Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-13T23:25:51.068Z Has data issue: false hasContentIssue false

10 - Hail growth

Published online by Cambridge University Press:  23 November 2009

Jerry M. Straka
Affiliation:
University of Oklahoma
Get access

Summary

Introduction

The formation of hailstones is an intriguing aspect of precipitation development studies owing to the unique cloud systems in which hailstones form. As equal amounts are added of hailstones, for a given density the shells of equal mass will be of different thickness (Fig. 10.1). In particular, the formation of very large hailstones, some of which are greater than 51 mm in diameter, is of great interest. Models of hail growth can be very simple or imply very detailed processes (Takahashi 1976 and Fig. 10.2).

Hailstones are typically defined as solid or nearly solid ice particles that are greater than 5 mm in diameter. The National Weather Service in the United States classifies hailstones as constituting severe hail if they are larger than 19 mm (3/4″) in diameter, and constituting very severe hail if the hailstones are larger than 51 mm (2″). These larger hailstones develop most frequently from rapid riming of higher-density graupel particles and/or large frozen drops. Studies suggest that high-plains storms produce most of their hail from graupel, and Southern Plains storms produce most from frozen drops (Fig. 10.3). It is not known exactly why this is so, but some have speculated that high-plains storms do not produce large water drops above the freezing level because they have cold cloud bases cooler than 5 °C (278.15 K) (Fig. 10.3) and the 500 mb temperature in the updraft core is perhaps 260.15 to 263.15 K. Thus, many of the hailstone embryos are perhaps formed from graupel.

Type
Chapter
Information
Cloud and Precipitation Microphysics
Principles and Parameterizations
, pp. 293 - 311
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hail growth
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hail growth
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hail growth
  • Jerry M. Straka, University of Oklahoma
  • Book: Cloud and Precipitation Microphysics
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581168.011
Available formats
×