Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-13T23:27:00.079Z Has data issue: false hasContentIssue false

5 - Vapor diffusion growth of liquid-water drops

Published online by Cambridge University Press:  23 November 2009

Jerry M. Straka
Affiliation:
University of Oklahoma
Get access

Summary

Introduction

Once a cloud droplet is nucleated it can continue to grow by water-vapor diffusion or condensation, at first rapidly, then slowly as diameter increases, if supersaturation conditions with respect to liquid water continue to occur around the droplet or drop. Conversely, a cloud droplet or raindrop will decrease in diameter by water-vapor diffusion or evaporation, first slowly when large, then rapidly when small, as diameter decreases, assuming subsaturation conditions with respect to liquid water continue to occur around the cloud droplet or raindrop.

Condensation and evaporation are governed by the same equation, the water-vapor diffusion equation. To understand condensation and evaporation of some particle, two diffusive processes must be considered. The first of these includes water-vapor transfer to or from a particle by steady-state water-vapor diffusion. It is a result of vapor gradients that form around a particle; thus the particle is not in equilibrium with its environment. The second of these processes is conduction owing to thermal diffusion of temperature gradients around a particle that is growing or decreasing in size. Fick's law of diffusion describes these diffusion processes. In summary, consideration must be made for mass and heat flux to and away from particles. These steady-state diffusion processes are derived independently and then a net mass change is obtained iteratively, or by a direct method, by combining the equations with the help of the Clausius–Clapyeron equation.

There are several ways to solve the steady-state equations, and two will be presented. One method includes kinetic effects and one does not.

Type
Chapter
Information
Cloud and Precipitation Microphysics
Principles and Parameterizations
, pp. 101 - 138
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×