Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:03:09.228Z Has data issue: false hasContentIssue false

11 - Intergalactic cosmic rays, gamma rays, and magnetic fields

Published online by Cambridge University Press:  22 September 2016

Philipp P. Kronberg
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, R. U. et al. (The High Resolution Fly’s Eye Collaboration). 2008a, First Observation of the Greisen-Zatsepin-Kuzmin Suppression, Phys. Rev. Lett., 100, 101101CrossRefGoogle ScholarPubMed
Abbasi, R. U. et al. (The High Resolution Fly’s Eye Collaboration). 2008b, Search for Correlations between HiRes Stereo Events and Active Galactic Nuclei, arXiv, 0804.0382Google Scholar
Abbasi, R. et al. (The IceCube Collaboration). 2013, All-Particle Cosmic Ray Energy Spectrum Measured with 26 IceTop Stations. Astroparticle Phys., 44, 40CrossRefGoogle Scholar
Abraham, J. et al. (The Pierre Auger Collaboration). 2004, Properties and Performance of the Prototype Instrument for the Pierre Auger Observatory, Nucl. Inst. Meth. A, 523, 50CrossRefGoogle Scholar
Abraham, J. et al. (The Pierre Auger Collaboration). 2007, Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects, Science, 318, 938CrossRefGoogle ScholarPubMed
Abreu, P. et al. (The Pierre Auger Collaboration). 2010, Update on the Correlation of the Highest Energy Cosmic Rays with Nearby Extragalactic Matter, Astroparticle Phys., 34, 314CrossRefGoogle Scholar
Abreu, P. et al. (The Pierre Auger Collaboration). 2011, The Pierre Auger Observatory I : The Cosmic Ray Energy Spectrum and Related Measurements. 32nd International Cosmic Ray Conference, Beijing, China. http://arxiv.org/abs/1107.4809Google Scholar
Achterberg, A. et al. (The IceCube Collaboration). 2008, IceCube Contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006), Nucl. Phys. Suppl. 175, 407CrossRefGoogle Scholar
Antoni, T. et al. 2004, The Cosmic Ray Experiment KASCADE, Nucl. Inst. Meth. A, 513, 490CrossRefGoogle Scholar
Apel, W. D. et al. (The KASCADE-Grande Collaboration). 2011, Kneelike Structure in the Spectrum of the Heavy Component of Cosmic Rays Observed with KASCADE-Grande, Phys. Rev. Lett., 107, 171104CrossRefGoogle ScholarPubMed
Bahcall, J. N. 1997, Gallium Solar Neutrino Experiments: Absorption Cross Sections, Neutrino Spectra, and Predicted Event Rates, Phys. Rev. C, 56, 3391CrossRefGoogle Scholar
Becker, J. K. 2008, High Energy Neutrinos in the Context of Multimessenger Astrophysics, Phys. Rep., 458, 173BCrossRefGoogle Scholar
Becker Tjus, J. K. 2013, Private communicationGoogle Scholar
Berezinsky, V. & Grigor’eva, S. I. 1988, A Bump in the Ultra-High Energy Cosmic Ray Spectrum, Astron. Astrophys., 199, 1Google Scholar
Berezinsky, V. & Vilenkin, A. 1997, Cosmic Necklaces and Ultrahigh Energy Cosmic Rays, Phys. Rev. Lett., 79, 5202CrossRefGoogle Scholar
Biermann, P. L. & Strittmatter, P. A. 1987, Synchrotron Emission from Shock Waves in Active Galactic Nuclei, Astrophys. J., 322, 643CrossRefGoogle Scholar
Bird, D. J., et al. (The High Resolution Fly’s Eye Collaboration). 1994, The Cosmic-Ray Energy Spectrum Observed by the Fly’s Eye, Astrophys. J., 424, 491CrossRefGoogle Scholar
Boyer, J. H. et al. (The High Resolution Fly’s Eye Collaboration). 2002, FADC-Based DAQ for HiRes Fly’s Eye, Nucl. Inst. Meth., A 482, 457CrossRefGoogle Scholar
Cronin, J. W. 1992, Summary of the Workshop, Nucl. Phys. B Proc. Suppl., 28, 213CrossRefGoogle Scholar
Elyiv, A., Neronov, A., & Semikoz, D. V. 2009, Gamma-Ray Induced Cascades and Magnetic Fields in the Intergalactic Medium, Phys. Rev. D., 80, 023010CrossRefGoogle Scholar
Engel, R., Seckel, D., & Stanev, T. 2001, Neutrinos from Propagation of Ultrahigh Energy Photons, Phys. Rev. D, 64, 093010CrossRefGoogle Scholar
Falcke, H. 2009, Radio Detection of Ultra-High Energy Cosmic Rays, in Proceedings of the 30th International Cosmic Ray Conference, ed. Caballero, R., D’Olivo, J. C., Medina-Tanco, G., Nellen, L., Sánchez, F. A., & Valdés-Galicia, J. (Mexico City: Universidad Nacional Autonóma de México), 6, 79Google Scholar
Farrar, G. R. & Piran, T. 2000, Violation of the Greisen-Zatsepin-Kuzmin Cutoff: A Tempest in a (Magnetic) Teapot? Why Cosmic Ray Energies about 1020 eV May Not Require New Physics, Phys. Rev. Lett. 84, 3527CrossRefGoogle Scholar
Feain, I., Ekers, R. D., Murphy, T., Gaensler, B. M., Macquart, J.-P., Norris, R. P., Cornwell, T. J., Johnston-Hollitt, M., Ott, J., & Middelberg, E. 2009, Faraday Rotation Structure on Kiloparsec Scales in the Radio Lobes of Centaurus A, Astrophys. J., 707, 114CrossRefGoogle Scholar
Gaisser, T. K. 1990, Cosmic Rays and Particle Physics, (Cambridge: Cambridge University Press)Google Scholar
Greisen, K. 1966, End to the Cosmic Ray Spectrum?, Phys. Rev. Lett., 16, 748CrossRefGoogle Scholar
Halzen, F. & Klein, S. R. 2008, Phys. Today, 61, no. 5, 29CrossRefGoogle Scholar
Harris, G. L. H., Rejkuba, M., & Harris, W. E. 2010, The Distance to NGC 5128 (Centaurus A) PASA, 27, 457CrossRefGoogle Scholar
Hill, C. T. & Schramm, D. N. 1985, Ultrahigh-Energy Cosmic-Ray Spectrum, Phys. Rev. D, 31, 564CrossRefGoogle ScholarPubMed
Hillas, A. M. 1984, The Origin of Ultra-High-Energy Cosmic Rays, Ann. Rev. Astron. Astrophys., 22, 425CrossRefGoogle Scholar
Hörandel, J. R. 2008, Cosmic-Ray Composition and Its Relation to Shock Acceleration by Supernova Remnants, Adv. Space Res., 41, 442CrossRefGoogle Scholar
IcetopAbbasi, R. et al. (The IceCube Collaboration). 2013, All-Particle Cosmic Ray Energy Spectrum Measured with 26 IceTop Stations. Astroparticle Phys 44, 40CrossRefGoogle Scholar
Jelley, J. V., Fruin, J. H., Porter, N. A., Weekes, T. C., Smith, F. G., & Porter, R. A. 1965, Radio Pulses from Extensive Cosmic-Ray Air Showers, Nature, 205, 327CrossRefGoogle Scholar
Junkes, N., Haynes, R. F., Harnett, J. I., & Jauncey, D. L. 1993, Radio Polarization Surveys of Centaurus A (NGC 5128). I - The Complete Radio Source at 6.3 CM, Astron. Astrophys., 269, 29Google Scholar
KASCADE-GRANDE Collaboration, The, Apel, W.D. et al. 2013, “KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays” arXiv:1306.6283 (Phys. Rev. D87, 081101 ?)Google Scholar
Kawai, H. et al. (The TA Collaboration). 2008, Telescope Array Experiment, Nucl. Phys. Proc. Suppl., 175, 221CrossRefGoogle Scholar
Lee, S., Olinto, A. V., & Sigl, G. 1995, Extragalactic Magnetic Field and the Highest Energy Cosmic Rays, Astrophys. J., 455, L21CrossRefGoogle Scholar
Letessier-Selvon, A., & Stanev, T. 2011, Ultra High Energy Cosmic Rays , Rev. Mod. Phys, 83, 907CrossRefGoogle Scholar
Letessier-Selvon, A., For the pierre auger collaboration 2013, Highlights from the Pierre Auger Observatory, Proc. 33rd ICRC, Rio de Janeiro (arXiv1310.4620)Google Scholar
Linsley, J. 1963, Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV, Phys. Rev. Lett., 10, 146CrossRefGoogle Scholar
Lovelace, R. V. E., & Kronberg, P. P. 2013, Transmission Line Analogy for Relativistic Poynting Flux Jets, MNRAS, 430, 2828CrossRefGoogle Scholar
Nagano, M., Hara, T., Hatano, Y., Hayashida, N., Kawaguchi, S., Kamata, K., Kifune, T., & Mizumoto, Y. 1984, Energy Spectrum of Primary Cosmic Rays Between 1014.5 and 1018 eV, J. Phys. G, 10, 1295CrossRefGoogle Scholar
Navarra, G. et al. 2004, KASCADE-Grande: A Large Acceptance, High-Resolution Cosmic-Ray Detector up to 1018 eV, Nucl. Instr. Meth. Phys. Res. A, 518, 207CrossRefGoogle Scholar
Neronov, A. & Vovk, I. 2010, Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars, Science, 5974, 73CrossRefGoogle Scholar
Ostrowski, M. 2002, Mechanisms and Sites of Ultra High Energy Cosmic Ray Origin, Astroparticle Phys., 18, 229CrossRefGoogle Scholar
Protheroe, R. J. & Johnson, P. A. 1996a, Propagation of Ultra High Energy Protons and Gamma Rays Over Cosmological Distances and Implications for Topological Defect Models, Astroparticle Phys., 4, 253CrossRefGoogle Scholar
Protheroe, R. J. & Johnson, P. A. 1996b, Propagation of Ultra High Energy Protons and Gamma Rays Over Cosmological Distances and Implications for Topological Defect Models (Astroparticle Physics 4 (1996) 253) [Erratum], Astroparticle Phys., 5, 215CrossRefGoogle Scholar
Rachen, J. & Biermann, P. L. 1993, Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies, Astron. Astrophys., 272, 161Google Scholar
Ryu, D., Kang, H., Hallman, E., & Jones, T. W. 2003, Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe, Astrophys. J., 593, 599CrossRefGoogle Scholar
Sigl, G., Miniati, F., & Enßlin, T. E. 2003, Ultrahigh Energy Cosmic Rays in a Structured and Magnetized Universe, Phys. Rev. D, 68, 043002CrossRefGoogle Scholar
Simpson, J. A. 1983, Elemental and Isotopic Composition of the Galactic Cosmic Rays, Ann. Rev. Nuclear Particle Phys., 33, 323CrossRefGoogle Scholar
Stanev, T. 2008, private communicationGoogle Scholar
Stanev, T., Engel, R., Mücke, A., Protheroe, R. J., Rachen, J. 2000, Propagation of Ultrahigh Energy Protons in the Nearby Universe, Phys. Rev. D, 62, 093005CrossRefGoogle Scholar
Waxman, E. & Coppi, P. Delayed GeV–TeV Photons from Gamma-Ray Bursts Producing High-Energy Cosmic Rays, Astrophys. J., 464, L75CrossRefGoogle Scholar
Waxman, E. & Miralda-Escudé, J. 1996, Images of Bursting Sources of High-Energy Cosmic Rays: Effects of Magnetic Fields, Astrophys. J.., 472, L89CrossRefGoogle Scholar
Weekes, T. C. 2001, Radio Detection of Cosmic Ray Extensive Air Showers, in Radio Detection of High Energy Particles, Proceedings of First Int. Workshop RADHeP 2000, Los Angeles, California, 16–18 November 2000, ed. Saltzberg, D. & Gorham, P., AIP Conf. Ser. (New York: American Institute of Physics), 579, 3Google Scholar
Yoshida, S. & Teshima, M. 1993, Energy Spectrum of Ultra-High Energy Cosmic Rays with Extra-Galactic Origin, Prog. Theoret. Phys., 89, 833CrossRefGoogle Scholar
Yoshida, S. et al. 1995, The Cosmic Ray Energy Spectrum Above 3×10^18 eV Measured by the Akeno Giant Air Shower Array, Astroparticle Phys., 3, 105CrossRefGoogle Scholar
Yüksel, H., Stanev, T., Kistler, M. D., & Kronberg, P. P. 2012, The Centaurus a Ultrahigh-Energy Cosmic-Ray Excess and the Local Extragalactic Magnetic Field, Astrophys. J., 758, 16CrossRefGoogle Scholar
Zatsepin, G. T. & Kuz’min, V. A. 1966, Upper Limit of the Spectrum of Cosmic Rays, JETP Lett., 4, 78Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×