179182.Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, G., et al. (2018) Ceres’ global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritics & Planetary Science, 53, 18441865.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research, 122, 22672293.Google Scholar
Evans, L. G., Starr, R. D., Bruckner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics & Planetary Science, 36, 16391660.Google Scholar
Flynn, G. J., and Sutton, S. R. (1992) Trace elements on chondritic stratospheric particles: Zinc depletion as a possible indicator of atmospheric entry heating. Proceedings of the Lunar and Planetary Science Conference, 22, 171184.Google Scholar
Flynn, G. J., Bleuet, P., Borg, J., et al. (2006) Elemental compositions of comet 81P/Wild2 samples collected by Stardust. Science, 314, 17311735.Google Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Scott, E. R. D., et al. (2014) Classification of meteorites and their genetic relationships. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 163, Elsevier, Oxford.Google Scholar
Lauretta, D. S., DellGiustina, D. N., Bennett, C. A., et al. (2019) The unexpected surface of asteroid (101955) Bennu. Nature, 568, 5560.Google Scholar
Lawler, M. E., Brownlee, D. E., Temple, S., and Wheelock, M. M. (1989). Iron, magnesium, and silicon in dust from comet Halley. Icarus, 80, 225242.Google Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., et al. (2018) Compositional variability on the surface of 1 Ceres revealed through GRaND measurements of high-energy gamma rays. Meteoritics & Planetary Science, 53, 18051819,Google Scholar
Lodders, K., and Fegley, B. Jr. (1998) The Planetary Scientist’s Companion, Oxford University Press, New York, 371 pp.CrossRefGoogle Scholar
Mandler, B. E., and Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
McCoy, T. J., plus 16 coauthors (2001) The composition of 433 Eros: A mineralogical-chemical synthesis. Meteoritics & Planetary Science, 36, 16611672.CrossRefGoogle Scholar
McKeegan, K. D., plus 45 coauthors (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McSween, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013). Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902114.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Planetary Materials, Papike, J. J., editor, Reviews in Mineralogy, 36, pp. 4-1 to 4-195, Mineralogical Society of America, Washington.Google Scholar
Mittlefehldt, D. W., Herrin, J. S., Quinn, J. E., et al. (2013) Composition and petrology of HED polymict breccias: The regolith of (4) Vesta. Meteoritics & Planetary Science, 48, 21052134.Google Scholar
Nittler, L. R., and 15 coauthors (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics & Planetary Science, 36, 16731695.Google Scholar
Ogliore, R. C., Nagashima, K., Huss, G. R., et al. (2015) Oxygen isotopic composition of coarse- and fine-grained material from comet 81P/Wild 2. Geochimica et Cosmochimica Acta, 166, 7491.Google Scholar
Okada, T., Shirai, K., Yamanoto, Y., et al. (2006) X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science, 312, 13381341.Google Scholar
Park, R. S., Konopliv, A. S., Bills, B. G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.CrossRefGoogle ScholarPubMed
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 258, 3952.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2018) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Raymond, C. A., Russell, C. T., and McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Planetesimals, Elkins-Tanton, L., and Weiss, B., editors, pp. 321340, Cambridge University Press, Tucson.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989) Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99112.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Yurimoto, H., Abe, K., Abe, M., et al. (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 333, 11161119.Google Scholar

Other References

Alexander, C. M. O’D., Bowden, R., Fogel, M. L., and Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.Google Scholar
Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al. (2013) Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J. (2014) Iron and stony-iron meteorites. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 267285Elsevier, Oxford.Google Scholar
Bradley, J. P. (2014) Early solar nebula grains – interplanetary dust particles. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 287308, Elsevier, Oxford.CrossRefGoogle Scholar
Castillo-Rogez, J., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’ evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Chabot, N. L., and Haack, H. (2006) Evolution of asteroidal cores. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 747771, University of Arizona Press, Tucson.Google Scholar
Collinet, M., and Grove, T. L. (2020) Formation of primitive achondrites by partial melting of alkali-undepleted planetesimals in the inner solar system. Geochimica et Cosmochimica Acta, 277, 358376.CrossRefGoogle Scholar
Day, J. M. D., Ash, R. D., Liu, Y., et al. (2009) Early formation of evolved asteroid crust. Nature, 457, 179182.Google Scholar
De Sanctis, M. C., Ammannito, E., Carrozzo, G., et al. (2018) Ceres’ global and localized mineralogical composition determined by Dawn’s Visible and Infrared Spectrometer (VIR). Meteoritics & Planetary Science, 53, 18441865.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research, 122, 22672293.Google Scholar
Evans, L. G., Starr, R. D., Bruckner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics & Planetary Science, 36, 16391660.Google Scholar
Flynn, G. J., and Sutton, S. R. (1992) Trace elements on chondritic stratospheric particles: Zinc depletion as a possible indicator of atmospheric entry heating. Proceedings of the Lunar and Planetary Science Conference, 22, 171184.Google Scholar
Flynn, G. J., Bleuet, P., Borg, J., et al. (2006) Elemental compositions of comet 81P/Wild2 samples collected by Stardust. Science, 314, 17311735.Google Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Scott, E. R. D., et al. (2014) Classification of meteorites and their genetic relationships. In Treatise on Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 163, Elsevier, Oxford.Google Scholar
Lauretta, D. S., DellGiustina, D. N., Bennett, C. A., et al. (2019) The unexpected surface of asteroid (101955) Bennu. Nature, 568, 5560.Google Scholar
Lawler, M. E., Brownlee, D. E., Temple, S., and Wheelock, M. M. (1989). Iron, magnesium, and silicon in dust from comet Halley. Icarus, 80, 225242.Google Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., et al. (2018) Compositional variability on the surface of 1 Ceres revealed through GRaND measurements of high-energy gamma rays. Meteoritics & Planetary Science, 53, 18051819,Google Scholar
Lodders, K., and Fegley, B. Jr. (1998) The Planetary Scientist’s Companion, Oxford University Press, New York, 371 pp.CrossRefGoogle Scholar
Mandler, B. E., and Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
McCoy, T. J., plus 16 coauthors (2001) The composition of 433 Eros: A mineralogical-chemical synthesis. Meteoritics & Planetary Science, 36, 16611672.CrossRefGoogle Scholar
McKeegan, K. D., plus 45 coauthors (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 17241728.Google Scholar
McSween, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013). Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902114.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Planetary Materials, Papike, J. J., editor, Reviews in Mineralogy, 36, pp. 4-1 to 4-195, Mineralogical Society of America, Washington.Google Scholar
Mittlefehldt, D. W., Herrin, J. S., Quinn, J. E., et al. (2013) Composition and petrology of HED polymict breccias: The regolith of (4) Vesta. Meteoritics & Planetary Science, 48, 21052134.Google Scholar
Nittler, L. R., and 15 coauthors (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics & Planetary Science, 36, 16731695.Google Scholar
Ogliore, R. C., Nagashima, K., Huss, G. R., et al. (2015) Oxygen isotopic composition of coarse- and fine-grained material from comet 81P/Wild 2. Geochimica et Cosmochimica Acta, 166, 7491.Google Scholar
Okada, T., Shirai, K., Yamanoto, Y., et al. (2006) X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science, 312, 13381341.Google Scholar
Park, R. S., Konopliv, A. S., Bills, B. G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.CrossRefGoogle ScholarPubMed
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 258, 3952.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2018) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Raymond, C. A., Russell, C. T., and McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Planetesimals, Elkins-Tanton, L., and Weiss, B., editors, pp. 321340, Cambridge University Press, Tucson.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989) Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99112.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Yurimoto, H., Abe, K., Abe, M., et al. (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 333, 11161119.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×