Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-15T01:16:14.821Z Has data issue: false hasContentIssue false

Chapter 8 - Mood and Psychosis: Limits and Overlapping between Psychotic Disorders and Mood Disorders

Published online by Cambridge University Press:  16 May 2024

Allan Young
Affiliation:
Institute of Psychiatry, King's College London
Marsal Sanches
Affiliation:
Baylor College of Medicine, Texas
Jair C. Soares
Affiliation:
McGovern Medical School, The University of Texas
Mario Juruena
Affiliation:
King's College London
Get access

Summary

‘Psychotic disorders’ is an umbrella term for psychiatric conditions featuring psychosis, including mood disorders. Despite the prominence of psychotic symptoms across the psychotic spectrum, a distinction between schizophrenia and affective psychoses has been historically established. Findings from genetic studies support the aetiological overlap between affective and non-affective psychosis, although poor characterisation of the schizoaffective population still poses a challenge. Likewise, literature points to shared environmental risk factors between bipolar disorder and schizophrenia. Neuroimaging evidence suggest significant similarities in the pathophysiology of the brain between affective and non-affective psychosis. An overlap is also observed in other biological and behavioural illness markers, as well as in the pharmacotherapy of psychotic disorders. Current diagnostic entities may not accurately delineate the aetiology and pathophysiology of these conditions. Modern classification approaches, such as the RDoC framework, propose the adoption of aetiological factors and pathophysiological evidence to characterise patients, rather than categorical diagnoses based on symptoms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goodwin, GM, Geddes, JR. What is the heartland of psychiatry? Br J Psychiatry. 2007;191(3):189–91. doi:10.1192/bjp.bp.107.036343.CrossRefGoogle ScholarPubMed
Perälä, J, Suvisaari, J, Saarni, S I, et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry. 2007;64(1):1928. doi: 10.1001/archpsyc.64.1.19CrossRefGoogle ScholarPubMed
Robins, E, Guze, SB. Establishment of diagnostic validity in psychiatric illness application to schizophrenia. Am J Psychiatry. 1970;126(7):983–7. doi: 10.1176/ajp.126.7.983CrossRefGoogle ScholarPubMed
Kahlbaum, K. Die Katatonie oder das Spannnungsirresein. 1874Google Scholar
Kraepelin, E. Dementia Praecox. Cambridge: Cambridge University Press. 1987Google Scholar
Taylor, M. Are we getting any better at staying better? The long view on relapse and recovery in first episode nonaffective psychosis and schizophrenia. Ther Adv Psychopharmacol. 2019;9:2045125319870033. doi: 10.1177/2045125319870033.CrossRefGoogle Scholar
Van Bergen, AH, Verkooijen, S, Vreeker, A, et al. The characteristics of psychotic features in bipolar disorder. Psychol Med. 2019;49(12):2036–48. doi: 10.1017/S0033291718002854CrossRefGoogle ScholarPubMed
Kasanin, J. The acute schizoaffective psychoses. Am J Psychiatry. 1933;151(6 Suppl):144–54. doi: 10.1176/ajp.151.6.144Google Scholar
Fish, FJ, Hamilton, M. Fish’s Clinical Psychopathology: Signs and Symptoms in Psychiatry. Bristol: Wright, 1985Google Scholar
Serretti, A, Mandelli, L, Lattuada, E, Smeraldi, E. Depressive syndrome in major psychoses: a study on 1351 subjects. Psychiatry Res. 2004;127(1–2):8599. doi: 10.1016/j.psychres.2003.12.025CrossRefGoogle Scholar
Dold, M, Bartova, L, Kautzky, A, et al. Psychotic features in patients with major depressive disorder: a report from the European Group for the Study of Resistant Depression. J Clin Psychiatry. 2019;80(1):17m12090, doi: 10.4088/JCP.17m12090CrossRefGoogle Scholar
Kendell, RE, Gourlay, J. The clinical distinction between the affective psychoses and schizophrenia. Br J Psychiatry. 1970;117(538):261–6. doi: 10.1192/bjp.117.538.261Google Scholar
Brockington, IF, Roper, A, Copas, J, et al. Schizophrenia, bipolar disorder and depression a discriminant analysis, using ‘lifetime’ psychopathology ratings. Br J Psychiatry. 2018;135(3):243–8. doi: 10.1192/bjp.135.3.243.Google Scholar
Jablensky, A, Woodbury, MA. Dementia praecox and manic-depressive insanity in 1908: a grade of membership analysis of the Kraepelinian dichotomy. Eur Arch Psychiatry Clin Neurosci. 1995;245(4–5):202–9. doi: 10.1007/BF02191798CrossRefGoogle ScholarPubMed
Jauhar, S, Krishnadas, R, Nour, MM, et al. Is there a symptomatic distinction between the affective psychoses and schizophrenia? A machine learning approach. Schizophr Res. 2018;202:241–7, doi: 10.1016/j.schres.2018.06.070CrossRefGoogle Scholar
Insel, TR, Cuthbert, B, Garvey, M, et al. P. Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748–51. doi: 10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Insel, TR, Cuthbert, BN. Endophenotypes: bridging genomic complexity and disorder hetereogeneity. Biol Psychiatry. 2009;66:988–9. doi: 10.1016/j.biopsych.2009.10.008CrossRefGoogle Scholar
Laursen, TM, Labouriau, R, Licht, RW, et al. Family history of psychiatric illness as a risk factor for schizoaffective disorder: a Danish register-based cohort study. Arch Gen Psychiatry. 2005;62(8):841–8. doi: 10.1001/archpsyc.62.8.841CrossRefGoogle ScholarPubMed
Cardno, AG, Marshall, EJ, Coid, B, et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry. 1999;56:162–8. doi: 10.1001/archpsyc.56.2.162CrossRefGoogle ScholarPubMed
Mansour, HA, Talkowski, ME, Wood, J, et al. Association study of 21 circadian genes with bipolar 1 disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord. 2009;11(7):701–10. doi: 10.1111/j.1399-5618.2009.00756.xCrossRefGoogle Scholar
Licinio, J. Messages from hypothesis-driven genotyping: the case of schizoaffective disorder, bipolar type. Mol Psychiatry. 2010;15(2):113–14. doi: 10.1038/mp.2009.153CrossRefGoogle ScholarPubMed
Hamshere, M, Bennett, P, Williams, N, et al. Genome-wide linkage scan in schizoaffective disorder: significant evidence for linkage (LOD + 3.54) at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry. 2005;62:1081–8. doi: 10.1001/archpsyc.62.10.1081CrossRefGoogle Scholar
Green, EK, Grozeva, D, Moskvina, V, et al. Variation at the GABAA receptor gene, Rho 1 (GABRR1) associated with susceptibility to bipolar schizoaffective disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(7):1347–9, doi: doi.org/10.1002/ajmg.b.31108CrossRefGoogle ScholarPubMed
Craddock, N, Jones, L, Jones, IR, et al. Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Mol Psychiatry. 2008;15(2):146–53. doi: 10.1038/mp.2008.66Google ScholarPubMed
Smigielski, L, Papiol, S, Theodoridou, A, et al. Polygenic risk scores across the extended psychosis spectrum. Transl Psychiatry. 2021;11(1):600. doi: 10.1038/s41398-021-01720-0.CrossRefGoogle ScholarPubMed
Gonzalez-Burgos, G, Fish, KN, Lewis, DA. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast. 2011;723184. doi: 10.1155/2011/723184CrossRefGoogle Scholar
Glausier, JR, Kimoto, S, Fish, KN, Lewis, DA. Lower glutamic acid decarboxylase 650-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia. Biolog Psychiatry. 2015;77:167–76. doi: 10.1016/j.biopsych.2014.05.010CrossRefGoogle Scholar
Dennison, CA, Legge, SE, Hubbard, L, et al. Risk factors, clinical features, and polygenic risk scores in schizophrenia and schizoaffective disorder depressive-type. Schizopher Bull. 2021;47(5):1375–84. doi: 10.1093/schbul/sbab036Google ScholarPubMed
Marshall, CR, Howrigan, DP, Merico, D, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49(1):2735. doi: 10.1038/ng.3725CrossRefGoogle Scholar
Green, EK, Rees, E, Walters, JTR, et al. Copy number variation in bipolar disorder. Mol Psychiatry. 2016;21(1):8993. doi: 10.1038/mp.2014.174CrossRefGoogle ScholarPubMed
Charney, AW, Stahl, EA, Green, EK, et al. Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases. Biol Psychiatry. 2019;86:110–19. doi: 10.1016/j.biopsych.2018CrossRefGoogle ScholarPubMed
Szatkiewicz, J, Crowley, JJ, Adolfsson, AN, et al. The genomics of major psychiatric disorders in a large pedigree from northern Sweden. Transl Psychiatry. 2019;9;60. doi: 10.1038/s41398-019-0414-9CrossRefGoogle Scholar
Van der Merwe, NJ, Karayoirgou, M, Ehlers, R, Roos, JL. Family history identifies sporadic schizoaffective disorder as a subtype for genetic studies. S Afr J Psychiatry. 2020;26;1393. doi: 10.4102/sajpsychiatry.v26i0.1393Google ScholarPubMed
Lewandowski, KE, McCarthy, JM, Öngür, D, et al. Functional connectivity in distinct cognitive subtypes in psychosis. Schizophr Res. 2019;204:120–6. doi: 10.1016/j.schres.2018.08.013CrossRefGoogle ScholarPubMed
Lee, CH, Sinclair, D, O’Donnell, M, et al. Transcriptional changes in the stress pathway are related to symptoms in schizophrenia and to mood in schizoaffective disorder. Schizophr Res. 2019;213:8795. doi: 10.1016/j.schres.2019.06.026CrossRefGoogle ScholarPubMed
Barker, V, Walker, RM, Evans, KL, Lawrie, SM. Methylation of glucocorticoid receptor (NR3C1), BDNF and oxytocin receptor genes in association with childhood maltreatment in schizophrenia and schizoaffective disorder. Schizophr Res. 2020;216:529–31. doi: 10.1016/j.schres.2019.11.050CrossRefGoogle ScholarPubMed
Dwyer, DB, Kalman, JL, Budde, M, et al. An investigation of psychosis subgroups with prognostic validation and exploration of genetic underpinnings: the PsyCourse Study. JAMA Psychiatry. 2020;1(77):523–33. doi: 10.1001/jamapsychiatry.2019.4910Google Scholar
Cosgrove, VE, Suppes, T. Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia. BMC Med. 2013;11:127. doi: 10.1186/1741-7015-11-127CrossRefGoogle Scholar
Radua, J, Ramella-Cravaro, V, Ioannidis, JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry. 2018;17(1):4966. doi: 10.1002/wps.20490CrossRefGoogle ScholarPubMed
Tortelli, A, Errazuriz, A, Croudace, T, et al. Schizophrenia and other psychotic disorders in Caribbean-born migrants and their descendants in England: systematic review and meta-analysis of incidence rates, 1950–2013. Soc Psychiatry Psychiatri Epidemiol. 2015;50:1039–55. doi: 10.1007/s00127-015-1021-6Google ScholarPubMed
Kirkbride, JB, Errazuriz, A, Croudance, TJ, et al. Incidence of schizophrenia and other psychoses in England 1950–2009: a systematic review and meta-analysis. PLoS One. 2012;7(3);e31660. doi: 10.1371/journal.pone.0031660CrossRefGoogle Scholar
Davies, C, Segre, G, Estradé, A, et al. Prenatal and perinatal risk and protective factors for psychosis: a systematic review and meta-analysis. Lancet Psychiatry. 2020;7(5):399410. doi: 10.1016/S2215-0366(20)30057-2CrossRefGoogle ScholarPubMed
Kinney, DK, Yurgelun-Todd, DA, Levy, DL, et al. Obstetrical complications in patients with bipolar disorder and their siblings. Psychiatry Res. 1993;48(1):4756. doi: 10.1016/0165-1781(93)90112-TCrossRefGoogle ScholarPubMed
Serati, M, Bertino, V, Merlarba, MR, et al. Obstetric complications and subsequent risk of mood disorders for offspring in adulthood: a comprehensive overview. Nord J Psychiatry. 2020;74(7):470–8. doi: 10.1080/08039488.2020.1751878CrossRefGoogle ScholarPubMed
Frans, EM, Sandin, S, Reichenberg, A, et al. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry. 2008;65(9):1034–40. doi: 10.1001/archpsyc.65.9.1034CrossRefGoogle ScholarPubMed
Torrey, EF, Buka, S, Cannon, TD, et al. Paternal age as a risk factor for schizophrenia: How important is it? Schizophr Res. 2009;114(1–3);15. doi: 10.1016/j.schres.2009.06.017CrossRefGoogle Scholar
Rodriguez, V, Alameda, L, Trotta, G, et al. Environmental risk factors in bipolar disorder and psychotic depression: a systematic review and meta-analysis of prospective studies. Schizophr Bull. 2021;47(4):959974. doi: 10.1093/schbul/sbaa197CrossRefGoogle ScholarPubMed
Marconi, A, Di Forti, M, Lewis, CM, Murray, RM, Vassos, E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull. 2016;42(5):1262–9. doi: 10.1093/schbul/sbw003CrossRefGoogle ScholarPubMed
Gibbs, M, Winsper, C, Marwaha, S, et al. Cannabis use and mania symptoms: a systematic review and meta-analysis. J Affect Disord. 2014;171:3947. doi: 10.1016/j.jad.2014.09.016CrossRefGoogle ScholarPubMed
Bally, N, Zullino, D, Aubry, JM. Cannabis use and first manic episode. J Affect Disord. 2014;165:103–8. doi: 10.1016/j.jad.2014.04.038CrossRefGoogle ScholarPubMed
Fusar-Poli, P, Radua, J, McGuire, P, Borgwardt, S. Neuroanatomical maps of psychosis onset: Voxel-wise meta-analysis of antipsychotic-naïve VBM studies. Schizophr Bull. 2012;38(6):12971307. doi: 10.1093/schbul/sbr134CrossRefGoogle ScholarPubMed
Opel, N, Goltermann, J, Hermesdorf, M, et al. Cross-disorder analysis of brain structure abnormalities in six major psychiatric disorders: a secondary analysis of mega- and meta-analytical findings from the ENIGMA Consortium. Biol Psychiatry. 2020;88(9):678–86. doi: 10.1016/j.biopsych.2020.04.027CrossRefGoogle ScholarPubMed
Goodkind, M, Eickhoff, SB, Oathes, DJ, et al. Identification of a common neurological substate for mental illness. JAMA Psychiatry. 2015;72(4):305. doi: 10.1001/jamapsychiatry.2014.2206CrossRefGoogle Scholar
McTeague, LM, Huemer, J, Carreon, DM, et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry. 2017;174(7):676–85. doi: 10.1176/appi.ajp.2017.16040400CrossRefGoogle ScholarPubMed
McTeague, LM, Rosenberg, BM, Lopez, JW, et al. Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. Am J Psychiatry. 2020;177(5):411–21. doi: 10.1176/appi.ajp.2019.18111271CrossRefGoogle ScholarPubMed
McCutcheon, R, Beck, K, Jauhar, S, Howes, OD. Defining the locus of dopaminergic dysfunction in schizophrenia: a meta-analysis and test of the mesolimbic hypothesis. Schizophr Bull. 2018;44(6):1301–11. doi: 10.1093/schbul/sbx180CrossRefGoogle ScholarPubMed
Yatham, LN, Liddle, PF, Shiah, IS, et al. PET study of [18 F]6-fluoro-L-dopa uptake in neuroleptic and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry. 2002;159(5):768–74. doi: 10.1176/appi.ajp.159.5.768Google ScholarPubMed
Jauhar, S, Nour, MM, Veronese, M, et al. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry. 2017;74(12):1206–13. doi: 10.1001/jamapsychiatry.2017.2943CrossRefGoogle Scholar
Brugger, SP, Howes, OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia. JAMA Psychiatry. 2017;74(11); 1104. doi:10.1001/jamapsychiatry.2017.2663CrossRefGoogle ScholarPubMed
Plum, F. Prospects for research on schizophrenia. 3. Neurophysiology. Neuropathological findings. Neurosci Res Program Bull. 1972;10(4):384–8. PMID: 4663816Google ScholarPubMed
Roeske, MJ, Konradi, C, Heckers, S, Lewis, AS. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry. 2021;26:3524–35. doi: 10.1038/s41380-020-0853-yCrossRefGoogle ScholarPubMed
Harrison, PJ, Colbourne, L, Harrison, CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry. 2020;25(8):17871808. doi: 10.1038/s41380-018-0213-3CrossRefGoogle ScholarPubMed
Bakhshi, K, Chance, SA. The neuropathology of schizophrenia: a selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience. 2015;303:82102. doi: 10.1016/j.neuroscience.2015.06.028CrossRefGoogle ScholarPubMed
Howes, OD, McCutcheon, R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry. 2017;7(2);e1024. doi: 10.1038/tp.2016.278CrossRefGoogle ScholarPubMed
Giridharan, VV, Sayana, P, Pinjari, OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry. 2019;25:94113. doi: doi.org/10.1038/s41380-019–0448–7CrossRefGoogle ScholarPubMed
Duchatel, RJ, Weickert, CS, Tooney, PA. White matter neuron biology and neuropathology in schizophrenia. NPJ Schizophr. 2019;5(1);10. doi: 10.1038/s41537-019-0078-8CrossRefGoogle ScholarPubMed
Harrison, PJ, Colbourne, L, Harrison, CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry. 2020;25(8):17871808. doi: 10.1038/s41380-018-0213-3CrossRefGoogle ScholarPubMed
Bakhshi, K, Chance, SA. The neuropathology of schizophrenia: a selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience. 2015;303:82102. doi: 10.1016/j.neuroscience.2015.06.028CrossRefGoogle ScholarPubMed
Walker, ER, McGee, RE, Druss, BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry. 2015;72(4):334–41. doi: 10.1001/jamapsychiatry.2014.2502. Erratum in: JAMA Psychiatry. 2015;72(7);736. Erratum in: JAMA Psychiatry. 2015;72(12);1259.CrossRefGoogle ScholarPubMed
Fornaro, M, Carvalho, AF, De Prisco, M, et al. The prevalence, odds, predictors, and management of tobacco use disorder or nicotine dependence among people with severe mental illness: systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;132:289303. doi: 10.1016/j.neubiorev.2021.11.039CrossRefGoogle ScholarPubMed
Martland, R, Teasdale, S, Murray, RM, et al. Dietary intake, physical activity and sedentary behaviour patterns in a sample with established psychosis and associations with mental health symptomatology. Psychol Med. 2021;23:111. doi: 10.1017/S0033291721003147Google Scholar
Perez, CSH, Ciufolini, S, Sood, PG, et al. Predictive value of cardiometabolic biomarkers and depressive symptoms for symptom severity and quality of life in patients with psychotic disorders. J Affect Disord. 2022;298 (Pt A):95103. doi: 10.1016/j.jad.2021.10.038CrossRefGoogle ScholarPubMed
Taipale, H, Tanskanen, A, Mehtälä, J, et al. 20-year follow-up study of physical morbidity and mortality in relationship to antipsychotic treatment in a nationwide cohort of 62,250 patients with schizophrenia (FIN20). World Psychiatry. 2020;19(1):61–8. doi: 10.1002/wps.20699CrossRefGoogle Scholar
Tiihonen, J, Mittendorfer-Rutz, E, Torniainen, M, Alexanderson, K, Tanskanen, A. Mortality and cumulative exposure to antipsychotics, antidepressants, and benzodiazepines in patients with schizophrenia: an observational follow-up study. Am J Psychiatry. 2016;173(6):600–6. doi: 10.1176/appi.ajp.2015.15050618CrossRefGoogle ScholarPubMed
Toffol, E, Hätönen, T, Tanskanen, A, et al. Lithium is associated with decrease in all-cause and suicide mortality in high-risk bipolar patients: a nationwide registry-based prospective cohort study. J Affect Disord. 2015;183:159–65. doi: 10.1016/j.jad.2015.04.055CrossRefGoogle ScholarPubMed
Pillinger, T, Beck, K, Gobjila, C, et al. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74(3):261–9. doi: 10.1001/jamapsychiatry.2016.3803CrossRefGoogle ScholarPubMed
Pillinger, T, Beck, K, Stubbs, B, Howes, OD. Cholesterol and triglyceride levels in first-episode psychosis: systematic review and meta-analysis. Br J Psychiatry. 2017;211(6):339–49. doi: 10.1192/bjp.bp.117.200907CrossRefGoogle ScholarPubMed
Pillinger, T, D’Ambrosio, E, McCutcheon, R, Howes, OD. Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models. Mol Psychiatry. 2019;24(6):776–94. doi: 10.1038/s41380-018-0058-9. Erratum in: Mol Psychiatry. 2018.Google ScholarPubMed
Misiak, B, Bartoli, F, Carrà, G, et al. Chemokine alterations in bipolar disorder: a systematic review and meta-analysis. Brain Behav Immun. 2020;88:870–7. doi: 10.1016/j.bbi.2020.04.013CrossRefGoogle ScholarPubMed
Marshe, VS, Pira, S, Mantere, O, et al. C-reactive protein and cardiovascular risk in bipolar disorder patients: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt B):442–51. doi: 10.1016/j.pnpbp.2017.07.026CrossRefGoogle ScholarPubMed
Kose, M, Pariante, CM, Dazzan, P, Mondelli, V. The role of peripheral inflammation in clinical outcome and brain imaging abnormalities in psychosis: a systematic review. Front Psychiatry. 2021;12;612471. doi: 10.3389/fpsyt.2021.612471CrossRefGoogle ScholarPubMed
McLaughlin, AP, Nikkheslat, N, Hastings, C, et al. The influence of comorbid depression and overweight status on peripheral inflammation and cortisol levels. Psychol Med. 2021;18:18. doi: 10.1017/S0033291721000088Google Scholar
Hepgul, N, Pariante, CM, Dipasquale, S, et al. Childhood maltreatment is associated with increased body mass index and increased C-reactive protein levels in first-episode psychosis patients. Psychol Med. 2012;42(9):18931901. doi: 10.1017/S0033291711002947CrossRefGoogle ScholarPubMed
Kuzminskaite, E, Penninx, BWJH, van Harmelen, AL, et al. Childhood trauma in adult depressive and anxiety disorders: an integrated review on psychological and biological mechanisms in the NESDA Cohort. J Affect Disord. 2021;283:179–91. doi: 10.1016/j.jad.2021.01.054CrossRefGoogle ScholarPubMed
Nutt, DJ, Blier, P. Neuroscience-based Nomenclature (NbN) for Journal of Psychopharmacology. J Psychopharmacol. 2016;30(5):413–15. doi: 10.1177/0269881116642903CrossRefGoogle ScholarPubMed
Johnstone, E, Frith, C, Crow, T, et al. The Northwick Park ‘Functional’ Psychosis Study: diagnosis and outcome. Psychol Med. 1992;22(2):331–46. doi: 10.1017/s0033291700030270CrossRefGoogle ScholarPubMed
Leucht, S, Helfer, B, Dold, M, Kissling, W, McGrath, JJ. Lithium for schizophrenia. Cochrane Database Syst Rev. 2015;2015(10);CD003834. doi: 10.1002/14651858.CD003834.pub3Google ScholarPubMed
Young, AH, Jauhar, S. Antipsychotics, the heartland of clinical psychopharmacology? J Psychopharmacol. 2021;35(9):1027–9. doi: 10.1177/02698811211043599.CrossRefGoogle ScholarPubMed
Cipriani, A, Barbui, C, Salanti, G, et al. Comparative efficacy and acceptability of antimani drugs in acute mania: a multiple-treatments meta-analysis. Lancet. 2011;378(9799):1306–15.CrossRefGoogle Scholar
Baldessarini, RJ, Tondo, L, Vázquez, GH. Pharmacological treatment of adult bipolar disorder. Mol Psychiatry. 2019;24(2):198217. doi: 10.1038/s41380-018-0044-2.CrossRefGoogle ScholarPubMed
Delay, J, Deniker, P, Harl, JM. [Therapeutic method derived from hiberno-therapy in excitation and agitations states]. Ann Med Psychol (Paris). 1952;110(22):267–73.Google ScholarPubMed
Strawbridge, R, Carter, B, Marwood, L, et al. Augmentation therapies for treatment-resistant depression: systematic review and meta-analysis. Br J Psychiatry. 2019;214(1):4251. doi: 10.1192/bjp.2018.233CrossRefGoogle ScholarPubMed
Goodwin, GM, Haddad, PM, Ferrier, IN, et al. Evidence-based guidelines for treating bipolar disorder: revised third edition recommendations from the British Association for Psychopharmacology. J Psychopharmacol. 2016;30(6):495553. doi: 10.1177/0269881116636545.CrossRefGoogle ScholarPubMed
Lintunen, J, Taipale, H, Tanskanen, A, et al. Long-term real-world effectiveness of pharmacotherapies for schizoaffective disorder. Schizophr Bull. 2021;47(4):10991107. doi: 10.1093/schbul/sbab004.CrossRefGoogle ScholarPubMed
Kirov, G, Jauhar, S, Sienaert, P, Kellner, CH, McLoughlin, DM. Electoconvulsive therapy for depression: 80 years of progress. Br J Psychiatry. 2021;219(5):594–7. doi: 10.1192/bjp.2021.37CrossRefGoogle ScholarPubMed
Sinclair, DJM, Zhao, S, Qi, F, Nyakyoma, K, Kwong, JSW, Adams, CE. Electroconvulsive therapy for treatment-resistant schizophrenia. Cochrane Database Syst Rev. 2019;2019:CD011847.Google Scholar
Gale-Grant, O, Dazzan, P, Lappin, JM, et al. Diagnostic stability and outcome after first episode psychosis. J Ment Health. 2021;30(1):104–12. doi: 10.1080/09638237.2020.1818191.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×