Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-26T15:14:27.031Z Has data issue: false hasContentIssue false

8 - Introduction to Large Eddy Simulation of Turbulent Flows

Published online by Cambridge University Press:  06 July 2010

B. E. Launder
Affiliation:
University of Manchester Institute of Science and Technology
N. D. Sandham
Affiliation:
University of Southampton
Get access

Summary

Introduction

This chapter is meant as an introduction to Large-Eddy Simulation (LES) for readers not familiar with it. It therefore presents some classical material in a concise way and supplements it with pointers to recent trends and literature. For the same reason we shall focus on issues of methodology rather than applications. The latter are covered elsewhere in this volume. Furthermore, LES is closely related to direct numerical simulation (DNS) which is also widely discussed in this volume. Hence,w e concentrate as much as possible on those features which are particular to LES and which distinguish it from other computational methods.

For the present text we have assembled material from research papers,earlier introductions and reviews (Ferziger 1996,Härtel 1996,Piomelli 1998),and our own results. The selection and presentation is of course biased by the authors’ own point of view. Supplementary material is available in the cited references.

Resolution requirements of DNS

The principal difficulty of computing and modelling turbulent flows resides in the dominance of nonlinear effects and the continuous and wide spectrum of observed scales. Without going into details (the reader might consult classical text books such as Tennekes and Lumley (1972)) we just recall here that the ratio of the size of the largest turbulent eddies in a flow, L,to that of the smallest ones determined by viscosity, η, behaves like L/η ∼ Re3/4u′. Here, Reu′= u′ L/ν with u′ being a characteristic velocity fluctuation and ν the kinematic viscosity. Let us consider as an example a plane channel,a prototype of an internal flow. Reynolds (1989) estimated Re ∼ Re0.9 from u′ ∼ u c1/2f, cf ∼ Re−0.2, where Re is based on the center line velocity and the channel height. In a DNS no turbulence model is applied so that motions of all size have to be resolved numerically by a grid which is sufficiently fine. Hence, the computational requirements increase rapidly with Re. According to this estimate a DNS of channel flow at Re = 106 for example would take around hundred years on a computer running at several GFLOPS. This is obviously not feasible. Moreover,in an expensive DNS a huge amount of information would be generated which is mostly not required by the practical user. He or she would mostly be content with knowing the average flow and some lower moments to a precision of a few percent.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×