Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-13T23:30:55.838Z Has data issue: false hasContentIssue false

9 - Autoconversions and conversions

Published online by Cambridge University Press:  23 November 2009

Jerry M. Straka
Affiliation:
University of Oklahoma
Get access

Summary

Introduction

An autoconversion or conversion scheme represents hydrometeors changing from one species/habit to another. The change could be a phase change such as homogeneous freezing of water drops. Or it could be a change within a phase, but a change of species dependent on diameter, such as cloud droplets to drizzle or raindrops. It also could be a graupel of one density becoming more or less dense and subsequently reclassified as a different density owing to the riming it experienced.

One reason that autoconversions and conversions are so difficult to parameterize is that autoconversions and conversions are not well-observed processes, though they can be simulated approximately using a hybrid bin model (see Feingold et al. 1998). Furthermore, conversions of ice crystals or snow aggregates to graupels of particular densities are terribly difficult to parameterize, as there are few accurate measurements in nature or from the laboratory on this topic.

Multi-dimensional, Eulerian models incorporate autoconversion and conversion schemes of varying complexity to try to capture the physics changes on the sub-grid scale in terms of grid-scale quantities, much the way turbulence is parameterized (Stull 1988). This has been done for cloud, mesoscale, synoptic, and global models with complexity usually decreasing with increasing scale (Wisner et al. 1972; Koenig and Murray 1976; Cotton et al. 1982; Cotton et al. 1986; Cotton et al. 2001; Lin et al. 1983; Farley et al. 1989; Ferrier 1994, Straka and Mansell 2005 among many others) (this is the nature of microphysical parameterizations).

Type
Chapter
Information
Cloud and Precipitation Microphysics
Principles and Parameterizations
, pp. 253 - 292
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×