Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T15:09:41.889Z Has data issue: false hasContentIssue false

4 - The Elliptic Relaxation Method

Published online by Cambridge University Press:  06 July 2010

B. E. Launder
Affiliation:
University of Manchester Institute of Science and Technology
N. D. Sandham
Affiliation:
University of Southampton
Get access

Summary

Non-local wall effects

The elliptic nature of wall effects was recognized early in the literature on turbulence modeling (Chou 1945)and has continued to influence thoughts about how to incorporate non-local influences of boundaries (Launder et al. 1975). In the literature on closure modeling the non-local effect is often referred to as ‘pressure reflection’ or ‘pressure echo’ because it originates with the surface boundary condition imposed on the Poisson equation for the perturbation pressure, p.

The Poisson equation is (we are considering constant density flow ρ ≡ 1); the boundary condition is usually taken to be ∂p/∂xn = 0, ignoring a small viscous contribution. The boundary condition influences the pressure of the interior fluid through the solution to (1.1). Mathematically this is quite simple: the solution to the linear equation (1.1) consists of a particular part, forced by the right-hand side, and a homogeneous part, forced by the boundary condition. The fact that the boundary condition adds to the solution interior to the fluid can be described as a non-local, kinematic effect.

Figure 1 schematizes non-locality in the Poisson equation as a reflected pressure wave, but for incompressible turbulent fluctuations the wall effect is instantaneous, though non-local. Pressure reflection enhances pressure fluctuations; indeed, Manceau et al. (2001)sho w that pressure reflection can increase redistribution of Reynolds stress anisotropy. Redistribution is due to the pressure-strain correlation: the notion that it is increased by the wall effect is contrary to most second moment closure (SMC)models, which represent pressure echo as a reduction of the redistribution term.

The idea of associating inviscid wall effects with pressure reflection is natural, because the pressure enters the Reynolds stress transport equation through the velocity-pressure gradient correlation. Suppression of the normal component of pressure gradient by the wall should have an effect on the rate of redistribution of variance between those components of the Reynolds stress tensor that contain the normal velocity component – i.e., unui, where n denotes the wall-normal direction. This effect enters the evolution equation for the Reynolds stress (equation (1.3)below).

However, there is another notion about how anisotropy of the Reynolds stress tensor is altered non-locally by the presence of a wall. The inviscid boundary condition on the normal component of velocity is the no-flux condition u · n= 0. This constraint on the normal velocity produces another non-local, elliptic influence of the boundary.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×