Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T18:52:55.320Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

David B. Scott
Affiliation:
Dalhousie University, Nova Scotia
Jennifer Frail-Gauthier
Affiliation:
Dalhousie University, Nova Scotia
Petra J. Mudie
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Coastal Wetlands of the World
Geology, Ecology, Distribution and Applications
, pp. 302 - 338
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AbdAllah, A. M., El-Gindy, A. A. and Debes, E. A. (2006). Sea level changes at Rosetta Promontory, Egypt. Egyptian Journal of Aquatic Research, 32 (1), 34–47.Google Scholar
Adam, P. (1995). Saltmarsh Ecology. Cambridge: Cambridge University Press.Google Scholar
Adam, P. (2009). Salt marsh restoration. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 737–762.Google Scholar
Adams, J. B., Colloty, B. M. and Bate, G. C. (2004). The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa. Wetlands Ecology and Management, 12, 531–541.CrossRefGoogle Scholar
Adams, J., Rajkaran, A. and Pike, S. (2011). Die-back of mangroves in the Kobonqaba Estuary. SANCOR Newsletter #192, 11–12.Google Scholar
Adebayo, O. F, Orijemie, A. E. and Aturamu, A. O. (2012). Palynology of Bog-1 Well, Southeastern Niger Delta Basin, Nigeria. International Journal of Science and Technology, 2 (4), 214–222.Google Scholar
AEM (2010). Progress on aerospace biofuels gaining momentum. Aerospace Engineering Magazine, February 2010. Online at (accessed October 2013).
Ahn, C. and Mitsch, W. J. (2002). Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecological Engineering, 18 (3), 327–342.CrossRefGoogle Scholar
Alberti, J., Escapa, M., Iribarne, O., Silliman, B. and Bertness, M. (2008). Crab herbivory regulates plant facultative and competitive processes in Argentinean marshes. Ecology, 89 (1), 155–164.CrossRefGoogle Scholar
Allan, J. A. (1998). Mangroves as alien species: the case of Hawaii. Global Ecology and Biogeography Letters 7: 61–71.CrossRefGoogle Scholar
Allanson, B. R. and Baird, D. (editors) (1999). Estuaries of South Africa. Cambridge: Cambridge University Press.CrossRef
Alongi, D. M. (2009). Paradigm shifts in mangrove biology. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 615–640.Google Scholar
Al-Otaibi, Y., Ait Belaid, M. and Abdu, A. (2006). Impact assessment of human activities on coastal zones of eastern Saudi Arabia using remote sensing and geographic information systems techniques. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34, Part XXX.Google Scholar
Álvarez, M., Briz, I., Balbo, A. and Madella, M. (2010). Shell middens as archives of past environments, human dispersal and specialized resource management. Quaternary International, 239, 1–7.CrossRefGoogle Scholar
Al-Yamani, F. Y., Bishop, J. M., Al-Rifaie, K. and Ismail, W. (2007). The effects of the river diversion, Mesopotamian marsh drainage and restoration, and river damming on the marine environment of the northwestern Arabian Gulf. Aquatic Ecosystem Health and Management, 10 (3), 277–289.CrossRefGoogle Scholar
Amaral, A. C. Z., Migotto, A. E., Turra, A. and Schaefer-Novelly, Y. (2010). Araçá: biodiversidade, impactos e ameaças. Biota Neotropica, 10 (1), 219–264.CrossRefGoogle Scholar
An, S. Q., Gu, B. H., Zhou, C. F., et al. (2007). Spartina invasion in China: implications for invasive species management and future research. Weed Research, 47 (3), 183–191.CrossRefGoogle Scholar
Anthony, E. J. (1996). Evolution of estuarine shoreline systems in Sierra Leone. In Estuarine Shores: Evolution, Environments and Human Alterations, ed. Nordstrom, K. F. and Roman, C. T.. New York: John Wiley and Sons Inc., pp. 39–61.Google Scholar
Anthony, E. J. and Gratiot, N. (2010). Coastal engineering and large-scale mangrove destruction in Guyana, South America: averting an environmental catastrophe in the making. Ecological Engineering, 47, 268–273.CrossRefGoogle Scholar
ASEAN Regional Centre for Biodiversity Conservation (2013). Information site, online at (accessed October 2013).
Aslam, R., Bostan, N., Nabgha-e-Amen, , Maria, M. and Safdar, W. (2011). A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 5 (33), 7108–7118.Google Scholar
Atwater, B. F. (1987). Evidence for great Holocene earthquakes along the outer coast of Washington State. Science 236, 942–944.CrossRefGoogle ScholarPubMed
Atwater, B. F. and Hemphill-Haley, E. (1997). Recurrence Intervals for Great Earthquakes of the Past 3,500 Years at Northeastern Willapa Bay, Washington. US Geological Survey Professional Paper, 1576, 108 pp.
Atwater, B. F., Yamaguchi, D. K., Bondevik, S., et al. (2001). Rapid resetting of an estuarine recorder of the 1964 Alaska earthquake. Geological Society America Bulletin, 113 (9), 1193–1204.2.0.CO;2>CrossRefGoogle Scholar
Atwater, B. F., Tuttle, M., Schweig, E. S., et al. (2004). Earthquake recurrence inferred from paleoseismology. In The Quaternary period in the United States, Developments in Quaternary Science, ed. Gillespie, A. R., Porter, S. C. and Atwater, B. F.. New York: Elsevier, pp. 331–350.Google Scholar
Atwater, B. F., Musumi-Rokkaku, S., Sataki, K., Tsugi, Y., Ueda, K. and Yamaguchi, K. K. (2005). The Orphan Tsunami of 1700: Japanese Clues to a Parent Earthquake in North America. US Geological Survey Professional Paper, 1707, 133 pp.Google Scholar
Atwell, B. J., Kriedemann, P. E. and Turnbull, C. G. N. (1999). Chapter 17 – Salt: an environmental stress. In Plants in Action. Electronic edition, 2010. Melbourne: Macmillan Education Australia Pty Ltd. Online at (accessed October 2013).
Australian Government (2009). Australia’s coasts and climate change, Chapter 1. Online at (accessed May 2013)
Ayyad, S. M., Moore, P. D. and Zahran, M. A. (1992). Modern pollen rain studies of the Nile Delta, Egypt. New Phytologist, 121 (4), 663–675.CrossRefGoogle Scholar
Baker, J. M., Leonardo, G. M., Bartlett, P. D., Little, D. I. and Wilson, C. M. (1993). Long-term fate and effects of untreated thick oil deposits on salt marshes. International Oil Spill Conference Proceedings, March 1993 (1), 395–399.CrossRefGoogle Scholar
Balke, T., Bouma, T. J., Horstman, E. M., et al. (2011). Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series, 440, 1–9.CrossRefGoogle Scholar
Ball, M. C. (1998). Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide River floodplain, Northern Australia. Global Ecology and Biogeography Letters, 7 (1), 73–82.CrossRefGoogle Scholar
Banister, K. E., Backiel, T. and Bishop, J. S (1994). Fisheries. Prepared for The Wetland Ecosystems Research Group, University of Exeter.
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C. and Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81 (2), 169–193.CrossRefGoogle Scholar
Barbosa, C. F. (1995). Foraminifera e Arcellacea (‘Thecamoebia’) Recentes do Estuário de Guaratuba, Paraná, Brasil. Anais da Academia Brasileira de Ciências, 67, 465–492.Google Scholar
Barbosa, C. F., Scott, D. B., Seoane, J. C. S. and Turcq, B. J. (2005). Foraminiferal zonation as base lines for Quaternary sea level fluctuations in south-southeast Brazilian mangroves and marshes. Journal of Foraminiferal Research, 35 (1), 22–43.CrossRefGoogle Scholar
Barker, R. (1998). And the Waters Turned to Blood: the Ultimate Biological Threat. New York: Touchstone.Google Scholar
Barlow, N. L. M, Shennan, I., Long, A. J., et al. (2013). Salt marshes as late Holocene tide gauges. Global and Planetary Change, 106, 90–110.CrossRefGoogle Scholar
Barnett, L. K. and Emms, C. (2005). Common Reptiles of The Gambia. Halsham, UK: Rare Repro, 24 pp.Google Scholar
Barnhardt, W. A. (editor) (2009). Coastal change along the shore of northeastern South Carolina: the South Carolina coastal erosion study. US Geological Survey Circular 1339, 77 pp.
Baroni, C. and Orombelli, G. (1991). Holocene raised beaches at Terra Nova Bay, Victoria Land, Antarctica. Quaternary Research, 36, 157–177.CrossRefGoogle Scholar
Baye, P. (2007). Selected Tidal Marsh Plant Species of the San Francisco Estuary: A Field Identification Guide. Berkeley: San Francisco Estuary Invasive Spartina Project, California State Coastal Conservancy. Online at (accessed October 2013).Google Scholar
Beavan, R. J. and Litchfield, N. J. (2012). Vertical land movement around the New Zealand coastline: implications for sea level rise. GNS Science report 2012/29, September 2012. Lower Hutt, NZ: GNS Science, 41 pp.Google Scholar
Beeftink, W. G. (1977). The coastal salt marshes of western and northern Europe: an ecological and phytosociological approach. In Ecosystems of the World 1. Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam-Oxford-New York: Elsevier Scientific Publishing Company, pp. 109–155.Google Scholar
Behbahani, M., Manaf, A., Muse, R. and Mohd, N. B. (2007). Anti-oxidant and anti-inflammatory activities of leaves of Barringtonia racemosa. Journal of Medicinal Plants Research, 1 (5), 95–102.Google Scholar
Bell, H. L. (2010). A new species of Distichlis (Poaceae, Chloridoideae) from Baja California, Mexico. Madroño, 57 (1), 54–63.CrossRefGoogle Scholar
Belsare, D. K. (1994). Inventory and status of vanishing wetland wildlife of southeastern Asia and an operational management plan for their conservation. In Global Wetlands: Old World and New, ed. Mitsch, W. J.. Amsterdam: Elsevier BV, pp. 841–856.Google Scholar
Belt, S. T. and Műller, J. (2013). The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Science Reviews, 59, 1–17.Google Scholar
Berczik, A., Dinka, M. and Kiss, A. (editors) (2012). Proceedings of 39th IAD Conference: Living Danube. Göd/Vácrátót, Hungary: Danube Research Institute Centre for Ecological Research, Hungarian Academy of Sciences, and General Secretary of International Association for Danube Research, Sciences.
Berger, W. H. (2008). Sea level in the late Quaternary: patterns of variation and implications. International Journal of Earth Science, 97, 1143–1150.CrossRefGoogle Scholar
Bertness, M. D. (2007). Atlantic Shorelines: Natural History and Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Bertness, M. D. and Coverdale, T. C. (2013). An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology, 94, 1937–1943.CrossRefGoogle ScholarPubMed
Bianciotto, O. A., Pinedo, L. B., San Roman, N. A., Blessio, A. Y. and Collantes, M. B. (2003). The effect of natural UV-B radiation on a perennial Salicornia salt marsh in Bahía San Sebastián, Tierra del Fuego, Argentina: a 3-year field study. Journal of Photochemistry and Photobiology B, 70 (3), 177–85.CrossRefGoogle Scholar
BirdLife International (2012). Important Bird Areas Factsheet: Bao Bolon Wetland Reserve. (accessed June 2012).
Black, M. T. and Pezza, A. B. (2013). A universal, broad-environment energy conversion signature of explosive cyclones. Geophysical Research Letters, 40, 452–457.CrossRefGoogle Scholar
Blais-Stevens, A. and Clague, J. J. (2001). Paleoseismic signature in late Holocene sediment cores from Saanich Inlet, British Columbia. Marine Geology, 175, 131–148.CrossRefGoogle Scholar
Blasco, F. (1977). Outlines of ecology, botany and forestry of the mangals of the Indian subcontinent. In Ecosystems of the World 1: Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 241–260.Google Scholar
Blasco, F. (1984). Mangrove evolution and palynology. In The Mangrove Ecosystem: Research Methods, ed. Snedaker, S. C. and Snedaker, J. G.. Paris: UNESCO, pp. 36–49.Google Scholar
Blasco, F., Janodet, E. and Bellan, M. F. (1994). Natural hazards and mangroves in the Bay of Bengal. Journal of Coastal Research Special Issue, 12, 277–288.Google Scholar
Blum, M. D. and Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea level rise. Nature Geoscience 2, 488–491.CrossRefGoogle Scholar
Boaden, P. J. S. (1985). An Introduction to Coastal Ecology. Glasgow: Blackie and Son.Google Scholar
Boggs, K., Klein, S. C., Grunblatt, J., Streveler, G. P. and Koltun, B. (2007). Landcover classes and plant associations of Glacier Bay National Park and Preserve. Natural Resource Technical Report NPS/GLBA/NRTR-2008/093. Fort Collings, CO: National Park Service. D-147, 255 pp.Google Scholar
Boorman, L. A., Hazelden, J. and Boorman, M. (2001). The effect of rates of sedimentation and tidal submersion regimes on the growth of salt marsh plants. Continental Shelf Research, 21 (18), 2155–2165.CrossRefGoogle Scholar
Borstad, G. A., Álvarez, M. M. de S., Hines, J. E. and Dufour, J.-F. (2008). Reduction in vegetation cover at the Anderson River delta, Northwest Territories, identified by Landsat imagery, 1972–2003. Technical Report Series No. 496. Yellowknife, Northwest Territories: Canadian Wildlife Service.
Bortolus, A. (2006). The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. Journal of Biogeography, 33, 158–168.CrossRefGoogle Scholar
Bortolus, A. and Iribarne, O. (1999). Effects of SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Marine Ecology Progress Series, 178, 78–88.CrossRefGoogle Scholar
Bortolus, A., Schwindt, E., Bouza, P. J. and Idaszkin, Y. L. (2009). A characterization of Patagonian salt marshes. Wetlands, 29 (2), 772–780.CrossRefGoogle Scholar
Boto, K. G. and Robertson, A. I. (1990). The relationship between nitrogen fixation and tidal export of nitrogen in a tropical mangrove system. Estuarine and Coastal Shelf Science, 31, 531–540.CrossRefGoogle Scholar
Bowyer, P. (2003). The storm surge and waves at Halifax with Hurricane Juan. Environment Canada, Canadian Hurricane Center Archives, 17 October 2003.
Brasington, J. (2001). Monitoring marshland degradation using multispectral remote sensed imagery. In The Iraqi Marsh Lands: A Human and Environmental Study, ed. Clark, P. and Magee, S.. London: Politico’s Publishing, pp. 110–132.Google Scholar
Braun-Blanquet, J. (1928). Pflanzensoziologie: Grundzuge der Vegetationskunde. Berlin: Springer.CrossRefGoogle Scholar
Bromirski, P. D., Miller, A. J. and Flick, R. E. (2012). Understanding North Pacific sea level trends. EOS Transactions, 93 (27), 249–250.CrossRefGoogle Scholar
Broome, S. W. and Craft, C. B. (2009). Tidal marsh creation. In Coastal Wetlands: An Integrated Ecosystem Approach, ed. Perillo, G. M., Wolanski, E., Cahoon, D. R. and Brinson, M. M.. Amsterdam: Elsevier BV, pp. 715–736.Google Scholar
de Bruxelles, S. (2013). (accessed October 2013).
Bryant, E., Young, R. W. and Price, D. M. (1992). Evidence of tsunami sedimentation on the southeastern coast of Australia. Journal of Geology, 100, 753–765.CrossRefGoogle Scholar
Bujalesky, G. G. (2007). Coastal geomorphology and evolution of Tierra del Fuego (Southern Argentina). Geologica Acta, 5 (4), 337–362.Google Scholar
Byrne, R., Ingram, B. L., Starratt, S., et al. (2001). Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish Marsh in the San Francisco Estuary. Quaternary Research, 55 (1), 66–76.CrossRefGoogle Scholar
Caballero, M., Peinalba, M. C., Martinez, M, Ortega-Guerrerol, B. and Vazquez, L. (2005). A Holocene record from a former coastal lagoon in Bahia Kino, Gulf of California, Mexico. The Holocene, 15 (8), 1236–1244.CrossRefGoogle Scholar
Cahoon, D. R., Hensel, P. F., Spencer, T., et al. (2006). Coastal wetland vulnerability to relative sea level rise: wetland elevation trends and process controls. In Wetlands and Natural Resource Management, Ecological Studies 190, ed. Verhoeven, J. T. A., Beltman, B, Bobbink, R. and Whigham, D. F.. Berlin, Heidelberg: Springer-Verlag, pp. 271–292.CrossRefGoogle Scholar
Callard, S. L., Gehrels, W. R., Morrison, B. V. and Grenfell, H. R. (2011). Suitability of salt marsh Foraminifera as proxy indicators of sea level in Tasmania. Marine Micropaleontology, 79 (3–4), 121–131.CrossRefGoogle Scholar
Callaway, J. C. and Zedler, J. B. (2009). Conserving the diverse marshes of the Pacific Coast. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 285–307.Google Scholar
Callaway, J. C., Zedler, J. B. and Ross, D. L. (1997). Using tidal marsh mesocosms to aid wetland restoration. Restoration Ecology, 5 (2), 135–146.CrossRefGoogle Scholar
Campbell, S. J., Rashid, M. A. and Thomas, R. (2001). Seagrass Habitat of Cairns Harbour and Trinity Inlet, Queensland Government DPI Information Series QI02059. Cairns: DPI, 25 pp.Google Scholar
Capps, D. M., Wiles, G. C., Clague, J. J. and Luckman, B. H. (2011). Tree-ring dating of the nineteenth-century advance of Brady Glacier and the evolution of two ice-marginal lakes, Alaska. The Holocene, 21 (4), 641–649.CrossRefGoogle Scholar
Carmack, E. and McLaughlin, F. (2011) Towards recognition of physical and geochemical change in Subarctic and Arctic seas. Progress in Oceanography, 90, 90–104.CrossRefGoogle Scholar
Catron, J. E., Ceballos, G. and Felger, R. (Eds) (2005). Biodiversity, Ecosystems, and Conservation in Northern Maxico. New York, NY: Oxford University Press, pp. 298–333.
Cerón-Souza, I., Rivera-Ocasio, E., Medina, E., et al. (2010). Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae). American Journal of Botany, 97 (6), 945–957.CrossRefGoogle Scholar
Chagué-Goff, C., Hamilton, T. S. and Scott, D. B. (2001). Geochemical evidence for the recent changes in a salt marsh, Chezzetcook Inlet, Nova Scotia, Canada. Proceedings of the Nova Scotian Institute of Science, 41 (4), 149–159.Google Scholar
Chagué-Goff, C., Schneider, J-L., Goff, J. R., Dominey-Howes, D. and Strotz, L. (2011). Expanding the proxy toolkit to help identify past events: lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth-Science Reviews, 107, 107–122.CrossRefGoogle Scholar
Chapman, V. J. (1960). Salt Marshes and Salt Deserts of the World. London: Leonard Hill Limited, 392 pp.Google Scholar
Chapman, V. J. (1974). Salt Marshes and Salt Deserts of the World. Germany: Lubrecht & Cramer, Ltd.CrossRefGoogle Scholar
Chapman, V. J. (1976). Coastal Vegetation, 2nd edn. Oxford: Pergamon Press Limited.Google Scholar
Chapman, V. J. (editor) (1977). Ecosystems of the World 1: Wet Coastal Ecosystems. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 1–29; 261–270.
Chapman, V. J. (1984). Botanical surveys in mangrove communities. In The Mangrove Ecosystem: Research Methods, ed. Snedaker, S. C. and Snedaker, J. G.. Paris: UNESCO, pp. 53–80.Google Scholar
Chen, R. and Twilley, R. R. (1998). A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology, 86 (1), 37–51.CrossRefGoogle Scholar
Chen, K., Yuan, J. and Yan, C. (2007) Shandong Yellow River Delta National Nature Reserve. Wetlands International-China Programme, Ramsar Handbook 5, 22 October 2007, 13 pp.
Chmura, G. L. (2011). What do we need to assess the sustainability of the tidal salt marsh carbon sink?Ocean and Coastal Management, 83, 25–31.CrossRefGoogle Scholar
Chmura, G. L., Stone, P. A. and Ross, M. S. (2006). Non-pollen microfossils in everglades sediments. Review of Paleobotony and Palynology, 141 (1–2), 103–119.CrossRefGoogle Scholar
Christian, R. R. and Mazzilli, S. (2007). Defining the coast and sentinel ecosystems for coastal observations of global change. In Lagoons and Coastal Wetlands in the Global Change Context: Impacts and Management Issues, ed. Viaroli, P., Lasserre, P. and Campostrini, P.. Reprinted from Hydrobiologia, 577, 55–70.CrossRef
Chu, Z., Yang, X., Feng, X., et al. (2013). Temporal and spatial changes in coastline movement of the Yangtze delta during 1974–2010. Journal of Asian Earth Sciences, 66, 166–174.CrossRefGoogle Scholar
Chung, C. H. (2006). Forty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 27 (1), 49–57.CrossRefGoogle Scholar
CIMI: Canada-Iraqi Marshland Initiative. (2010). Atlas of Iraqi Marshes. Canadian International Development Agency, 72 pp. Online at (accessed October 2013).
Clement, J. P., Bengtson, J. L. and Kelly, B. P. (2013). Managing for the Future in a Rapidly Changing Arctic: A Report to the President. Washington, DC: Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska (D. J. Hayes, Chair), 59 pp.Google Scholar
Cleveland, C. J. (editor) (2008). Guianan mangroves. In Encyclopedia of Earth. Washington, DC: Environmental Information Coalition, National Council for Science and the Environment.
Coch, N. K. (1994). Hurricane hazards along the northeastern Atlantic coast of the United States. In Coastal Hazards Perception, Susceptibility and Mitigation, ed. Finkl, C. W.Fort Lauderdale, FL: Coastal Education and Research Foundation, pp. 115–148.Google Scholar
Cohen, M. C. L and Lara, R. J. (2003). Temporal changes of mangrove vegetation boundaries in Amazonia: application of GIS and remote sensing techniques. Wetlands Ecology and Management, 11, 223–231.CrossRefGoogle Scholar
Cohen, M. C. L., Behling, H. and Lara, R. J. (2005). Amazonian mangrove dynamics during the last millennium: the relative sea level and the Little Ice Age. Review of Palaeobotany and Palynology, 136 (1–2), 93–108.CrossRefGoogle Scholar
Cohen, M. C. L., Guimarães, J. T. F.; França, M., Lara, R. J. and Behling, H. (2009). Tannin as an indicator of paleomangrove in sediment cores from Amapá, northern Brazil. Wetlands Ecology and Management, 17 (2), 145–155.CrossRefGoogle Scholar
Combellick, R. A. and Reger, R. D. (1994). Sedimentological and radiocarbon-age data for tidal marshes along the eastern and upper Cook Inlet, Alaska: Fairbanks. Alaska Division of Geological and Geophysical Surveys Professional Report of Investigations 94–6, 60 pp.CrossRef
CONABIO (2009). Manglares de México: Extensión y distribución, 2ª edn. Tlalpan México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 99 pp.Google Scholar
Conn, S. and Gilliham, M. (2010). Comparative physiology of elemental distributions in plants. Annals of Botany, 105, 1081–1102.CrossRefGoogle ScholarPubMed
Connor, C. and O’Haire, D. (1988). Roadside Geology of Alaska. Missoula, MT: Mountain Press Publishing Co., 250 pp.Google Scholar
Connor, R. F., Chmura, G. L. and Beecher, C. B. (2001). Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes. Global Biogeochemical Cycles, 15 (4), 943–954.CrossRefGoogle Scholar
Connor, C., Streveler, G., Post, A., Monteith, D. and Howell, W. (2009). The Neoglacial landscape and human history of Glacier Bay, Glacier Bay National Park and Preserve, southeast Alaska, USA. The Holocene, 19 (3), 381–393.CrossRefGoogle Scholar
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., et al. (2012). Asian monsoon failure and megadrought during the last millennium. Science, 328, 486–489.CrossRefGoogle Scholar
Coops, H., Hanganu, J., Tudor, M. and Oosterberg, W. (1999). Classification of Danube Delta lakes based on aquatic vegetation and turbidity. Hydrobiologia, 415, 187–191.CrossRefGoogle Scholar
Copertino, M. and Seeliger, U. (2010). Hábitats de Ruppia maritime e de macroalgas. In O Estuário da Lagoa dos Patos: Um Seculo de Transformações, ed. Seeliger, U. and Odebrecht, C.. Rio Grande, Brazil: FURG, pp. 91–98.Google Scholar
Corcoran, E.Ravilious, C. and Skuja, M. (2007). Mangroves of Western and Central Africa. UNEP-Regional Seas Programme/UNEP-WCMC. Online at (accessed October 2013).
COSEWIC (2009). COSEWIC Assessment and Status Report on the Eskimo Curlew Numenius borealis in Canada. Ottawa: Committee on the Status of Endangered Wildlife in Canada, 32 pp.Google Scholar
Costa, C. S. B, and Davy, A. J. (1992). Coastal saltmarsh communities and Latin America. In Coastal Plant Communities of Latin America, ed. Seeliger, U.. San Diego, CA: Academic Press, Inc., pp. 179–199.CrossRefGoogle Scholar
Costa, C. S. B., Marangoni, J. C. and Azevedo, A. M. G. (2003). Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. Journal of Ecology, 91, 951–965.CrossRefGoogle Scholar
Costa, C. S. B., Iribarne, O. O. and Farina, J. M. (2009). Human impacts and threats to the conservation of South American salt marshes. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 337–359.Google Scholar
Crain, C. M., Gedan, K. B. and Dionne, M. (2009). Tidal restrictions and mosquito ditching in New England marshes. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 149–170.Google Scholar
Craft, C., Megonigal, P., Broome, S., Stevenson, J., Freese, R., Cornell, J., and Sacco, J. (2003). The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications, 13 (5), 1417–1432.CrossRefGoogle Scholar
Craft, C., Clough, J., Ehman, J., et al. (2009). Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 7 (2), 73–78.CrossRefGoogle Scholar
Crow, B. And Carney, J. (2013). Commercializing nature: mangrove conservation and female oyster collectors in The Gambia. Antipode, 45 (2), 275–293.CrossRefGoogle Scholar
Culleton, B. J., Kennett, D. J. and Jones, T. L. (2009). Oxygen isotope seasonality in a temperate estuarine shell midden: a case study from CA-ALA-17 on the San Francisco Bay, California. Journal of Archaeological Science, 36 (7), 1354–1363.CrossRefGoogle Scholar
Daborn, G. R., Brylinsky, M. and Van Proosdij, D. (2003). Ecological Studies of the Windsor Causeway and Pesaquid Lake 2002. Publication No. 69. Wolfville, NS: Acadia Centre for Estuarine Research.Google Scholar
Daiber, F. C. (1977). Salt marsh animals: distributions related to tidal flooding, salinity and vegetation. In Ecosystems of the World 1, Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 70–108.Google Scholar
Dale, P. E. R. and Knight, J. M. (2008). Wetlands and mosquitoes: a review. Wetlands Ecology Management, 16, 255–276.CrossRefGoogle Scholar
Dale, P. E. R. and Knight, J. M. (2012). Destroying mosquitos without destroying wetlands: an eastern Australian approach. Wetlands Ecology Management, 20, 233–242.CrossRefGoogle Scholar
Daleo, P. and Iribarne, O. (2009). Beyond competition: the stress-gradient hypothesis tested in plant-herbivore interactions. Ecology, 90 (9), 2368–2374.CrossRefGoogle ScholarPubMed
Daleo, P., Fanjul, E., Casariego, A. M., et al. (2007). Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters, 10 (10), 902–908.CrossRefGoogle ScholarPubMed
Darboe, F. S. (2002). Fish Species Abundance and Distribution in the Gambia Estuary. United Nations University, Fisheries Training Program, Final Project 2002. Reykjavik, Iceland: United Nations University.Google Scholar
Davy, A. J., Bakker, J. P. and Figuerroa, M. E. (2009). Human modification of European salt marshes. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 311–335.Google Scholar
DayJr., J. W., Rybczyk, J., Scarton, F., Rismondo, A. and Cecconi, G. (1999). Soil accretionary dynamics, sea level rise and the survival of wetlands in Venice Lagoon: a field and modelling approach. Estuarine, Coastal and Shelf Science, 49, 607–628.CrossRefGoogle Scholar
Deegan, L. A., Johnson, D. S., Warren, R. S., et al. (2012). Coastal eutrophication as a driver of salt marsh loss. Nature, 490, 388–394.CrossRefGoogle ScholarPubMed
Degeorges, A. and Reilly, B. K. (2007). Eco-Politics of dams on the Gambia River. International Journal of Water Resources Development, 23 (4), 641–657.CrossRefGoogle Scholar
de Lange, W. P. and de Lange, P. J. (1994). An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. Journal of Coastal Research, 10 (3), 539–548.Google Scholar
De Luca, V., Salim, V., Atsumi, S. M. and Yu, F. (2012). Mining the biodiversity of plants: a revolution in the making. Science, 336, 1658–1661.CrossRefGoogle Scholar
Demarcq, H. and Demarcq, G. (1992). Le biostrome à Crassostrea gasar (Bivalvia) de la Holocène du Sine-Saloum, Sénégal; données nouvelles et interpretation écostratigraphique. Geobios, 25 (2), 225–250.CrossRefGoogle Scholar
Dennison, W. C., Saxby, T. and Walsh, B. M. (editors) (2012). Responding to major storm impacts: ecological impacts of Hurricane Sandy on Chesapeake and Delmarva coastal bays. University of Maryland Center for Environmental Science. Online at ian.umces.edu (accessed October 2013).
De Selincourt, A. (1972). Translation. Herodotus: The Histories. London: Penguin Classics.Google Scholar
Dijkema, K. S. (1987). Geography of the salt marshes in Europe. Zeitschrift für Geomorphologie, 31, 489–499.Google Scholar
Dolan, R. and Davis, R. E. (1994). Coastal storm hazards. In Coastal Hazards Perception, Susceptibility and Mitigation, ed. Finkl, C. W.Fort Lauderdale, FL: Coastal Education and Research Foundation, pp. 103–114.Google Scholar
Dominguez, J. M. L., Martin, L. and Bittencourt, A. C. S. P. (1987). Sea level history and Quaternary evolution of river mouth-associated beach-ridge plains along the East-Southeast Brazilian coast: a summary. Society of Economic Paleontologists and Mineralogists Special Publication, 41, 115–127.Google Scholar
Dominguez-Cadena, R., Léon de la Luz, J. L. and Riosmena-Rodriguez, R. (2011). Análysis de la influencia de la condiciones micro-topográphicas del substrato en la estrctura del manglar en el Golfo de California. In Los Manglares de la Península de Baja California, ed. Pico, E. F. F., Zaragosa, E. S., Rodriguez, R. R. and Léon de la Luz, J. L.. La Paz, México: Centro de Investigaciones Biológicas del Noroeste, S.C., p. 29–66.Google Scholar
Doody, J. P. (2008). Saltmarsh Conservation, Management and Restoration. New York: Springer.CrossRefGoogle Scholar
Dos Santos, V. M., Matheson, F. E., Pilditch, C. A. and Elger, A. (2012). Is black swan grazing a threat to seagrass? Indications from an observational study in New Zealand. Aquatic Botany, 100, 41–50.CrossRefGoogle Scholar
Dowty, R. A., Shaffer, G. P., Hester, M. W., et al. (2001). Phytoremediation of small-scale oil spills in fresh marsh environments: a mesocosm simulation. Marine Environmental Research, 52 (3), 195–211.CrossRefGoogle ScholarPubMed
Duke, N. C., Ball, M. C. and Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27–47.CrossRefGoogle Scholar
Dunton, K. H., Weingartner, T. and Carmack, E. C. (2006). The nearshore western Beaufort Sea ecosystem: circulation and importance of terrestrial carbon in arctic coastal food webs. Progress in Oceanography, 71, 362–378.CrossRefGoogle Scholar
Dutton, A. and Lambeck, K. (2012). Ice volume and sea level during the last interglacial. Science, 337, 216–219.CrossRefGoogle ScholarPubMed
Eisma, D. (1997). Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons. Boca Raton, FL: CRC Press.Google Scholar
Ellenblum, R. (2012). The Collapse of the Eastern Mediterranean. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ellison, J. C. (2009). Geomorphology and sedimentology of mangrove swamps. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 565–591.Google Scholar
Ellison, A. M., Farnsworth, J. T. and Merkt, R. E. (1999). Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8 (2), 95–115.CrossRefGoogle Scholar
Ellison, J. C. and Zouh, I. (2012). Vulnerability to climate change of mangroves: assessment from Cameroon, Central Africa. Biology, 1, 617–638.CrossRefGoogle ScholarPubMed
Elton, C. (1927). Animal Ecology, 1st edn. London: Sidgwick and Jackson.Google Scholar
Engelhart, S. E., Horton, B. P., Roberts, D. H., Bryant, C. L. and Corbett, D. R. (2007). Mangrove pollen of Indonesia and its suitability as a sea level indicator. Marine Geology, 242, 65–81.CrossRefGoogle Scholar
FAO (2007). The World’s Mangroves 1980–2005. FAO Forestry Paper 153. Rome: Food and Agriculture Organisation of the United Nations.Google Scholar
FAO (2012). The State of Food Insecurity in the World 2012. Rome: Food and Agriculture Organisation of the United Nations.Google Scholar
FAO/UNESCO (1973). Irrigation, Drainage and Salinity: An International Sourcebook. Paris: Unesco/Hutchinson and Co. (Publishers) Ltd., 510 pp.Google Scholar
Faraco, L. F. D. and da Cunha Lana, P. (2004). Leaf-consumption in subtropical mangroves of Paranaguá Bay (SE Brazil). Wetlands Ecology and Management, 12, 115–122.CrossRefGoogle Scholar
Falk, D., Palmer, M. and Zedler, J. B. (editors) (2006). Foundations of Restoration Ecology. Washington, DC: Island Press.
Feddes, F. (2012). A Millenium of Amsterdam. Bussum, the Netherlands: THOTH Publishers.Google Scholar
Fernandez, L. D. and Zapata, J. A. (2010). Distribution of benthic Foraminifera (Protozoa: Foraminiferida) in the Quillaipe Inlet (41º32’S; 72º44’W), Chile: Implications for sea level studies. Revista Chilena de Historia Natural, 83: 567–583.Google Scholar
Ficke, A. D., Myrick, C. A. and Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581–613.CrossRefGoogle Scholar
Field, C. B., Osborn, J. G., Hoffman, L. L., et al. (1998). Mangrove diversity and ecosystem function. Global Ecology and Biogeography Letters, 7, 3–14.CrossRefGoogle Scholar
Fischetti, M. (2013). Storm of the century. Scientific American, 308, (6), 38–67.CrossRefGoogle Scholar
Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55 (396), 307–319.CrossRefGoogle ScholarPubMed
Flowers, T. J. and Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.CrossRefGoogle ScholarPubMed
Forbes, D. L. (editor) (2011). State of the Arctic Coast 2010: Scientific Review and Outlook. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Geestacht, Germany: Helmholtz-Zentrum, 178 pp.
Forbes, D. L. and Hansom, J. D. (2011). Polar Coasts. In Treatise on Estuarine and Coastal Science, Vol. 3, ed. Wolanski, E. and McLusky, D. S.. Waltham: Academic Press, pp. 245–283.CrossRefGoogle Scholar
Frail-Gauthier, J. L., Scott, D. B. and Batt, J. H. (2007). Studies of living marsh foraminifera to enhance their usefulness as paleoenvironmental indicators. 2007 Geological Society of America. Abstracts with Programs, 39 (6), p. 447Google Scholar
Frail-Gauthier, J., Scott, D. B. and Romanuk, T. R. (2011). Ecology and habits of temperate salt marsh foraminifera and associated meiofauna from a laboratory salt marsh system. Annual Meeting of the Geological Society of America, Minneapolis; Cushman Symposium, session no. 231–3, p. 555.
França, M. C., Francisquini, M. I., Cohen, M. C. L., et al. (2012). The last mangroves of Marajó Island – Eastern Amazon: Impact of climate and/or relative sea level changes. Review of Palaeobotany and Palynology, 187, 50–65.CrossRefGoogle Scholar
Fritz, H. M., Blount, C. D., Thwin, S., Thu, M. K. and Chan, N. (2009). Cyclone Nargis storm surge in Myanmar. Nature Geoscience, 2, 448–449.CrossRefGoogle Scholar
Fundy Ocean Research Center for Energy (2013). Online at (accessed October 2013).
Galván, K., Fleeger, J. W., Peterson, B., et al. (2011). Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. Journal of Experimental Marine Biology and Ecology, 410, 1–11.CrossRefGoogle Scholar
Gang, P. O. and Agatsiva, J. L. (1992). The current status of mangroves along the Kenyan coast: a case study of Mida Creek mangroves based on remote sensing. In The Ecology of Mangrove and Related Ecosystems, ed. Jaccarini, V. and Martens, E.. Reprinted from Hydrobiologia, 247, 29–36.CrossRef
Ganong, W. F. (1903). The vegetation of the Bay of Fundy salt and diked marshes: an ecological study. Botanical Gazette, 36, 161–186.CrossRefGoogle Scholar
Garcillán, P. P. and Ezcurra, E. (2003). Biogeographic regions and β-diversity of woody dryland legumes in the Baja California peninsula. Journal of Vegetation Science, 14, 859–868.CrossRefGoogle Scholar
Gardner, A. S., Mohloldt, G., Cogley, J. G., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852–857.CrossRefGoogle ScholarPubMed
Gehrels, W. R., Kirby, J. R., Prokoph, A., et al. (2005). Onset of recent rapid sea level rise in the western Atlantic Ocean. Quaternary Science Reviews, 24, 2083–2100.CrossRefGoogle Scholar
Giesen, W., Wulfraat, S., Zieren, M. and Scholten, L. (2007). Mangrove Guidebook for Southeast Asia. Bangkok, Thailand: Dharmasarn Co., Ltd. FAO and Wetlands International 2006, Regional Office for Asia and the Pacific.Google Scholar
Giosan, L, Constantinescu, S., Clift, P. D., et al. (2006). Recent morphodynamics of the Indus delta shore and shelf. Continental Shelf Research, 26, 1668–1684.CrossRefGoogle Scholar
Giosan, L., Coolen, M. J. L., Kaplan, J. O., et al. (2012). Early anthropogenic transformation of the Danube-Black Sea system. Nature Scientific Reports 2, 582.CrossRefGoogle ScholarPubMed
Giri, C., Ochieng, E., Tieszen, L. L., et al. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159. Online at (accessed October 2013).CrossRefGoogle Scholar
Gleason, M. L., Elmer, D. A., Pien, N. C. and Fisher, J. S. (1979). Effects of stem density upon sediment retention by salt marsh cord grass Spartina alterniflora Loisel. Estuaries, 2 (4), 271–273.CrossRefGoogle Scholar
Glenn, E. P., Brown, J. J. and Bluwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18 (2), 227–255.CrossRefGoogle Scholar
Glenn, E. P., Nagleru, P. A., Brusca, R. C. and Hinojosa-Huerta, O. (2006). Coastal wetlands of the northern Gulf of California: inventory and conservation status. Aquatic Conservation: Marine and Freshwater Ecosystems, l6, 5–28.CrossRefGoogle Scholar
Glooschenko, W. A., Martini, I. P. and Clarke-Whistler, K. (1988). Salt Marshes of Canada. Wetlands of Canada, National Wetlands Working Group, Canada Committee on Ecological Land Classification, Ecological Land Classification Series No. 24, p. 349–376.
GNS (2011). GNS Science Annual Report, 2011: Resilience to Natural Hazards. Lower Hutt, NZ: GNS Science, pp. 25–26.Google Scholar
Godfrey, P. J. and Godfrey, M. M. (1974). The role of overwash and inlet dynamics in the formation of salt marshes on North Carolina barrier islands. In Ecology of Halophytes, ed. Reimold, R. and Queen, W. H.. New York: Academic Press, pp. 407–428.CrossRefGoogle Scholar
Goff, J., Lamarche, G., Pelletier, B., Chagué-Goff, C. and Strotz, L. (2011). Predecessors to the 2009 South Pacific tsunami in the Wallis and Futuna archipelago. Earth-Science Reviews, 107, 91–106.CrossRefGoogle Scholar
Gornitz, V. M., Daniels, R. C., White, T. W. and Birdswell, K. R. (1994). The development of a coastal risk assessment database: vulnerability to sea level rise in the U.S. Southeast. Journal of Coastal Research, Special Issue No. 12: Coastal Hazards, 327–338.Google Scholar
González-Zamorano, P., Nava-Sánchez, E. H., León de la Luz, J. L. and Díaz-Castro, S. C. (2011). Patrones de distribución y determinants ambientales de los manglares peninsulares. In Los Manglares de la Península de Baja California, ed. Pico, E. F. F., Zaragosa, E. S., Rodriguez, R. R. and Léon de la Luz, J. L.. La Paz, México: Centro de Investigaciones Biológicas del Noroeste, S. C., pp. 67–104.Google Scholar
González-Zamorano, P., Lluch-Cota, S. E. and Nava-Sánchez, E. H. (2012). Relation between the structure of mangrove forests and geomorphic types of lagoons of the Baja California Peninsula. Journal of Coastal Research, 29 (1), 173–181.Google Scholar
Gordillo, S., Coronato, A. M. J. and Rabassa, J. O. (2005). Quaternary molluscan faunas from the island of Tierra del Fuego after the last glacial maximum. Scientia Marina, 69 (S2), 337–348.CrossRefGoogle Scholar
Goto, K., Chagué-Goff, C, Fujino, C. S., et al. (2011). New insights of tsunami hazard from the 2011 Tohoku-oki event. Marine Geology, 290, 46–50.CrossRefGoogle Scholar
Government of Canada (1996). The State of Canada’s Environment – 1996. Ottawa, Ontario: Environment Canada.Google Scholar
Graham, S. (2003). Environmental effects of Exxon Valdez spill still being felt. Scientific American, December 19 issue.
Graf, M-T. and Chmura, G. L. (2006). Reinterpretation of past sea level variation of the Bay of Fundy. The Holocene, 20 (1), 7–11.CrossRefGoogle Scholar
Greenberg, R., Maldonato, D. S. and Macdonald, M. V. (2006). Tidal marshes: a global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience, 56 (8), 675–685.CrossRefGoogle Scholar
Greer, K. and Stow, D. (2003). Vegetation type conversion in Los Penasquitos Lagoon, California: an examination of the role of watershed urbanization. Environmental Management, 31, 489–503.CrossRefGoogle ScholarPubMed
Gregory, J. M., Bi, D., Collier, M. A., et al. (2013). Climate models without pre-industrial volcanic forcing underestimate historical ocean expansion. Geophysical Research Letters, 40, 1800–1604.CrossRefGoogle Scholar
Gribsholt, B. and Kristensen, E. (2002). Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study. Marine Ecology Progress Series, 241, 71–87.CrossRefGoogle Scholar
Griggs, G. B. (1994). California’s coastal hazards. Journal of Coastal Research Special Issue, 12, 1–15.Google Scholar
Grosholz, E. D., Levin, L. A., Tyler, A. C. and Neira, C. (2009). Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 23–40.Google Scholar
Guillard, J., Albaret, J-J., Simier, M., et al. (2004). Spatio-temporal variability of fish assemblages in the Gambia Estuary (West Africa) observed by two vertical hydroacoustic methods: Moored and mobile sampling. Aquatic Living Resources, 17, 47–55.CrossRefGoogle Scholar
Guo, Y., Mo, D., Mao, L., Wang, S. S. and Li, S. (2013). Settlement distribution and its relationship with environmental changes from the Neolithic to Shang-Zhou dynasties in northern Shandong, China. Journal of Geographical Science, 23 (4), 679–694.CrossRefGoogle Scholar
Haacks, M. and Thannheiser, D. (2003). The salt marsh vegetation of New Zealand. Phytocoenologia, 33, 267–288.CrossRefGoogle Scholar
Hall, B. L. and Denton, G. H. (1999). New relative sea level curves for the southern Scott Coast, Antarctica: evidence for Holocene deglaciation of the western Ross Sea. Journal of Quaternary Science, 14 (7), 641–650.3.0.CO;2-B>CrossRefGoogle Scholar
Hamdan, M. A., Asada, T., Hassan, F. M., Warner, B. G., Douabul, A., Al-Hilli, M. R. A. and Alwan, A. A. (2010). Vegetation response to re-flooding in the Mesopotamian Wetlands, Southern Iraq. Wetlands, 30, 177–188.CrossRefGoogle Scholar
Hansen, B. B., Grøtan, V., Aanes, R., et al. (2013). Climate events synchronise the dynamics of a resident vertebrate community in the High Arctic. Science, 339, 313–315.CrossRefGoogle Scholar
Hartmann-Schröder, G. (1991). Contribution to the Bahia polychaete fauna Quillaipe (southern Chile). Helgoland Marine Research, 45 (1–2), 39–58.Google Scholar
Hawkes, A. D., Scott, D. B., Lipps, J. H. and Combellick, R. (2005). Evidence for possible precursor events of megathrust earthquakes on the west coast of North America. Geological Society of America, Bulletin, 117, 996–1008.CrossRefGoogle Scholar
Hayes, M. (2010). South Carolina. In Encyclopedia of the World’s Coastal Landforms, ed. Bird, E. C. E.. Dordrecht, the Netherlands: Springer and Business Media, pp. 94–95.Google Scholar
Henry, H. A. L. and Jeffries, R. L. (2009). Opportunistic herbivores, migratory connectivity, and catstrophic shifts in Arctic coastal systems. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 85–103.Google Scholar
Hernes, P. J., Benner, R., Cowie, G. L., Goñi, M. A., Bergamaschi, B. A., and Hedges, J. I. (2001). Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochimica et Cosmochimica Acta, 65 (18), 3109–3122.CrossRefGoogle Scholar
Heyvaert, V. M. A. and Baeteman, C. (2008). A middle to late Holocene avulsion history of the Euphrates river: a case study from Telled-Dër, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401–2410.CrossRefGoogle Scholar
Hillaire-Marcel, C. and de Vernal, A. (editors) (2007). Proxies in Late Cenozoic Paleoceanography. Amsterdam: Elsevier BV.
Hines, J. E. and Wiebe Robertson, M. O. (2006). Surveys of geese and swans in the Inuvialuit Settlement Region, Western Canadian Arctic 1989–2001. Occasional Paper Number 112. Yellowknife, Northern Territories, Canada: Canadian Wildlife Service, Environmental Stewardship Branch, Environment Canada.
Holt, B. G., Lessard, J-P., Borregaard, M. K., et al. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–77.CrossRefGoogle Scholar
Honig, C. A. and Scott, D. B. (1987). Post-glacial strtigraphy and sea level change in southwestern New Brunswick. Canadian Journal of Earth Sciences, 24, 354–364.CrossRefGoogle Scholar
Hoppe-Speer, S. C. L, Adams, J. B., Rajkaran, A. and Bailey, D. (2011). The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. Aquatic Botany, 95 (2), 71–76.CrossRefGoogle Scholar
Hori, K., Saito, Y., Zhao, Q. and Wang, P. (2002). Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sedimentary Geology, 146, 249–264.CrossRefGoogle Scholar
Hosokawa, T., Tagawa, H. and Chapman, V. J. (1977). Mangals of Micronesia, Taiwan, Japan, the Philippines and Oceania. In Ecosystems of the World. 1. Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 271–291.Google Scholar
Huang, Y.Zhua, C, Li, X., et al. (2012). Differentiated population structure of a genetically depauperate mangrove species Ceriops tagal revealed by both Sanger and deep sequencing. Aquatic Botany, 101, 46–54.CrossRefGoogle Scholar
Iacovelli, D. and Vasquez, T. (1998) Supertyphoon Tip. Mariners Weather Log, 42 (2), 4–9.Google Scholar
Ibáñez, C., Morris, J. T., Mendelssohn, I. A. and Day, J. W. (2013). Coastal Marshes. In Estuarine Ecology, 2nd edn, ed. Day, J. W., Crump, B. C., , W., Kemp, M. and Yanez-Arancibia, A.. Hoboken, NJ: Wiley-Blackwell, pp. 129–164.Google Scholar
Idaszkin, Y. L. and Bortolus, A. (2011). Does low temperature prevent Spartina alterniflora from expanding toward the austral-most salt marshes?Plant Ecology, 212 (4), 553CrossRefGoogle Scholar
Idaszkin, Y. L., Bortolus, A. and Bouza, P. J. (2010). Ecological processes shaping Central Patagonian salt marsh landscapes. Austral Ecology, 36 (1), 59–67.CrossRefGoogle Scholar
Inomata, N., Wang, X-R., Changtragoon, S. and Smzidt, A. E. (2009). Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes and Genetic Systems, 84, 277–286.CrossRefGoogle Scholar
IPCC (2007). Climate change 2007: the physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.. Cambridge: Cambridge University Press, 996 p.Google Scholar
Isacch, J. P., Costa, C. S. B., Rodrıguez-Gallego, L., et al. (2006). Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography, 33, 888–900.CrossRefGoogle Scholar
Isla, F. I. (2013). Coastal lagoons. In Encyclopedia of Life Support Systems. Online at (accessed October 2013).
Isla, F. I., Gustavo, G., Bujakesky, G. G., Galasso, M. L. and De Francesco, C. G., (2005). Morphology, grain-size and faunistic composition of the macrotidal beaches of Tierra del Fuego. Revista de la Asociación Geológica Argentina, 60 (3), 435–445.Google Scholar
IUCN (2010). The IUCN Red List of Threatened Species. Version 2010.3. Online at (accessed October 2013).
Jacobs, D., Stein, E. D. and Longcore, T. (2010). Classification of California estuaries based on natural closure patterns: templates for restoration and management. Southern Californian Coastal Water Research Project Technical Report 619, 50 pp.
Jahnert, R. J. and Collins, L. B. (2013). Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology, 60 (4), 1071–1099, CrossRefGoogle Scholar
Jallow, B. P., Barrow, M. K. A. and Leatherman, S. P. (1996). Vulnerability of the coastal zone of The Gambia to sea level rise and development of response strategies and adaptation options. Climate Research, 6, 166–177.CrossRefGoogle Scholar
Jaradat, A. A. (2003). Halophytes for sustainable biosaline farming in the Middle East. In Desertification in the Third Millenium, ed. Alsharhan, A. S., Wood, W. W.., Goudie, A. S., Fowler, A. and Abdellatif, E.. Rotterdam: A.A. Balkema/Swetz and Zeitlinger, pp. 1–18.Google Scholar
Javaux, E. J. and Scott, D. B. (2003). Illustration of modern benthic Foraminifera from Bermuda and remarks on distribution in other subtropical/tropical areas. Palaeontologia Electronica 6 (1), 1–29.Google Scholar
Jefferies, R. L. (1977). Long-term damage to subarctic coastal ecosystems by geese: ecological indicators and measures of ecosystem dysfunction. In Disturbance and Recovery in Arctic Lands: An Ecological Perspective, ed. Crawford, R. M. M.. Boston, MA: Kluwer Academic, p. 151–166.Google Scholar
Jefferies, R. L. and Rockwell, R. F. (2002). Foraging geese, vegetation loss and soil degradation in an Arctic salt marsh. Applied Vegetation Science, 5, 7–16.CrossRefGoogle Scholar
Jefferies, R. L., Jensen, A. and Abraham, K. F. (1979). Vegetational development and the effect of geese on vegetation at La Pérouse Bay. Canadian Journal of Botany, 57, 1439–1450.CrossRefGoogle Scholar
Jefferies, R. L., Svoboda, J., Henry, G., Raillard, M. and Riess, R. (1992). Tundra grazing systems and climatic systems. In Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, ed. Chapin, F. S., Jefferies, R. L., Shaver, G. R. and Svoboda, J.. San Diego, CA: Academic Press Inc., pp. 391–412.CrossRefGoogle Scholar
Jenner, K. A. and Hill, P. R. (1998). Recent arctic deltaic sedimentation: Olivier Island, Mackenzie Delta, Northwest Territories, Canada. Sedimentology, 45, 987–2004.CrossRefGoogle Scholar
Jennings, J. N. and Bird, E. C. F. (1967). Regional geomorphological characteristics of some Australian estuaries. In Estuaries, ed. Luff, G. H.. Washington, DC: American Association for the Advancement of Science, pp. 121–128.Google Scholar
Jennings, S. C., Carter, R. G. W. and Orford, J. D. (1993). Late Holocene salt marsh development under a regime of rapid relative-sea level rise: Chezzetcook Inlet, Nova Scotia. Implications for the interpretation of palaeomarsh sequences. Canadian Journal of Earth Sciences, 30, 1374–1384.CrossRefGoogle Scholar
Jennings, A. E., Nelson, A. R., Scott, D. B. and Aravena, J. C. (1995). Marsh foraminiferal assemblages in the Valdivia Estuary, south-central Chile, relative to vascular plants and sea level. Journal of Coastal Research, 11 (1), 107–123.Google Scholar
Jing, K., Ma, Zh., Li, B., Li, J. and Chen, J. (2007). Foraging strategies involved in habitat use of shorebirds at the intertidal area of Chongming Dongtan, China. Ecological Research, 22 (4), 559–570.CrossRefGoogle Scholar
Johnson, D. S. and Fleeger, J. W. (2009). Weak response of saltmarsh infauna to ecosystem-wide nutrient enrichment and fish predator reduction: a four-year study. Journal of Experimental Marine Biology and Ecology, 373, 35–44.CrossRefGoogle Scholar
Johnson, M. E., Ledesma-Vázquez, J., Backus, D. H. and González, M. R. (2012). Lagoon microbialites on Isla Angel de la Guarda and associated peninsular shores, Gulf of California (Mexico). Sedimentary Geology, 263–264, 76–84.CrossRefGoogle Scholar
Johnstone, J. F. and Kokelj, S. V. (2008). Environmental conditions and vegetation recovery at abandoned drilling mud sumps in the Mackenzie Delta Region, Northwest Territories, Canada. Arctic, 61 (2), 199–211.Google Scholar
Jorgenson, M. T. (editor) (2011). Coastal Region of Northern Alaska: Guidebook to Permafrost and Related Features. Fairbanks, AK: State of Alaska Department of Natural Resources, Department of Natural Resources, Division of Geological and Geophysical Surveys, 188 pp. Free download from (accessed October 2013).CrossRef
Jorgenson, M. T. and Brown, J. (2005). Classification of the Alaskan Beaufort Sea Coast and estimation of carbon and sediment inputs from coastal erosion. Geo-Marine Letters, 25, 69–80.CrossRefGoogle Scholar
Jorgensen, M. T., Frost, G. and Miller, A. (2009). Salt marsh monitoring in Lake Clark and Katmai National Parks and Preserves. Arctic Park Science, 9 (1), 47–49.Google Scholar
Joye, S. B., de Beer, D. and Cook, P. L. M. (2009). Biogeochemical dynamics of coastal tidal flats. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 345–373.Google Scholar
Kangas, P. and Adey, W. (1996). Mesocosms and ecological engineering. Ecological Engineering, 6, 1–5.CrossRefGoogle Scholar
Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eickem, H., Hubberten, H.-W., Melles, M., Thiede, J. and Tinokhov, L. A. (editors) (1999). Land-Ocean Systems in the Siberian Arctic. Berlin, New York, Heidelberg: Springer-Verlag, 711 pp.CrossRef
Keddy, P. A. (2010). Wetland Ecology Principles and Conservation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Keddy, P. A., Gough, L., Nyman, J. A., et al. (2009). Alligator hunters, pelt traders, and runaway consumption of Gulf Coast marshes. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 115–133.Google Scholar
Kemp, A. C., Horton, B. P., Corbett, D. R., et al. (2009). The relative utility of foraminifera and diatoms for reconstructing late Holocene sea level change in North Carolina, USA. Quaternary Research, 71, 9–21.CrossRefGoogle Scholar
Kemp, A. C., Vane, C. H., Horton, B. P. and Culver, S. J. (2010). Stable carbon isotopes as potential sea level indicators in salt marshes, North Carolina, USA. The Holocene, 20 (4), 623–636.CrossRefGoogle Scholar
Kemp, A. C., Engelhart, A. E., Culver, S. J., Nelson, A., Briggs, R. W. and Haeussler, P. J., (2013). Modern salt marsh and tidal-flat foraminifera from Sitkinak and Simeonof islands, Southwestern Alaska. Journal of Foraminiferal Research, 43, 88–98.CrossRefGoogle Scholar
Khoa, L. V. and Roth-Nelson, W. (1994). Sustainable wetland use for agriculture in the Mekong River delta of Vietnam. In Global Wetlands: Old World and New, ed. Mitsch, W. J.. Amsterdam: Elsevier BV, pp. 737–748.Google Scholar
Kholeif, S. E. A. (2007). Palynology of mangrove sediments in the Hamata Area, Red Sea Coast, Egypt: vegetation and restoration overview. In Restoration of Coastal Ecosystems: An Introduction, ed. Isermann, M. and Kiehl, K.. Coastline Reports 7, Leiden, the Netherlands: EUCC, pp. 5–16.Google Scholar
Kholeif, S. E. A. and Mudie, P. J. (2009). Palynomorph and amorphous organic matter records of climate and oceanic conditions in late Pleistocene and Holocene sediments of the Nilecone, southeastern Mediterranean. Palynology, 32, 1–24.CrossRefGoogle Scholar
Kingsbury, R. W., Radlow, A., Mudie, P. J., Rutherford, J. and Radlow, R. (1976). Salt stress responses in Lasthenia glabrata, a winter annual composite endemic to saline soils. Canadian Journal of Botany, 54, 1377–1385.CrossRefGoogle Scholar
Kirwan, M. L., Langley, J. A., Guntenspergen, G. R. and Megonigal, J. P. (2013). The impact of sea level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences, 10, 1869–1876.CrossRefGoogle Scholar
Koch, B. P., Souza Filho, P. W. M., Behling, H., et al. (2011). Triterpenols in mangrove sediments as a proxy for organic matter derived fron the red mangrove (Rhizophora mangle). Organic Geochemistry, 42, 62–73.CrossRefGoogle Scholar
Kokelj, S. V., Lantz, T. C., Solomon, S., Pisaric, M. F. J., Keith, D., Morse, P., Thienpont, J. R., Smol, J. P., and Esagok, D. (2012). Utilizing multiple sources of knowledge to investigate northern environmental change: Regional ecological impacts of a storm surge in the outer Mackenzie Delta, N.W.T.Arctic, 65 (3), 257–272.CrossRefGoogle Scholar
Kraft, J. C., Rapp, G., Kayan, I. and Luce, J. V. (2003). Harbor areas at ancient Troy: sedimentology and geomorphology complement Homer’s Iliad, Geology, 31 (2), 163–166.2.0.CO;2>CrossRefGoogle Scholar
Kristensen, E. and Alongi, D. M. (2006). Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography, 51 (4), 1557–1571.CrossRefGoogle Scholar
Kuipers, B. R., de Wilde, P. A. W. J., and Creutzberg, F. (1981). Energy flow in a tidal flat ecosystem. Marine Ecology Progress Series, 5, 215–221.CrossRefGoogle Scholar
Kumar, A. and Nistor, I. (2012). Guest editorial: paleotsunami. Natural Hazards, 63, 1–3.CrossRefGoogle Scholar
Kupferschmidt, K. (2013). A worm vaccine, coming at a snail’s pace. Science, 339, 502–503.CrossRefGoogle Scholar
Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B. and Megonigal, J. P. (2013). Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biology, 19 (5), 1495–1503.CrossRefGoogle Scholar
Lantuit, H., Overduin, P. P., Couture, N., et al. (2012). The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries and Coasts, 35, 383–400.CrossRefGoogle Scholar
Laprida, C., Chapori, N. G., Violante, R. A. and Compagnucci, R. H. (2007). Mid-Holocene evolution and paleoenvironments of the shoreface–offshore transition, north-eastern Argentina: new evidence based on benthic microfauna. Marine Geology, 240, 43–56.CrossRefGoogle Scholar
Lara, R. J. and Cohen, M. C. L. (2006). Sediment porewater salinity, inundation frequency and mangrove vegetation height in Braganca, North Brazil: an ecohydrology-based empirical model. Wetlands Ecology and Management, 14, 349–358.CrossRefGoogle Scholar
Lara, R. J., Szlafsztein, C. F., Cohen, M. C. L., et al. (2009). Geomorphology and sedimentology of mangroves and salt marshes: the formation of geobotanical units. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 539–624.Google Scholar
Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A. and Ivins, E. R. (2005). Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth and Planetary Science Letters, 237, 548–560.CrossRefGoogle Scholar
Latham, R. (1958). Translation of The Travels of Marco Polo. London: Penguin Books, Ltd, 379 pp.Google Scholar
Latorre, F., Claudio, F.Pérez, C. F., Stutz, S. and Pastorino, S. (2010). Pollen deposition in tauber traps and surface soil samples in the Mar Chiquita coastal lagoon area, pampa grasslands (Argentina). Boletín de la Sociedad Argentina de Botánica, 45 (3–4), 321–332.Google Scholar
Läuchi, A. and Epstein, E. (1984). How plants adapt to salinity. California Agriculture, 38 (10), 18–20.Google Scholar
Lawton, J. H. (1995). Ecological experiments with model ecosystems. Science, 269, 328–331.CrossRefGoogle Scholar
Lees, G. M. and Falcon, N. L. (1952). The geographical history of the Mesopotamian plains. Geographical Journal, 118, 24–39.CrossRefGoogle Scholar
Leroy, S., Kazanci, N., Íteri, Ő., et al. (2002). Abrupt environmental changes within a late Holocene laustrine sequence south of the Marmara Sea (Lake Manyas, N-W Turkey): possible links with seismic events. Marine Geology, 190, 531–552.CrossRefGoogle Scholar
Letey, J. (2000). Soil salinity poses challenges for sustainable agriculture and wildlife. California Agriculture, 54 (2), 43–48.CrossRefGoogle Scholar
Lewis, R. R. (2005). Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering, 24 (4), 403–418.CrossRefGoogle Scholar
Lewis, R. R. (2009). Methods and criteria for successful mangrove forest restoration. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 787–800.Google Scholar
Lézine, A-M. (1997). Evolution of the West African mangrove during the Late Quaternary: a review. Géographie physique et Quaternaire, 51 (3), 405–414.CrossRefGoogle Scholar
Li, W.-H. (1992). Late Holocene paleoseismology in the lower Eel River valley, Northern California. MSc thesis, Arcata, CA: Humboldt State University, 78 pp.
Limaye, R. B. and Kumaran, K. P. N. (2012). Mangrove vegetation responses to Holocene climate change along Konkan coast of south-western India. Quaternary International, 263, 114–128.CrossRefGoogle Scholar
Lin, Q. and Mendelssohn, I. A. (2012). Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the Northern Gulf of Mexico. Environmental Science and Technology, 46 (7), 3737–3743.CrossRefGoogle ScholarPubMed
Liu, J. P., Milliman, J. D., Gao, S. and Cheng, P. (2004). Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 209, 45–67.CrossRefGoogle Scholar
Liu, J., Zhuang, Z. H. and Cai, X. M. (2005). Artificial techniques for the control of Spartina alterniflora. Plant Protection, 31, 70–72.Google Scholar
Liu, K. (2004). Paleotempestology: principles, methods, and examples from Gulf coast lake-sediments. In Hurricanes and Typhoons: Past, Present, and Future, ed. Murnane, R. and Liu, K.New York: Colombia University Press, pp. 13–57.Google Scholar
Liu, K. (2007). Uncovering prehistoric hurricane activity. American Scientist, 95, 126–133.CrossRefGoogle Scholar
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–418.CrossRefGoogle Scholar
Lipps, J. H. and Valentine, J. W. (1970). The role of Foraminifera in the trophic structure of marine communities. Lethaia, 3 (3), 279–286.CrossRefGoogle Scholar
Long, S. P. and Mason, C. F. (1983). Saltmarsh Ecology. Glasgow: Blackie.Google Scholar
López-Medellín, X., Ezcurra, E.Charlotte González-Abraham, C., Hak, J., Santiago, L. S. and Sickman, J. O. (2011). Oceanographic anomalies and sea level rise drive mangroves inland in the Pacific coast of Mexico. Journal of Vegetation Science, 22, 143–151.CrossRefGoogle Scholar
Luecke, D. F., Pitt, J., Congdon, C., et al. (1999). A Delta Once More: Restoring Riparian and Wetland Habitat in the Colorado River Delta. Washington, DC: Environmental Defense Fund, EDF Publications.Google Scholar
Luo,. X. X., Yang, S. L. and Zhang, J. (2012). Sediment dispersal in the East China Sea. Geomorphology, 179, 126–140.CrossRefGoogle Scholar
Macdonald, K. B. (1969). Quantitative studies of salt marsh faunas from the North American Pacific coast. Ecological Monographs, 39, 33–69.CrossRefGoogle Scholar
MacDonald, K. B. (1977). Plant and animal communities of Pacific North American Salt Marshes. In Ecosystems of the World. 1, Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 167–191.Google Scholar
Macdonald, K. B. and Barbour, M. (1974). Beach and salt marsh vegetation of the North American Pacific Coast. In Ecology of Halophytes, ed. Reimold, R. J. and Queen, W. H.. New York: Academic Press, pp. 175–233.CrossRefGoogle Scholar
Macnae, W. (1963). Mangrove swamps in South Africa. Journal of Ecology, 51 (1), 1–25.CrossRefGoogle Scholar
Maltby, E. (editor) (1994). An Environmental and Ecological Study of the Marshlands of Mesopotamia. Draft Consultative Bulletin. Wetland Ecosystems Research Group, University of Exeter. London: The AMAR Appeal Trust.
Malygina, N., Vlasova, E. and Bogdanova, V. (2013). Wild reindeer (Rangifer tarandus L.) resources use in the Taimyr peninsula: aspects of the principle of ecological law. Czech Polar Reports, 3 (1), 69–73.CrossRefGoogle Scholar
Mann, K. H. (2000). Ecology of Coastal Waters: With Implications For Management, 2nd edn. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Manson, G. K., Solomon, S. M., Forbes, D. L., Atkinson, D. E. and Craymer, M. (2005). Spatial variability of factors influencing coastal change in the Western Canadian Arctic. Geo-Marine Letters, 25, 138–145.CrossRefGoogle Scholar
Mao, L., Zhang, Y. and Bi, H. (2006). Modern pollen deposits in coastal mangrove swamps from Northern Hainan Island, China. Journal of Coastal Research, 22 (6), 1423–1436.CrossRefGoogle Scholar
Mao, L., Batten, D. J., Fujiki, T., et al. (2012). Key to mangrove pollen and spores of southern China: an aid to palynological interpretation of Quaternary deposits in the South China Sea. Review of Palaeobotany and Palynology, 176–177, 41–67.CrossRefGoogle Scholar
Marangoni, J. C. and Costa, C. S. B. (2009). Natural and anthropogenic effects on salt marsh over five decades in the Patos Lagoon (Southern Brazil). Brazilian Journal of Oceanography, 57 (4), 345–350.CrossRefGoogle Scholar
Marín-Guirao, L., Sandoval-Gil, J. M., Ruíz, J. M. and Sánchez-Lizaso, J. L. (2011). Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system. Estuarine, Coastal and Shelf Science, 92 (2), 286–296.CrossRefGoogle Scholar
Markovskya, E., Schmakova, N. and Sergienko, L. (2012). Ecophysiological characteristics of the coastal plants in the conditions of the tidal zone on the coasts of Svalbard. Czech Polar Reports, 2 (2), 103–108.CrossRefGoogle Scholar
Marshall, W. A., Gehrels, W. R., Garnett, M. H., et al. (2007). The use of ‘bomb spike’ calibration and high-precision AMS C-14 analyses to date salt marsh sediments deposited during the past three centuries. Quaternary Research, 68, 325–337.CrossRefGoogle Scholar
Martell, A. M. and Pearson, A. M. (1978). The small mammals of the Mackenzie Delta Region, Northwest Territories, Canada. Arctic, 31 (4), 475–488.CrossRefGoogle Scholar
Martini, I. P., Morrison, R. I. G., Glooschenko, W. A. and Protz, R. (1980). Coastal studies in James Bay, Ontario. Geoscience Canada, 7 (1), 11–20. See also for details (accessed October 2013).Google Scholar
Martini, I. P., Jeffries, R. L., Morrison, R. I. G., and Abraham, K. F. (2009). Polar coastal wetlands: development, structure, and land use. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 119–115.Google Scholar
McAlpin, J. P. (editor) (2009). Paleoseismology, 2nd edn. International Geophysics Series, 95. New York: Elsevier.
McFadden, L., Spencer, T. and Nichols, R. J. (2007). Broad-scale modelling of coastal wetlands: what is required? In Lagoons and Coastal Wetlands in the Global Change Context: Impacts and Management Issues, ed. Viaroli, P., Lasserre, P. and Campostrini, P.. Reprinted from Hydrobiologia, 577, 5–15.CrossRef
McFarlin, C. R., Brewer, J. S., Buck, T. L. and Pennings, S. C. (2008). Impact of fertilization on a salt marsh food web in Georgia. Estuaries and Coasts, 31, 313–325.CrossRefGoogle Scholar
McGann, M. (2008). High resolution foraminiferal, isotopic, and trace element records from Holocene estuarine deposits of San Francisco Bay, California. Journal of Coastal Research, 24 (5), 1092–1109.CrossRefGoogle Scholar
Mckenna, M. (2007). The Leschenault Estuarine System, South-Western Australia. Perth, Western Australia: Department of Water, Government of Western Australia, 172 pp.Google Scholar
McKillop, H. (2005). Finds in Belize document Late Classic Maya salt making and canoe transport. Proceedings of the National Academy Sciences, 205 (15), 5630–5634.CrossRefGoogle Scholar
McKnight, A., Sullivan, K. M., Irons, D. B., Stephensen, S. W. and Howlin, S. (2006). Marine bird and sea otter population abundance of Prince William Sound, Alaska: trends following the T/V Exxon Valdez Oil Spill, 1989–2005. Exxon Valdez Oil Spill Restoration Project Final Report. Anchorage, AK: US Fish and Wildlife Service.
Mcleod, E., Chmura, G. L., Bouillon, S., et al. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552–560.CrossRefGoogle Scholar
McWilliam, J. R. (1986). The national and international importance of drought and salinity effects on agricultural production. Australian Journal of Plant Physiology, 13, 1–13.CrossRefGoogle Scholar
Mendelssohn, I. A. and McKee, K. L. (2000). Saltmarshes and Mangroves. In North American Vegetation, ed. Barbour, M. G. and Billings, W. D.. Cambridge, New York: University Press, pp. 501–536.Google Scholar
Mendez, M. M., Schwindt, E. and Bortolus, A. (2013). Patterns of substrata use by the invasive acorn barnacle Balanus glandula in Patagonian salt marshes. Hydrobiologia, 700 (1), 99–107.CrossRefGoogle Scholar
Mendoza-Salgado, R. A., Lechuga-Devéze, C. H., Amador, E. and Pedrin-Avilés, S. (2011). La calidad ambiental de manglares de B.C.S. In Los Manglares de la Península de Baja California, ed. Pico, E. F. F., Zaragosa, E. S., Rodriguez, R. R. and Léon de la Luz, J. L.. La Paz, México: Centro de Investigaciones Biológicas del Noroeste, S.C., pp. 9–28.Google Scholar
Mildenhall, D. C. and Brown, L. J. (1987). An early Holocene occurrence of the mangrove Avicennia marina in Poverty Bay, North Island, New Zealand; its climatic and geological interpretations. New Zealand Journal of Botany, 25, 281–294.CrossRefGoogle Scholar
Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Wetlands and Water Synthesis. Washington, DC: World Resources Institute.Google Scholar
Milo, R. and Last, R. R. (2012). Achieving diversity in the face of constraints: lessons from metabolism. Science, 336, 1663–1667.CrossRefGoogle ScholarPubMed
Mitsch, W. J. (2000). Self-design applied to coastal restoration. In: Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. and Kreeger, D. A.. Boston, MA: Kluwer Academic Publishers, pp. 554–564.Google Scholar
Mitsch, W. J. and DayJr, J. W. (2004). Thinking big with whole-ecosystem studies and ecosystem restoration: a legacy of HT Odum. Ecological Modelling, 178 (1), 133–155.CrossRefGoogle Scholar
Mitsch, W. J. and Gosselink, J. G. (2007). Wetlands. Hoboken, NJ: John Wiley & Sons, Inc., 600 pp.Google Scholar
Mitsch, W. J., Gosselink, J. G., Anderson, C. J. and Zhang, L. (2009). Wetland Ecosystems. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Moslow, T. (1984). Depositional models of Shelf and Shoreline Sandstones. In Continuing Education Course Note Series No. 27. 1983 American Association of Petroleum Geologists, Fall Education Course Conference, 102 pp.
Morozova, L. M. and Ektova, S. N. (2013). Salt marsh vegetation of the southern tundra subzone of Western Siberia: An example of the Baydaratskaya Bay coasts in the Kara Sea. Czech Polar Reports, 3 (1), 58–68.CrossRefGoogle Scholar
Morris, J. T. (2007). Ecological engineering in intertidial saltmarshes. In Lagoons and Coastal Wetlands in the Global Change Context: Impacts and Management Issues. Dordrecht, the Netherlands: Springer, pp. 161–168.CrossRefGoogle Scholar
Morrisey, D. J., Swales, A, Dittmann, S., et al. (2010). The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review 48, 43–60.Google Scholar
Mudie, P. J. (1970). A survey of the coastal wetland vegetation of north San Diego County. California Department Fish and Game, Wildlife Management Administration Report 70–4, 18 pp.
Mudie, P. (1974). The potential economic uses of halophytes. In Ecology of Halophytes, ed. Reimold, R. and Queen, W. H.. New York: Academic Press, pp. 565–598.CrossRefGoogle Scholar
Mudie, P. J. (1992). Circum-Arctic Quaternary and Neogene marine palynofloras: paleoecology and statistical analysis. In Neogene and Quaternary Dinoflagellate Cysts and Acritarchs, ed. Head, M. J. and Wrenn, J. H.. American Association of Stratigraphic Palynologists Foundation, pp. 347–390.Google Scholar
Mudie, P. and Byrne, R. (1980). Pollen evidence for historic sedimentation rates in California coastal marshes. Estuarine Coastal Marine Science, 10, 305–316.CrossRefGoogle Scholar
Mudie, P. J. and Lelièvre, M. A. (2013). Palynological study of a Mi’kmaw shell midden, northeast Nova Scotia, Canada. Journal of Archaeological Science, 40 (4), 2161–2175.CrossRefGoogle Scholar
Mudie, P., Browning, B. and Speth, J. (1974). The Natural Resources of Los Peñasquitos Lagoon: Recommendations for Use and Development. Coastal Wetlands Series, no. 7. Sacramento, CA: California Department of Fish and Game, 75 pp.Google Scholar
Mudie, P., Browning, B. and Speth, J. (1976). The Natural Resources of San Dieguito and Batiquitos Lagoons. Coastal Wetland Series, no. 12. Sacramento, CA, California Department of Fish and Game, 311 pp.Google Scholar
Mudie, P. J., Keen, C. E., Hardy, I. A. and Vilks, G. (1984). Multivariate analysis and quantitative paleocology of benthic Foraminifera in surface and late Quarternary shelf sediments, northern Canada. Marine Micropaleontology, 8, 283–313.CrossRefGoogle Scholar
Mudie, P., Rochon, A. and Levac, E. (2002). Palynological records of red tide-producing species in Canada: past trends and implications for the future. Palaeogeography, Palaeoclimatology, Palaeoecology, 180, 159–186.CrossRefGoogle Scholar
Mudie, P., Rochon, A. and Levac, E. (2005a). Decadal-scale sea ice changes in the Canadian Arctic and their impacts on humans during the past 4,000 years. Environmental Archaeology, 10, 113–126.CrossRefGoogle Scholar
Mudie, P. J., Greer, S., Brakel, J., et al. (2005b). Forensic palynology and ethnobotany of Salicornia species (Chenopodiaceae) in northwest Canada and Alaska. Canadian Journal of Botany, 83 (1), 111–123.CrossRefGoogle Scholar
Mudie, P. J., Leroy, S. A. G., Marret, F., et al. (2011). Non-Pollen Palynomorphs (NPP): Indicators of salinity and environmental change in the Caspian-Black Sea-Mediterranean Corridor. In Geology and Geoarchaeology of the Black Sea Region: Beyond the Flood Hypothesis, ed. Buynevich, I., Yanko-Hombach, V., Smyntyna, O. and Martin, R., Geological Society of America, Special Publication 473, ed. Siegel, D.. Syracuse, NY: Syracuse University, pp. 89–115.CrossRefGoogle Scholar
Mudie, P. J., Dickson, J., Hebda, R. and Thomas, F. C. (2014). Environmental scanning electron microscopy: a modern tool for unlocking ancient secrets about the last journey of the Kwäday Dän Ts’ìnchi Man. In Teachings From Long Ago Person Found: Highlights from the Kwäday Dän Ts’ìnchi Project, ed. Hebda, R. J., Greer, S. and Mackie, A.. Victoria, British Columbia, Canada: Royal British Columbia Museum Press. Online at (accessed October 2013).Google Scholar
Munns, R. and Tester, M. (2008). Mechanisms of salt tolerance. Annual Review Plant Biology, 59, 651–681.CrossRefGoogle Scholar
Munns, R., James, R. A., Xu, B., et al. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30: 360–364.CrossRefGoogle ScholarPubMed
Murty, T. S. and Flather, R. A. (1994). Impact of storm surges in the Bay of Bengal. Journal of Coastal Research Special Issue, 12, 149–161.Google Scholar
Nagelkerken, I., Blaber, S. J. M., Bouillon, S., et al. (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89, 155–185.CrossRefGoogle Scholar
Nehring, S., Christian Boestfleisch, C., Buhmann, A. and Papenbrock, J. (2012). The North American toxic fungal pathogen G3 Claviceps purpurea (Fries) Tulasne is established in the German Wadden Sea. BioInvasions Records, 1 (1), 5–10.CrossRefGoogle Scholar
Nelson, A. R., Jennings, A. E. and Kashima, K. (1996). An earthquake history derived from stratigraphic and microfossil evidence of relative sea level change at Coos Bay, southern coastal Oregon. GSA Bulletin, 108 (2), 141–154.2.3.CO;2>CrossRefGoogle Scholar
Nixon, F. C., Reinhardt, E. G. and Rothaus, R. (2009). Foraminifera and tidal notches: dating neotectonic events at Korphos, Greece. Marine Geology, 257, 41–53.CrossRefGoogle Scholar
Njie, M. and Drammah, O. (2011). Value Chain of the Artisanal Oyster Harvesting Fishery of The Gambia. Kingston, RI: Coastal Resources Center, University of Rhode Island, 74 pp.Google Scholar
NOAA (2013). Online at (accessed October 2013).
Novitsky, P. (2010). Analysis of mangrove structure and latitudinal relationships on the Gulf Coast of peninsular Florida. MA Dissertation. Tampa, FL: Department of Geography, University of South Florida, 73 pp.Google Scholar
Nyugen, H. N. (2007). Flooding in the Mekong River Delta, Viet Nam. Human Development Report 2007/2008, Occasional Paper, 23 pp.
Odum, E. P. (1970). Fundamentals of Ecology. Philadelphia, PA: Saunders.Google Scholar
Odum, E. P. (1984). The mesocosm. BioScience, 34, 558–562.CrossRefGoogle Scholar
Odum, E. P. and de la Cruz, A. (1967). Particulate organic detritus in a Georgia salt marsh-estuarine system. In Estuaries, ed. Lauff, G. H.. AAAS Publication 83. Washington DC: AAAS, p. 383–385.Google Scholar
Oliver, T. S., Rogers, K., Chafe, C. J. and Woodroffe, C. D. (2012). Measuring, mapping and modelling: an integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetlands Ecology Management, 20, 353–371.CrossRefGoogle Scholar
Oo, N. W. (2004). Changes in Habitat Conditions and Conservation of Mangrove Ecosystem in Myanmar: A Case Study of Pyindaye Forest Reserve, Ayeyarwady Delta. Status Report for MAB Young Scientist Award, Yangon, Myanmar: Yangon University of Distance Education.Google Scholar
Oppenheimer, S. (1998). Eden in the East: The Drowned Continent of Southeast Asia. London: Phoenix.Google Scholar
Osgood, D. T. and Silliman, B. R. (2009). From climate change to snails: potential causes of salt marsh dieback along the US eastern seaboard and Gulf coasts. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, p. 237–252.Google Scholar
Osterman, L. E. and Smith, C. G. (2012). Over 100 years of environmental change recorded by foraminifers and sediments in Mobile Bay, Alabama, Gulf of Mexico, USA. Estuarine, Coastal and Shelf Science, 115, 345–358.CrossRefGoogle Scholar
Osterman, L. E., Kelly, W. S. and Ricardo, J. P. (2009). Benthic foraminiferal census data from Louisiana continental shelf cores, Gulf of Mexico. Reston: US Geological Survey Open-File Report 2008–1348, 16 pp.
Overpeck, J. T., Francis, J. A., Perovich, D. K., et al. (2005). Arctic system on trajectory to new seasonally ice-free state. EOS, Transactions of the American Geophysical Union 86 (34), 309, 312–313.CrossRefGoogle Scholar
Padgett, D. E. and Brown, J. L. (1999). Effects of soil drainage and soil organic content on growth of Spartina alterniflora (Poaceae) in an artificial salt marsh mesocosm. American Journal of Botany, 86 (5), 697–702.CrossRefGoogle Scholar
Packham, J. R. and Willis, A. J. (1997). Ecology of Dunes, Salt Marsh and Shingle. London: Chapman and Hall.Google Scholar
Pala, C. (2013). Detective work uncovers under-reported overfishing. Nature, 496, 18.CrossRefGoogle ScholarPubMed
Paling, E. I., Fonseca, M., van Katwijk, M. M. and van Keulen, M. (2009). Seagrass restoration. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 687–714.Google Scholar
Paris, R., Lavigne, F., Wassmer, P. and Sartohadi, J. (2007). Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Marine Geology, 238, 93–106.CrossRefGoogle Scholar
Parker, J. D., Montoya, J. P. and Hay, M. E. (2008). A specialist detritivore links Spartina alterniflora to salt marsh food webs. Marine Ecology Progress Series, 364, 87–95.CrossRefGoogle Scholar
Paterson, D. M., Aspden, R. J. and Black, K. S. (2009). Intertidal flats: ecosystem functioning of soft sediment systems. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 317–343.Google Scholar
Pattanaik, C., Reddt, C. S., Dahl, N. K. and Das, R. (2008). Utilisation of mangrove forests in Bhitarkarnika wildlife sanctuary, Orissa. Indian Journal of Traditional Knowledge, 7 (4), 598–603.Google Scholar
Paull, C. K., UsslerIII, W., Dallimore, S. R., et al. (2007). Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophysical Research Letters, 34, L01603.CrossRefGoogle Scholar
Peinado, M., Alcaraz, F., Delgadillo, J., et al. (1994). The coastal salt marshes of California and Baja California. Vegetatio, 110 (1), 55–66.Google Scholar
Peinado, M., Alcares, F. and Delgadillo, J. (1995). Syntaxonomy of some halophilous communities of North and Central America. Phytocoenologia, 25, 23–31.CrossRefGoogle Scholar
Peinado, M., Aguirre, J. L., Delgadillo, J. and Macias, M. A. M. (2007). Zonobiomes, zonoecotones and azonal vegetation along the Pacific Coast of North America. Plant Ecology, 191 (2), 221–252.CrossRefGoogle Scholar
Peinado, M., Aguirre, J. L., Delgadillo, J. and Macías, M. A. (2008). A phytosociological and phytogeographical survey of the coastal vegetation of western North America. Part I: plant communities of Baja California, Mexico. Plant Ecology, 196, 27–60.CrossRefGoogle Scholar
Peinado, M., Macias, M. A. M., Aguirre, J. L. and Delgadillo, J. (2009). A phytogeographical classification of the North American Pacific Coast based on climate, vegetation and a floristic analysis of vascular plants. Journal of Botany, Article 389414, 30 pp.Google Scholar
Peinado, M., Macías, M. Á., Ocaña-Peinado, F. M., Aguirre, J. L. and Delgadillo, J. (2011). Bioclimates and vegetation along the Pacific basin of Northwestern Mexico. Plant Ecology, 212, 263–281.CrossRefGoogle Scholar
Pennings, S. C. and Bertness, M. D. (2001). Salt Marsh Communities. In Marine Community Ecology, ed. Bertness, M. D., Gaines, S. D. and Hay, M.. Sunderland, MA: Sinauer Associates, Inc., pp. 299–315.Google Scholar
Pérez-Ruzafa, A., Mompeán, M. C. and Concepción, M. (2007). Hydrogeographic, geomorphologic and fish assemblage relationships in coastal lagoons. In Lagoons and Coastal Wetlands in the Global Change Context: Impacts and Management Issues, ed. Viaroli, P., Lasserre, P. and Campostrini, P.. Reprinted from Hydrobiologia, 577, 107–125.CrossRef
Perillo, G. M., Wolanski, E., Cahoon, D. R. and Brinson, M. M. (editors) (2009). Coastal Wetlands: An Integrated Ecosystem Approach. Amsterdam: Elsevier BV.
Perry, J. E., Barnard, T. A., Bradshaw, J. G., et al. (2001). Creating tidal salt marshes in the Chesapeake Bay. Journal of Coastal Research, Special Issue, 27, 170–191.Google Scholar
Pessenda, L. C. R., Vidotto, E., De Oliveira, P. E., et al. (2012). Late Quaternary vegetation and coastal environmental changes at Ilha do Cardoso mangrove, southeastern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 363–364, 57–68.CrossRefGoogle Scholar
Pezeshki, S. R., Hester, M. W., Lin, Q. and Nyman, J. C. (2000). The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environmental Pollution, 108, 129–139.CrossRefGoogle ScholarPubMed
Plafker, G. (1969). Tectonics of the March 27, 1964, Alaska Earthquake. US Geological Survey Professional Paper 543-I, pp. 1–74.
Phleger, F. B and Bradshaw, J. S. (1966). Sedimentary environments in a marine marsh. Science, 154, 1551–1553.CrossRefGoogle Scholar
Phleger, F. and Ayala-Castañares, A. (1969). Marine geology of Topolobampo lagoons, Sinaloa, Mexico. In Coastal Lagoons: A Symposium, ed. Ayala-Castañares, A. and Phleger, F. B.. Ciudad Universitaria, Mexico: Universidad Nacional Autónoma de México, pp. 101–136.Google Scholar
Pico, E. F. F., Zaragosa, E. S., Rodriguez, R. R. and Léon de la Luz, J. L. (editors) (2011). Los Manglares de la Península de Baja California. La Paz, México: Centro de Investigaciones Biológicas del Noroeste, S.C., 326 pp.
Pilkey, O. H. and Theiler, E. R. (1992). Coastal Erosion. Tulsa, OK: Society of Economic Paleontologists and Mineralogists, Slide set no. 6.Google Scholar
Pilkey, O. H. and Young, R. (2009). The Rising Sea. Washington, DC: Island Press, 203 pp.Google Scholar
Pillay, T. V. R. (1969). Estuarine fisheries of West Africa. In Estuaries, ed. Luff, G. H..Washington, DC: American Association for the Advancement of Science, pp. 639–646.Google Scholar
Ping, C-L., Michaelson, G. J., Joregenson, M. T., et al. (2008). High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience, 1, 615–619.CrossRefGoogle Scholar
Piou, C., Feller, I. C., Berger, U. and Chi, F. (2006). Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane. Biotropica, 38 (3), 365–374.CrossRefGoogle Scholar
Pisaric, M. F. J., Thienpont, J., Kokelj, S. V., et al. (2011). Impacts of a recent storm surge on an Arctic ecosystem examined within a millennial timescale. Proceedings of the National Academy of Sciences, 108 (22), 8960–8965.CrossRefGoogle Scholar
Pitcher, A. M., Ollerhead, J., Kellman, L., Risk, D. and Campbell, D. A. (2005). Evidence for subsurface pooling of CH4 in saltmarsh sediments in the Musquash Estuary, New Brunswick. Canadian Coastal Conference 2005, 7 pp.Google Scholar
Plaziat, J. C. (1984). Mollusc distribution in the mangal. In Hydrobiology of the Mangal, ed. Por, F. D. and Dor, I.. The Hague: W. Junk Publishers, pp. 111–154.Google Scholar
Pokhrel, Y. N., Hanasaki, N., Yeh, P. J-F., et al. (2012). Model estimates of sea level change due to anthropogenic impacts on terrestrial water storage. Nature Geoscience, 5, 389–392.CrossRefGoogle Scholar
Polidoro, B. A., Carpenter, K. E., Collins, L., et al. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE, 5 (4). CrossRefGoogle ScholarPubMed
Por, F. D. (1984). The ecosystem of the mangal: general considerations. In Hydrobiology of the Mangal, ed. Por, F. D. and Dor, I.. The Hague: W. Junk Publishers, pp. 1–14.Google Scholar
Por, F. D. and Dor, I. (editors) (1984). Hydrobiology of the Mangal: the Hydrobiology of the Mangrove Forests. The Hague: W. Junk Publishers, 260 pp.
Por, M. S., Prado Por, A. and Oliviera, E. C. (1984). The mangal of the estuary and lagoon system of Cananeia (Brazil). In Hydrobiology of the Mangal, ed. Por, F. D. and Dor, I.. The Hague: W. Junk Publishers, pp. 212–228.Google Scholar
Pratolongo, P. D., Kirby, J. R., Plater, A., and Brinson, M. M. (2009). Temperate coastal wetlands: morphology, sediment processes, and plant communities. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier B.V., pp. 89–118.Google Scholar
Pringle, C., Velidis, G., Heliotis, F., Bandacu, D. and Cristofor, F. (1993). Environmental problems of the Danube Delta. American Scientist, 81 (4), 350–361.Google Scholar
Pugh, D. (2004). Changing Sea Levels: Effects of Tides, Weather and Climate. Cambridge: Cambridge University Press.Google Scholar
Punwong, P., Marchant, R. and Selby, K. (2013). Holocene mangrove dynamics from Unguja Ukuu, Zanzibar. Quaternary International, 298, 4–19.CrossRefGoogle Scholar
Qui, J. (2013). Monsoon melee. Science, 340, 1400–1401.Google Scholar
Rains, D. W. and Epstein, E. (1967). Sodium absorption by barley roots: Role of dual mechanisms of alkali cation transport. Plant Physiology, 42, 314–318.CrossRefGoogle ScholarPubMed
Rajkaran, A. (2011). A status assessment of mangrove forests in South Africa and the utilization of mangroves in Mngazana Estuary. PhD Thesis. Port Elizabeth, South Africa: Nelson Mandela Metropolitan University, 155 pp.
Ramsar Convention Secretariat (2007) Wise Use of Wetlands: A Conceptual Framework for the Wise Use of Wetlands. Ramsar Handbooks for the Wise Use of Wetlands, 3rd edn, Vol. 1. Gland, Switzerland: Ramsar Convention Secretariat.Google Scholar
Ramsar, (2013). Ramsar’s Liquid Assets: 40 years of the Convention on Wetlands. Gland, Switzerland: Convention Secretariat.Google Scholar
Ramsar database (2013). (accessed October 2013).
Ravishankar, T., Gnanappazham, L., Ramasubramanian, R., et al. (2004). Atlas of Mangrove Wetlands of India, Vol. II. Chennai, India: Andhra Pradesh.Google Scholar
Rechinger, K. (1964). Flora of Lowland Iraq. New York: Hafner Publishing. Ltd.Google Scholar
Redondo-Gómez, S., Mateos-Naranjo, E., Figueroa, M. E. and Davy, A. J. (2010). Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biology, 12 (1), 79–87.CrossRefGoogle Scholar
Regev-Rudzki, N., Wilson, D. W., Carvalho, T. G., et al. (2013). Cell-Cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell, 153 (5), 1120–1133.CrossRefGoogle ScholarPubMed
Reinhardt, E. G., Nairn, R. B. and Lopez, G. (2010). Recovery estimates for the Río Cruces after the May 1960 Chilean earthquake. Marine Geology, 269, 18–33.CrossRefGoogle Scholar
Reise, K. (1991). Macrofauna in mud and sand of tropical and temperate mudflats. In Estuaries and Coasts: Spatial and Temporal Intercomparison, ed. Elliott, M. and Ducrotoy, J.-P.. Caen, France: Olsen and Olsen, pp. 211–216.Google Scholar
Ren, H., Lu, H, Shen, W., Huang, C., Guo, Q., Li, Z. and Jian, C. (2009). Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species?Ecological Engineering, 35, 1243–1248.CrossRefGoogle Scholar
Richardson, C. and Hussain, N. (2006). Restoring the Garden of Eden: an ecological assessment of the marshes of Iraq (pdf). BioScience, 56 (6), 477–489.CrossRefGoogle Scholar
Riehl, S., Zeidi, M. and Conard, N. J. (2013). Emergence of agriculture in the foothills of the Zagros mountains of Iran. Science, 341, 65–67.CrossRefGoogle ScholarPubMed
Robert, E. M. R., Schmitz, N., Okello, J. A., et al. (2011). Mangrove growth rings: fact or fiction?Trees – Structure and Function, 25, 49–58.CrossRefGoogle Scholar
Roberts, N. (1998). The Holocene, 2nd edn. Hoboken, NJ: Wiley-Blackwell, 316 pp.Google Scholar
Rodríguez-Salinas, P., Riosmena-Rodríguez, R., Hinojosa-Arango, G. and Muñiz-Salazar, R. (2010). Restoration experiment of Zostera marina L. in a subtropical coastal lagoon. Ecological Engineering, 36 (1), 12–18.CrossRefGoogle Scholar
Rodwell, J. S. (2000). British Plant Communities. Vol. 5: Maritime Cliffs, Sand Dunes, Saltmarshes and Other Vegetation. Cambridge: Cambridge Univesity Press.CrossRefGoogle Scholar
Rose, R. I. (2001). Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases, 7 (1), 17.CrossRefGoogle ScholarPubMed
Rovai, A. S., Menghini, R. P., Schaeffer-Novelli, Y.Molera, G. C. and Coelho, C. (2012). Protecting Brazil’s coastal wetlands. Science, 335, 1571–1572.CrossRefGoogle Scholar
Rowley, D. B., Forte, A. M., Moucha, R., et al. (2013). Dynamic topography change of the eastern United States since 3 million years ago. Science, 340, 1560–1563.CrossRefGoogle ScholarPubMed
Ruiz, F., Abad, M., Cáceres, L. M., et al. (2010). Ostracods as tsunami tracers in Holocene sequences. Quaternary Research, 73, 130–135.CrossRefGoogle Scholar
Russell, T. L., Kay, B. H. and Skilleter, G. A. (2009). Environmental effects of mosquito insecticides on saltmarsh invertebrate fauna. Aquatic Biology, 6, 77–90.CrossRefGoogle Scholar
Rydin, H. and Jeglum, J. K. (2006). The Biology of Peatland. New York: Oxford University Press Inc.CrossRefGoogle Scholar
Saatcioglu, M., Ghobarah, A. and Nistor, I. (2005). Reconnaissance Report on The December 26, 2004 Sumatra Earthquake and Tsunami. Ottawa, Canada: Canadian Association of Earthquake Engineering, 21 pp.Google Scholar
Saenger, P., Specht, M. M., Specht, R. L. and Chapman, V. L. (1977). Mangal and coastal salt marsh communities in Australia. In Ecosystems of the World. Vol. I. Wet coastal ecosystems, ed. Chapman, V. J.. Amsterdam: Elsevier BV, pp. 293–346.Google Scholar
Saenger, P. and Bellan, M. F. (1995). The mangrove vegetation of the Atlantic Coast of Africa: a review. Université de Toulouse, Toulouse, France.Google Scholar
Saintilan, N. (editor) 2009. Australian Salt Marsh Ecology. Collingwood, Victoria, Australia: CSIRO Publishing.
Saintilan, N. and Hashimoto, T. R. (1999). Mangrove-saltmarsh dynamics on a bay-head delta in the Hawkesbury River estuary, New South Wales, Australia. Hydrobiologia, 413: 95–102.CrossRefGoogle Scholar
Saintilan, N., Rogers, K. and McKee, K. (2009). Salt marsh–mangrove interactions in Australasia and the Americas. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 855–884.Google Scholar
Salkin, R. M. and Ring, T. (1996). Asia and Oceania. In International Dictionary of Historic Places ed. Schellinger, P. E. and Salkin, R. M.. London: Routledge, Taylor and Francis, pp. 353–234.Google Scholar
San Martin, C., Contreras, D., San Martin, J. and Ramirez, C. (1992). Vegetation of salt marshes in south-central Chile. Revista Chile de Historia Natural, 65 (3), 327–342.Google Scholar
Sanchez, H. (2009). Saving Colombia’s Mangrove Forests [online]. Available from: (accessed October 2013).
Sanders, R. (2011). Marine ice and other issues during harvesting of tidal electricity from Nova Scotia’s Minas Passage in 2011. Journal of Ocean Technology, Subsea Oil and Gas, 6 (1), 34–55.Google Scholar
Santamaria-Gallegos, N. A, Danemann, G. D. and Escurra, E. (2011). Conservación y manejo de los manglares de la Península de Baja California. In Los Manglares de la Península de Baja California, ed. Pico, E. F. F., Zaragosa, E. S., Rodriguez, R. R. and Léon de la Luz, J. L.. La Paz, México: Centro de Investigaciones Biológicas del Noroeste, S.C., pp. 273–294.Google Scholar
Sârbu, A., Janauer, G, Schmidt-Mumm, U., et al. (2011). Characterisation of the potamal Danube River and the Delta: connectivity determines indicative macrophyte assemblages. Hydrobiologia, 671, 75–93.CrossRefGoogle Scholar
Sasekumar, A. and Chong, V. C. (1998). Faunal diversity in Malaysian mangroves. Global Ecology and Biogeography Letters, 7, 57–60.CrossRefGoogle Scholar
Sasser, C. E., Gosselink, J. G., Swenson, E. M. and Evers, D. E. (1995). Hydrologic, substrate and ecological characteristics of floating marshes in sediment-rich peatlands of the Mississippi delta plain, Louisiana, USA. Wetlands Ecology, 3 (3), 171–187.Google Scholar
Scarton, F., Cecconi, G., Cerasuolo, C. and Valle, R. (2013). The importance of dredge islands for breeding waterbirds. A three-year study in the Venice Lagoon (Italy). Ecological Engineering 54, 39–48.CrossRefGoogle Scholar
Schaefer, K., Zhang, T., Bruhwiler, L. and Barrett, A. P. (2011). Amount and timing of permafrost carbon release in response to climate warming. Tellus, 63B, 165–180.CrossRefGoogle Scholar
Schrijvers, J., Okondo, J. and Vincx, M. (1993). Ecological study of the benthos of the mangroves and surrounding beaches. In Dynamics and Assessment of Kenyan Mangrove Ecosystems No. TS2-0240-C (GDF), Final Report (April 1993), ed. Woitchik, A. F., Polk, P. and Okemwa, E.. Brussels: Vrije Universiteit Brussel, 239 pp.Google Scholar
Schuerch, M., Vafeidis, A., Slawig, T. and Temmerman, S. (2013). Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level. Journal of Geophysical Research: Earth Surface, 118, 1–13.Google Scholar
Scott, D. (editor) (1995). A Directory of Wetlands in the Middle East. London: Earthscan Publications Ltd.
Scott, D. and Evans, M. (1994). Wildlife of the Mesopotamian Marshlands: Unpublished report. Wetland Ecosystems Research Group, University of Exeter.
Scott, D. B. (1976a). Quantitative studies of marsh foraminiferal patterns in Southern California and their applications to Holocene stratigraphic problems. In Foraminifera of the Continental Margins, Part A: Ecology and Biology, ed. Schafer, C. T. and Pelletier, B. R.. Maritime Sediments, Special Publication 1: 153–170.Google Scholar
Scott, D. B. (1976b). Brackish water foraminifera from Southern California and description of Polysaccammina ipohalina, n.gen., n. sp. Journal of Foraminiferal Research, 6, 312–321.CrossRefGoogle Scholar
Scott, D. B. and Medioli, F. S. (1978). Vertical zonations of marsh foraminifera as accurate indicators of former sea levels. Nature, 272, 528–531.CrossRefGoogle Scholar
Scott, D. B. and Medioli, F. S. (1980). Quantitative studies of marsh foraminiferal distributions in Nova Scotia and comparison with those in other parts of the world: implications for sea level studies. Special Publication of the Cushman Foundation for Foraminiferal Research 17, 58 pp.
Scott, D. B. and Martini, I. P. (1982). Marsh foraminiferal zonations in western James-Hudson Bay. Naturaliste Canadien, 109, 399–414.Google Scholar
Scott, D. B. and Lipps, J. (2008). Paleo-hazard recognition in coastal settings-microfossil determinations of the history and precursors of major catastrophic events. Abstracts: Geological Society of America Meeting 2008, p. 569.Google Scholar
Scott, D. B., Mudie, P. J. and Bradshaw, J. S. (1976). Benthonic foraminifera of three Southern California lagoons: ecology and recent stratigraphy. Journal of Foraminiferal Research, 6 (1), 59–75.CrossRefGoogle Scholar
Scott, D. B., Piper, D. J. W. and Panagos, A. G. (1979). Recent salt marsh and intertidal marsh foraminifera from the western coast of Greece. Rivista Italiana Paleontologica, 85 (1), 243–266.Google Scholar
Scott, D. B., Schnack, E. J., Ferrero, L., Espinosa, M. and Barbosa, C. F. (1990). Recent marsh foraminifera from the east coast of South America: comparison to the northern hemisphere. In Paleoecology, Biostratigraphy, Paleoceanography and Taxononomy of Agglutinated Foraminifera. NATO ASI Series C, 327: 717–738.CrossRefGoogle Scholar
Scott, D. B., Suter, J. R., and Kosters, E. C. (1991). Marsh foraminifera and and arcellaceans of the lower Mississippi Delta: controls on spatial distribution. Micropaleontology, 37 (4), 373–392.CrossRefGoogle Scholar
Scott, D. B., Collins, E. S., Duggan, J., et al. (1996). Pacific Rim marsh foraminiferal distributions. Journal of Coastal Research, 12(4), 850–93.Google Scholar
Scott, D. B., Medioli, F. S. and Schafer, C. T. (2001). Monitoring of Coastal Environments Using Foraminifera and Thecamoebian Indicators. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Scott, D. B., Mudie, P. J. and Bradshaw, J. S. (2011). Coastal evolution of Southern California as interpreted from benthic foraminifera, ostracodes, and pollen. Journal of Foraminiferal Research, 41 (3), 285–307.CrossRefGoogle Scholar
Scourse, J. T., Marret, F., Versteegh, G. J. M., Jansen, F., Schefug, E. and van der Plicht, J. (2005). High-resolution last deglaciation record from the Congo fan reveals significance of mangrove pollen and biomarkers as indicators of shelf transgression. Quaternary Research, 64, 57–69.CrossRefGoogle Scholar
Seabrook, C. (2012). The World of the Salt Marsh: Appreciating and Protecting the Tidal Marshes of the Southeastern Atlantic Coast. Atlanta, GA: University of Georgia Press.Google Scholar
Seliskar, D. M. and Gallagher, J. L. (1983). The Ecology of Tidal Marshes of the Pacific Northwest Coast: A Community Profile. Washington, DC: US Fish and Wildlife Service, Division of Biological Services, FWS/OBS-82/32, 65 pp.Google Scholar
Senner, N. R. (2007). Conservation Plan for the Hudsonian Godwit. Version 1.0. Manomet, MA: Manomet Center for Conservation Science.Google Scholar
Sergienko, L. (2013). Salt marsh flora and vegetation of the Russian Arctic coasts. Czech Polar Reports, 3 (1), 30–37.CrossRefGoogle Scholar
Sharpe, P. J. and Baldwin, A. H. (2012). Tidal marsh plant community response to sea level rise: a mesocosm study. Aquatic Botany 101, 34–40.CrossRefGoogle Scholar
Shaw, J. and Ceman, J. (1999). Salt marsh aggradation in response to late-Holocene sea level rise at Amherst Point, Nova Scotia, Canada. The Holocene 9, 439–51.CrossRefGoogle Scholar
Shennan, I. A. and Hamilton, S. (2006). Coseismic and pre-seismic subsidence associated with great earthquakes in Alaska. Quaternary Science Reviews, 25, 1–8.CrossRefGoogle Scholar
Shennan, I. A., Scott, D. B., Rutherford, M. and Zong, V. (1999). Microfossil analysis of sediments representing the 1964 earthquake, exposed at Girdwood Flats, Alaska, USA. Quaternary International, 60, 55–73.CrossRefGoogle Scholar
Shnyukov, E. F., Maslakov, N. and Yank-Hombach, V. (2010). Mud volcanoes of the Azov-Black Sea basin, onshore and offshore. Abstract volume, INQUA 501- IGCP 521 Sixth Plenary Meeting and Field Trip, Rhodes, Greece, 27 September–5 October 2010, pp. 190–194.
Shum, C., Kuo, C., and Guo, J. (2008). Role of Antarctic ice mass balances in present-day sea level change. Polar Science 2: 149–161.CrossRefGoogle Scholar
Silliman, B. R., Bertness, M. D., Grosholz, E. D. (editors) (2009). Human Impacts on Salt Marshes: A Global Perspective. Berkeley, CA: University of California Press.
Silliman, B. R., van de Koppel, J., McCoy, M. W., et al. (2012). Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spil. Proceedings of the National Academy of Science, 109 (28), 11234–11239.CrossRefGoogle Scholar
Silvestri, S, Defina, A. and Marani, M. (2005). Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 6, 119–130.CrossRefGoogle Scholar
Simier, M., Laurent, C., Ecoutin, J-M. and Albaret, J-J. (2006). The Gambia River estuary: a reference point for estuarine fish assemblages studies in West Africa. Estuarine, Coastal and Shelf Science, 69, 615–628.CrossRefGoogle Scholar
Simmonds, I. and Rudeva, I. (2012). The great Arctic cyclone of August 2012. Geophysical Research Letters, 39, L23709.CrossRefGoogle Scholar
Smith, C. B., Cohen, M. C. L., Pessenda, L. C. R., et al. (2011). Holocene coastal vegetation changes at the mouth of the Amazon River. Review of Palaeobotany and Palynology, 68, 21–30.CrossRefGoogle Scholar
Solomon, S. M. (2005). Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Marine Letters, 25, 127–137.CrossRefGoogle Scholar
Solomon, S. M. and Forbes, D. L. (1999). Coastal hazards and associated management issues on South Pacific Islands. Oceans and Coastal Management, 42, 523–554.CrossRefGoogle Scholar
Solomon, S., Mudie, P. J., Cranston, R., et al. (2000). Paleohydrology of a drowned thermokarst embayment, Richards Island, Beaufort Sea, Canada. International Journal Earth Sciences, 89, 503–521.CrossRefGoogle Scholar
Sorokin, Y. I. (2002). The Black Sea: Ecology and Oceanography. Leiden, the Netherlands: Backhuys Publishers.Google Scholar
Sousa, S. H. M., Amaral, P. G. C., Martins, V., et al. (2013). Environmental evolution of the Caravelas Estuary (Northeastern Brazilian Coast, 17ºS. 39ºW) based on multiple proxies in a sedimentary record of the last century. Journal of Coastal Research, epublished ahead of print. Online at (accessed October 2013).Google Scholar
Southall, K. E., Gehrels, W. R. and Hayward, B. W. (2006). Foraminifera in a New Zealand salt marsh and their suitability as sea level indicators. Marine Micropaleontology, 60, 167–179.CrossRefGoogle Scholar
Spalding, M., Kainuma, M. and Collins, L. (2010). World Atlas of Mangroves. Abingdon, UK: Routledge.Google Scholar
Sparks, E. L., Cebrian, J., Biber, P. D., Sheehan, K. L. and Tobias, C. R. (2013). Cost-effectiveness of two small-scale marsh restoration designs. Ecological Engineering, 53, 250–256.CrossRefGoogle Scholar
Stanley, D. J. and Warne, A. G., (1998). Nile Delta in its destruction phase. Journal of Coastal Research, 14 (3), 794–825.Google Scholar
Stanley, R. G.Charpentier, R. R., Cook, T. A., et al. (2011). Assessment of undiscovered oil and gas resources of the Cook Inlet Region, South-Central Alaska, 2011. US Geological Survey Fact Sheet 2011–3068, 2 pp.
Steinke, T. D. (1999). Mangroves in South African estuaries. In Estuaries of South Africa, ed. Allanson, B. R. and Baird, D.. Cambridge: Cambridge University Press, pp. 119–140.CrossRefGoogle Scholar
Stern, N. (2007). The Economics of Climate Change: The Stern Review. Cambridge: Cambridge University Press.CrossRefGoogle ScholarPubMed
Stern, G. A., Macdonald, R. W., Outridge, P. M., et al. (2012). How does climate change influence arctic mercury?Science of the Total Environment, 414, 22–42.CrossRefGoogle ScholarPubMed
Stevenson, J. C., Rooth, J. E., Kearney, M. S. and Sundberg, K. L. (2000). The health and long term stability of natural and restored marshes in Chesapeake Bay. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. and Kreeger, D. A.. Dordrecht, the Netherlands: Kluwer Academic Press, pp. 709–736.Google Scholar
Stewart, D. B. and Lockhart, W. L. 2005. An overview of the Hudson Bay marine ecosystem. Canadian Technical Report of Fisheries and Aquatic Science, 2586, 487 pp.
Stokstad, E. (2013). BP research dollars yield signs of cautious hope. Science, 339, 636–637.CrossRefGoogle ScholarPubMed
Stone, C. S. (1993). Vegetation of coastal marshes near Juneau, Alaska. Northwest Science, 67 (4), 215–230.Google Scholar
Stow, D. (2010). The Vanished Ocean: How Tethys Reshaped the World. Oxford: Oxford University Press.Google Scholar
Strong, D. R. and Ayres, D. R. (2009). Spartina introductions and consequences in salt marshes: arrive, survive, thrive, and sometimes hybridize. In: Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 3–22.Google Scholar
Stover, C. W. and Coffman, J. L. (1993). Seismicity of the United States, 1568–1989 (Revised), US Geological Survey Professional Paper 1527. Washington, DC: United States Government Printing Office.Google Scholar
Su, G-H., Huang, Y-L., Tan, F-X., et al. (2006). Genetic variation in Lumnitzera racemosa, a mangrove species from the Indo-West Pacific. Aquatic Botany, 84, 341–6.CrossRefGoogle Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I., et al. (2009). Sinking deltas due to human activities. Nature Geoscience, 2, 681–686.CrossRefGoogle Scholar
Szeliga, W. (2013). 2012 Haida Gwaii quake: insight into Cascadia’s subduction extent. EOS, Transactions, American Geophysical Union, 94 (9), 85–86.CrossRefGoogle Scholar
Teal, J. M. (1962). Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43, 614–624.CrossRefGoogle Scholar
Teal, J. and Teal, M. (1969). Life and Death of the Salt Marsh. New York: Little and Brown Publishers, 278 pp.Google Scholar
Tian, B., Zhou, Y., Zhang, L. and Yuan, L. (2008). Analyzing the habitat suitability for migratory birds at the Chongming Dongtan Nature Reserve in Shanghai, China. Estuarine, Coastal and Shelf Science, 80, 296–302.CrossRefGoogle Scholar
Thannheiser, D. and Haacks, M. (2004). Plant sociological studies on the salt marshes of Tasmania. In Glimpses of a Gaian World, ed. Kearsley, G. and Fitzharris, B.. Dunedin, New Zealand: University of Otago, pp. 81–96.Google Scholar
Thilenius, J. F. (1990). Woody plant succession on earthquake-uplifted coastal wetlands of the Copper River Delta, Alaska. Forest Ecology and Management, 33/34, 439–462.CrossRefGoogle Scholar
Thompsen, M. S., Adam, P. and Silliman, B. S. (2009). Anthropogenic threats to Australasian coastal salt marshes. In Human Impacts on Salt Marshes: A Global Perspective, ed. Silliman, B. R., Grosholz, E. D. and Bertness, M. D.. Berkeley, CA: University of California Press, pp. 367–390.Google Scholar
Thu, P. M. and Populus, J. (2007). Status and changes of mangrove forest in Mekong Delta: case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science, 71, 98–109.CrossRefGoogle Scholar
TNC (2011). Coastal Habitat Mapping Program, South East Alaska Data Summary Report, prepared by Coastal & Ocean Resources Inc. and Archipelago Marine Research Inc. for NOAA National Marine Fishereries Service, Alaska Region, The Nature Conservancy (TNC), Project 10–12; mapping data accessible at (accessed October 2013).
Tobias, C. and Neubauer, S. C. (2009). Salt marsh biogeochemistry: an overview. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 445–492.Google Scholar
Toledo, G., Rojas, A. and Bashan, Y. (2001). Monitoring of black mangrove restoration with nursery-reared seedlings on an arid coastal lagoon. Hydrobiologia, 444 (1–3), 101–109.CrossRefGoogle Scholar
Tomlinson, P. A. (1986). The Botany of Mangroves. Cambridge: Cambridge University Press, 413 pp.Google Scholar
Tonev, R., Lysenko, T., Gussev, C. and Zhelev, P. (2008). The halophytic vegetation in South-East Bulgaria and along the Black Sea coast. Hacquetia, 7 (2), 95–121.Google Scholar
Turner, R. E. (1976). Geographic variations in salt marsh macrophyte production: a review. Contributions in Marine Science, 20, 47–68.Google Scholar
Tuttle, M. P., Ruffman, A., Anderson, T. and Jeter, H. (2004). Distinguishing tsunami from storm deposits in eastern North America: the 1929 Grand Banks tsunami versus the 1991 Halloween storm. Seismological Research Letters, 75 (1), 117–131.CrossRefGoogle Scholar
Twilley, R. R. (1985). An Analysis of Mangrove Forests along the Gambia River Estuary: Implications for the Management of Estuarine Resources. Ann Arbor, MI: Great Lakes and Marine Waters Center, University of Michigan.CrossRefGoogle Scholar
Twilley, R. R. and Day, J. W. (2013). Mangrove wetlands. In Estuarine Ecology, 2nd edn, ed. Day, Jr. J. W., Crump, B. C., Kemp, W. M. and Yáñez-Arancibia, A.. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Twilley, R. R. and Rivera-Monroy, V. H. (2009). Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier BV, pp. 641–683.Google Scholar
UNEP (2001). Partow, H.The Mesopotamian Marshlands: Demise of an Ecosystem. Nairobi, Kenya: Division of Early Warning and Assessment, United Nations Environment Programme.Google Scholar
UNEP/FAO/PAP (2002). Integrated Coastal and Marine Areas Management in the Gambia: Southern Coastal Region Coastal Profile and Management Strategy. West African Regional Seas Technical Reports Series No.1. Split, Croatia, UNEP/FAO/PAP, 1998.
UNESCO/FAO (1973). Irrigation, Drainage and Salinity. An International Source Book. London: PARIS/UNESCO, HUTCHINSON & CO. Ltd., 510 pp.Google Scholar
University of Washington (2007). Ruesink Lab [online]. Available from: (accessed October 2013).
Vaiphasa, C., de Boer, W. F., Skidmore, A. K., et al. (2007). Impact of solid shrimp pond waste materials on mangrove growth and mortality: a case study from Pak Phanang, Thailand. Hydrobiologia 591: 47–57.CrossRefGoogle Scholar
Valiela, I., Kinney, E., Culbertson, J., Peacock, E. and Smith, S. (2009). Global losses of mangroves and salt marshes, In Global Loss of Coastal Habitats: Rates, Causes and Consequences, ed. Duarte, C. M.. Madrid, Spain: Fundacion BBVA, pp. 108–138.Google Scholar
Van der Graaf, A. J., Stahl., J., Klimkowska, A., Bakker, J. P. and Drent, R. H. (2006). Surfing on a green wave: how plant growth drives spring migration in the barnacle goose Branta leucopsis. Ardea, 94 (3), 567–577.Google Scholar
Verkerk, M. P. and van Rens, C. P. M. (2005). Saline Intrusion in Gambia River After Dam Construction. Enshede, the Netherlands: University of Twente, Civil Engineering and Management.Google Scholar
Vermaire, J. C., Pisaric, M. F. J., Thienpont, J. R., et al. (2013). Arctic climate warming and sea ice declines lead to increased storm surge activity. Geophysical Research Letters, 40, 1386–1390.CrossRefGoogle Scholar
Vince, S. W. and Snow, A. (1984). Plant zonation in an Alaskan salt marsh 1. Distribution, abundance and environmental factors. Journal of Ecology, 72, 651–667.CrossRefGoogle Scholar
Von Caemmerer, S., Quick, W. P. and Furbank, R. T. (2012). The development of C4 rice: current progress and future challenges. Science, 336, 1671–1672.CrossRefGoogle Scholar
Waisel, Y. (1972). The Biology of Halophytes. New York: Academic Press.Google Scholar
Walsh, G. E. (1974). Mangroves: a review. In Ecology of Halophytes, ed. Reimold, R. J. and Queen, W. H.. New York: Academic Press, pp. 51–174.CrossRefGoogle Scholar
Walsh, G. E. (1977). Exploitation of mangal. In Ecosystems of the World 1, Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 347–362.Google Scholar
Walters, B. B., Rönnbäck, P., Kovacs, J. M., et al. (2008). Ethnobiology, socio-economics and management of mangrove forests: a review. Aquatic Botany, 89, 220–236.CrossRefGoogle Scholar
Walton, M. E., Samonte-Tan, G. P., Primavera, J. H., Edwards-Jones, G., and Le Vay, L. (2006). Are mangroves worth replanting? The direct economic benefits of a community-based reforestation project. Environmental Conservation, 33 (4), 335–343.CrossRefGoogle Scholar
Warme, J. E. (1969). Mugu Lagoon, coastal Southern California: origin, sediments and productivity. In Coastal Lagoons. A Symposium, ed. Ayales-Castañares, A. and Phleger, F. B.. Ciudad Universitaria, Mexico: Universidad Nacional Autónoma de México, pp. 137–169.Google Scholar
Watcham, E. P., Shennan, I. and Barlow, N. L. (2013). Scale considerations in using diatoms as indicators of sea level change: lessons from Alaska. Journal of Quaternary Science, 28 (2), 165–179.CrossRefGoogle Scholar
Watkeys, M. K., Mason, T. R. and Goodman, P. S. (1993). The role of geology on the development of Maputaland, South Africa. Journal of African Earth Sciences 16 (1): 1–16.Google Scholar
Watson, E. B. and Byrne, R. (2009). Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecology, 205, 113–128.CrossRefGoogle Scholar
Weis, J. S. and Butler, C. A. (2009). Salt Marshes: A Natural and Unnatural History. New Brunswick, NJ: Rutgers University Press.Google Scholar
West, R. C. (1977). Tidal salt marsh and mangal formations of Middle and South America. In Ecosystems of the World 1, Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 193–213.Google Scholar
Whigham, D. F., Baldwin, A. H. and Barendregt, A. (2009). Tidal freshwater wetlands. In Coastal Wetlands: An Integrated Ecosystems Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brison, M. M.. Amsterdam: Elsevier B.V., Amsterdam, pp. 515–533.Google Scholar
White, D. S. and Howes, B. L. (1994). Long-term 13N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnology and Oceanography, 39, 1878–1892.CrossRefGoogle Scholar
Whitfield, A. K. (1992). A characterisation of southern African estuarine systems. Southern African Journal of Aquatic Sciences 12: 89–103.CrossRefGoogle Scholar
Whittaker, R. H. (1975). Communities and ecosystems. New York: Macmillan.Google Scholar
Wicander, R. and Monroe, J. S. (2004). Historical Geology, 4th edn. Belmont, CA: Brooks/Cole-Thompson Learning.Google Scholar
Wiegert, R. G. and Freeman, B. J. (1990). Tidal Salt Marshes of the Southeast Atlantic Coast: A Community Profile. US Fish and Wildlife Service Biological Report 85, 70 p.CrossRef
Willems, B. A., Powell, R. D., Cowan, E. and Jaeger, J. M. (2011). Glacial outburst flood sediments within Disenchantment Bay, Alaska: implications of recognising marine jökulhaup deposits in the stratigraphic record. Marine Geology, 284, 1–12.CrossRefGoogle Scholar
Willis, J. M., Hester, M. W. and Shaffer, G. P. (2005). A mesocosm evaluation of processed drill cuttings for wetland restoration. Ecological Engineering, 25 (1), 41–50.CrossRefGoogle Scholar
Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. and Worthy, T. H. (2008). Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proceedings of the National Academy of Sciences, 105 (22), 7676–7680.CrossRefGoogle ScholarPubMed
Wilson, N. C. and Saintilan, N. (2012). Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquatic Botany, 101, 8–17.CrossRefGoogle Scholar
Winzeler, E. A. (2008). Malaria research in the post-genomic era. Nature, 455 (7214), 751–756.CrossRefGoogle ScholarPubMed
Woitchik, A. F., Polk, P. and Okemwa, E. (editors) (1993). Dynamics and Assessment of Kenyan Mangrove Ecosystems. No. TS2-0240-C (GDF), Final Report (April, 1993). Brussels: Vrije Universiteit Brussel, 239 pp.
Wolanski, E., Brinson, M. M., Cahoon, D. R. and Perillo, G. M. E. (2009). Coastal wetlands: a synthesis. In Coastal Wetlands: An Integrated Ecosystem Approach, ed. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. and Brinson, M. M.. Asterdam: Elsevier BV, pp. 1–62.Google Scholar
Woo, I. and Takekawa, J. Y. (2012). Will inundation and salinity levels associated with projected sea level rise reduce the survival, growth, and reproductive capacity of Sarcocornia pacifica (pickleweed)?Aquatic Botany, 102, 8–14.CrossRefGoogle Scholar
Woodroffe, C. D., Thom, B. G. and Chappell, J. (1985). Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature, 317, 711–713.CrossRefGoogle Scholar
Wright, A. L., Weaver, R. W. and Webb, J. W. (1997). Oil bioremediation in salt marsh mesocosms as influenced by N and P fertilization, flooding, and season. Water, Air, and Soil Pollution, 95 (1–4), 179–191.CrossRefGoogle Scholar
Xue, Z., Liu, J. P., DeMaster, D., Van Nguyen, L. and Ta, T. K. O. (2010). Late Holocene evolution of the Mekong subaqueous delta, Southern Vietnam. Marine Geology, 269, 46–60.CrossRefGoogle Scholar
Yang, S-L. (1999). Tidal wetland sedimentation in the Yangtze Delta. Journal of Coastal Research, 15 (4), 1091–1099.Google Scholar
Yang, S. L., Milliman, J. D., Li, P. and Xu, K. (2011). 50,000 dams later: erosion of the Yangtze River and its delta. Global and Planetary Change, 75, 14–20.CrossRefGoogle Scholar
Yanko-Hombach, V., Mudie, P. J., Kadurin, S. and Larchenchov, E. (2013). Holocene marine transgression in the Black Sea: new evidence from the northwestern Black Sea shelf. Quaternary International, epublished ahead of print. .
Young, G. (1977). Return to the Marshes: Life with the Marsh Arabs of Iraq. London: Collins.Google Scholar
Zahran, M. A. (1977). Africa A. Wet formations of the African Red Sea Coast. In Ecosystems of the World 1. Wet Coastal Ecosystems, ed. Chapman, V. J.. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, pp. 215–232.Google Scholar
Zaitsev, Y. P. and Alexandrov, B. G. (1998). Black Sea Biological Diversity Ukraine. New York: United Nations Publications. Sales No. E.98.III.B.19, Black Sea Environmental Series, Vol. 7.Google Scholar
Zedler, J. B. and Nordby, C. S. (1986). The Ecology of Tijuana Estuary, California: An Estuarine Profile. US Fish and Wildlife Service Biological Report 85 (7.5), 104 pp.
Zedler, J. B. and West, J. M. (2008). Declining diversity in natural and restored salt marshes: A 30-year study of Tijuana Estuary. Restoration Ecology, 16 (2), 249–262.CrossRefGoogle Scholar
Zedler, J. B., Nordby, C. S. and Kus, B. E. (1992). The Ecology of Tijuana Estuary, California: A National Estuarine Research Reserve. Washington, DC: NOAA Office of Coastal Resource Management, Sanctuaries and Reserves Division, 151 pp.Google Scholar
Zhu, R., Chen, Q., Ding, W. and Xu, H. (2012). Impact of seabird activity on nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway. Journal of Geophysical Research, 117, G04015.CrossRefGoogle Scholar
Zong, Y., Chen, Z., Innes, J. B., Chen, C., Wang, Z. and Wang, H. (2007). Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature, 449, 459–462.CrossRefGoogle ScholarPubMed
Zong, Y., Huang, G., Switzer, A. D., Yu, F. and Yim, W. W-S. (2009). An evolutionary model for the Holocene formation of the Pearl River delta, China. The Holocene, 19 (1), 129–142.CrossRefGoogle Scholar
Zuo, P., Zhao, S., Liu, C., Wang, C. and Liang, Y. (2012). Distribution of Spartina spp. along China’s coast. Ecological Engineering, 40, 160–166.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×