Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-13T23:20:00.289Z Has data issue: false hasContentIssue false

4 - Saturation adjustment

Published online by Cambridge University Press:  23 November 2009

Jerry M. Straka
Affiliation:
University of Oklahoma
Get access

Summary

Introduction

Saturation adjustment schemes are usually designed to bring the relative humidity back to exactly 100% when supersaturation occurs. In doing so, the enthalpy of condensation or deposition is released, the temperature is increased just the right amount for 100% humidity, and the air becomes laden with condensate in the form of cloud droplets at temperatures warmer than 273.15 K. At temperatures colder than freezing, in order to adjust the relative humidity to 100% with respect to ice, a mixture of cloud droplets and ice crystals may be found, and finally at temperatures colder than 233.15 K, only ice crystals are generally produced. For the case of a mixture of cloud droplets and ice crystals, the adjustment is made such that the saturation mixing ratio of each phase, liquid and ice, is weighted in the calculation of relative humidity (Tao et al.1989). Some of the earliest adjustment schemes were described by McDonald (1963), for example, to simulate fog formation. The adjustment process can be prescribed for a single step as in Rutledge and Hobbs (1983; 1984), or an iteration process such as that in Bryan and Fritsch (2002), using potential-temperature, vapor, and mixing ratios. In Tripoli and Cotton (1981), an ice-liquid potential temperature and vapor are used to diagnose quickly the cloud-water mixing ratio required to bring a parcel to 100% humidity with an appropriate associated temperature increase (condensation) or temperature decrease (evaporation).

Type
Chapter
Information
Cloud and Precipitation Microphysics
Principles and Parameterizations
, pp. 78 - 100
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Saturation adjustment
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Saturation adjustment
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Saturation adjustment
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.005
Available formats
×