Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T13:23:40.586Z Has data issue: false hasContentIssue false

14 - MR perfusion imaging in the body: kidney, liver, and lung

from Section 2 - Clinical applications

Published online by Cambridge University Press:  05 May 2013

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Xavier Golay
Affiliation:
National Hospital for Neurology and Neurosurgery, London
Gregory Zaharchuk
Affiliation:
Stanford University Medical Center
Get access

Summary

Introduction

This chapter will discuss body perfusion MRI applications, specifically related to three organs: kidneys, liver, and lungs. Each section begins with a short description of the scientific and/or clinical rationale for perfusion imaging and then describes what is known to date regarding the feasibility and/or status of performing these measurements, along with their potential significance. Unlike neurological and oncological applications described in Chapters 8–13, perfusion MRI in the body is still evolving, and so no specific, standardized methods of data acquisition and analysis have yet emerged. However, a brief description of all methods available to date and relevant references are provided. The perfusion MRI techniques discussed fall under two primary categories, either those based on exogenous contrast agent administration, or those based on endogenous contrast mechanisms.

Kidney

Scientific/clinical rationale

In 1938, Goldblatt [1, 2] demonstrated a relationship between hypertension and renal ischemia. He was able to consistently produce elevations in systolic blood pressure by producing renal ischemia with a constricting clamp in an animal model. Removal of the clamp restored blood pressure to the reference range. Based on this finding, Burkland et al. performed nephrectomy of a unilateral ischemic kidney as a cure for hypertension [3]. This remained the method of surgical treatment until 1960 when Lambeth et al. reported resolving hypertension by correction of renal artery stenosis (RAS) [4]. In the 1960s, the delineation of the renin–angiotensin system and its relation to hypertension [5] also had a large impact on the medical therapy and diagnostic studies used in renovascular hypertension.

Type
Chapter
Information
Clinical Perfusion MRI
Techniques and Applications
, pp. 281 - 301
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goldblatt, H.Experimental hypertension induced by renal ischemia: Harvey Lecture, May 19, 1938. Bull N Y Acad Med 1938;14(9):523–53. Epub 1938/09/01.Google Scholar
Goldblatt, H.Studies on experimental hypertension: VII. The production of the malignant phase of hypertension. J Exp Med 1938;67(5):809–26. Epub 1938/04/30.CrossRefGoogle ScholarPubMed
Burkland, CE, Goodwin, WE, Leadbetter, WF.The cure of hypertension by nephrectomy; a ten-year follow-up of a case. Surgery 1950;28(1):67–70. Epub 1950/07/01.Google ScholarPubMed
Lambeth, CB, Derrick, JR, Hansen, AE.Stenosis of a branch of the renal artery causing hypertension in a child, including a complication of translumbar renal arteriography. Pediatrics 1960;26:822–7. Epub 1960/11/01.Google Scholar
Taquini, AC, Taquini, AC.The renin-angiotensin system in hypertension. Am Heart J 1961;62:558–64. Epub 1961/10/01.CrossRefGoogle ScholarPubMed
Pickering, TG, Mann, SJ.Is there a role for non-invasive screening tests in diagnosing renal artery stenosis?J Hypertens 1996;14(11):1265–6. Epub 1996/11/01.CrossRefGoogle Scholar
Textor, SC, Lerman, L.Renovascular hypertension and ischemic nephropathy. Am J Hypertens 2010;23(11):1159–69. Epub 2010/09/25.CrossRefGoogle ScholarPubMed
Kim, D, Porter, DH, Brown, R, et al. Renal artery imaging: a prospective comparison of intra-arterial digital subtraction angiography with conventional angiography. Angiology 1991;42(5):345–57. Epub 1991/05/01.CrossRefGoogle ScholarPubMed
Nahman, NS, Maniam, P, Hernandez, RA, et al. Renal artery pressure gradients in patients with angiographic evidence of atherosclerotic renal artery stenosis. Am J Kidney Dis 1994;24(4):695–9. Epub 1994/10/01.CrossRefGoogle ScholarPubMed
Delin, NA, Ekestrom, S, Hoglund, NO.Arteriographic appearance of renal artery stenosis compared to resistance measured at operation. Effect of artery reconstruction on flow, pressure gradient and resistance. Acta Chir Scand Suppl. 1966;356B:150–62. Epub 1966/01/01.Google ScholarPubMed
Zhang, HL, Sos, TA, Winchester, PA, Gao, J, Prince, MR.Renal artery stenosis: imaging options, pitfalls, and concerns. Prog Cardiovasc Dis 2009;52(3):209–19. Epub 2009/11/18.CrossRefGoogle ScholarPubMed
Safian, RD, Textor, SC.Renal-artery stenosis. N Engl J Med 2001;344(6):431–42. Epub 2001/02/15.CrossRefGoogle ScholarPubMed
Attenberger, UI, Sourbron, SP, Schoenberg, SO, et al. Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 2010;31(1):125–33. Epub 2009/12/23.CrossRefGoogle ScholarPubMed
Dworkin, LD, Brenner, BM.The renal circulation. In: Brenner, BM, Rector, FC, editors, The Kidney. Philadelphia: Saunders, 1981.Google Scholar
Badzynska, B, Sadowski, J.Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system. Exp Physiol 2008;93(12):1292–302. Epub 2008/07/01.CrossRefGoogle ScholarPubMed
Young, LS, Regan, MC, Barry, MK, Geraghty, JG, Fitzpatrick, JM.Methods of renal blood flow measurement. Urol Res 1996;24(3):149–60. Epub 1996/01/01.CrossRefGoogle ScholarPubMed
Lassen, NA, Perl, W.Tracer Kinetic Methods in Medical Physiology. New York: Raven, 1979.Google Scholar
Zierler, KL.Equations for measuring blood flow by external monitoring of radioisotopes. CircRes 1965;16:309–21. Epub 1965/04/01.Google ScholarPubMed
Davis, CP, McKinnon, GC, Debatin, JF, von Schulthess, GK.Ultra-high-speed MR imaging. Eur Radiol 1996;6(3):297–311. Epub 1996/01/01.CrossRefGoogle ScholarPubMed
Nitz, WR.Fast and ultrafast non-echo-planar MR imaging techniques. Eur Radiol 2002;12(12):2866–82. Epub 2002/11/20.Google ScholarPubMed
Perman, WH, Gado, MH, Larson, KB, Perlmutter, JS.Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 1992;28(1):74–83. Epub 1992/11/01.CrossRefGoogle ScholarPubMed
Lassen, NA.Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab 1984;4(4):633–4. Epub 1984/12/01.CrossRefGoogle Scholar
Stewart, GN.Researches on the circulation time in organs and on the influences which affect it: Parts I.-III. J Physiol 1893;15(1–2):1–89. Epub 1893/07/01.CrossRefGoogle ScholarPubMed
Weisskoff, RM, Chesler, D, Boxerman, JL, Rosen, BR.Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?Magn Reson Med 1993;29(4):553–8. Epub 1993/04/01.CrossRefGoogle ScholarPubMed
Morell, A, Ahlstrom, H, Schoenberg, SO, et al. Quantitative renal cortical perfusion in human subjects with magnetic resonance imaging using iron-oxide nanoparticles: influence of T1 shortening. Acta Radiol 2008;49(8):955–62. Epub 2008/07/11.CrossRefGoogle ScholarPubMed
Giebisch, G, Windhager, E.Glomerular filtration and renal blood flow. In: Boron, WF, Boulpaep, EL, editors. Medical physiology: A Cellular and molecular approach. Philadelphia: Saunders, 2003;757–73.Google Scholar
Greger, R.Introduction to renal function, renal blood flow and the formation of filtrate. In: Greger, R, Windhorst, U, editors, Comprehensive Human Physiology: From Cellular Mechanisms to Integration. Berlin: Springer, 1996;1469–87.CrossRefGoogle Scholar
Mostafavi, MR, Chavez, DR, Cannillo, J, Saltzman, B, Prasad, PV.Redistribution of renal blood flow after SWL evaluated by Gd-DTPA-enhanced magnetic resonance imaging. J Endourol 1998;12(1):9–12. Epub 1998/04/08.CrossRefGoogle ScholarPubMed
Michaely, HJ, Schoenberg, SO, Oesingmann, N, et al. Renal artery stenosis: functional assessment with dynamic MR perfusion measurements–feasibility study. Radiology 2006;238(2):586–96. Epub 2006/01/27.CrossRefGoogle ScholarPubMed
Bokacheva, L, Rusinek, H, Zhang, JL, Chen, Q, Lee, VS.Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging 2009;29(2):371–82. Epub 2009/01/24.CrossRefGoogle ScholarPubMed
Jones, RA, Votaw, JR, Salman, K, et al. Magnetic resonance imaging evaluation of renal structure and function related to disease: technical review of image acquisition, postprocessing, and mathematical modeling steps. J Magn Reson Imaging 2011;33(6):1270–83. Epub 2011/05/19.CrossRefGoogle ScholarPubMed
Lee, VS, Rusinek, H, Johnson, G, et al. MR renography with low-dose gadopentetate dimeglumine: feasibility. Radiology 2001;221(2):371–9.CrossRefGoogle ScholarPubMed
Annet, L, Hermoye, L, Peeters, F, et al. Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 2004;20(5):843–9. Epub 2004/10/27.CrossRefGoogle Scholar
Baumann, D, Rudin, M.Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 2000;18(5):587–95. Epub 2000/07/29.CrossRefGoogle ScholarPubMed
Buckley, DL, Shurrab, AE, Cheung, CM, et al. Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 2006;24(5):1117–23. Epub 2006/08/31.CrossRefGoogle ScholarPubMed
Hackstein, N, Heckrodt, J, Rau, WS.Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 2003;18(6):714–25. Epub 2003/11/25.CrossRefGoogle ScholarPubMed
Katzberg, RW, Buonocore, MH, Low, R, et al. MR determination of glomerular filtration rate in subjects with solitary kidneys in comparison to clinical standards of renal function: feasibility and preliminary report. Contrast Media Mol Imaging 2009;4(2):51–65. Epub 2009/03/11.CrossRefGoogle ScholarPubMed
Lee, VS, Rusinek, H, Bokacheva, L, et al. Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol 2007;292(5):F1548–59. Epub 2007/01/11.CrossRefGoogle Scholar
Niendorf, ER, Grist, TM, Lee, FT, Brazy, PC, Santyr, GE.Rapid in vivo measurement of single-kidney extraction fraction and glomerular filtration rate with MR imaging. Radiology 1998;206(3):791–8. Epub 1998/03/12.CrossRefGoogle ScholarPubMed
Agarwal, R, Brunelli, SM, Williams, K, et al. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant 2009;24(3):856–63. Epub 2008/10/28.CrossRefGoogle ScholarPubMed
Chrysochou, C, Buckley, DL, Dark, P, Cowie, A, Kalra, PA.Gadolinium-enhanced magnetic resonance imaging for renovascular disease and nephrogenic systemic fibrosis: critical review of the literature and UK experience. J Magn Reson Imaging 2009;29(4):887–94. Epub 2009/03/24.CrossRefGoogle ScholarPubMed
Kuo, PH.Gadolinium-containing MRI contrast agents: important variations on a theme for NSF. J Am Coll Radiol 2008;5(1):29–35. Epub 2008/01/09.CrossRefGoogle ScholarPubMed
Williams, DS.Quantitative perfusion imaging using arterial spin labeling. Methods Mol Med 2006;124:151–73. Epub 2006/03/02.Google ScholarPubMed
Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998;40(3):383–96. Epub 1998/09/04.CrossRefGoogle ScholarPubMed
Martirosian, P, Klose, U, Mader, I, Schick, F.FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004;51(2):353–61. Epub 2004/02/03.CrossRefGoogle ScholarPubMed
Lorenz, CH, Powers, TA, Partain, CL.Quantitative imaging of renal blood flow and function. Invest Radiol 1992;27 Suppl 2:S109–14. Epub 1992/12/01.CrossRefGoogle ScholarPubMed
Ritt, M, Janka, R, Schneider, MP, et al. Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant 2010;25(4):1126–33. Epub 2009/11/24.CrossRefGoogle ScholarPubMed
Epstein, FH, Agmon, Y, Brezis, M.Physiology of renal hypoxia. Ann N Y Acad Sci 1994;718:72–81; discussion 81–2. Epub 1994/04/15.CrossRefGoogle ScholarPubMed
Brezis, M, Rosen, S.Hypoxia of the renal medulla–its implications for disease. N Engl J Med 1995;332(10):647–55. Epub 1995/03/09.CrossRefGoogle ScholarPubMed
Brezis, M, Agmon, Y, Epstein, FH.Determinants of intrarenal oxygenation. I. Effects of diuretics. Am J Physiol 1994;267(6 Pt 2):F1059–62. Epub 1994/12/01.Google ScholarPubMed
Liss, AG, Liss, P.Use of a modified oxygen microelectrode and laser-Doppler flowmetry to monitor changes in oxygen tension and microcirculation in a flap. Plast Reconstr Surg 2000;105(6):2072–8. Epub 2000/06/06.CrossRefGoogle Scholar
Palm, F, Cederberg, J, Hansell, P, Liss, P, Carlsson, PO.Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 2003;46(8):1153–60. Epub 2003/07/25.CrossRefGoogle ScholarPubMed
Braun, RD, Lanzen, JL, Snyder, SA, Dewhirst, MW.Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 2001;280(6):H2533–44.CrossRefGoogle ScholarPubMed
Zhong, Z, Arteel, GE, Connor, HD, et al. Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am J Physiol 1998;275(4 Pt 2):F595–604. Epub 1998/10/01.Google ScholarPubMed
Rosenberger, C, Goldfarb, M, Shina, A, et al. Evidence for sustained renal hypoxia and transient hypoxia adaptation in experimental rhabdomyolysis-induced acute kidney injury. Nephrol Dial Transplant 2008;23(4):1135–43. Epub 2007/12/01.CrossRefGoogle ScholarPubMed
Rosenberger, C, Khamaisi, M, Abassi, Z, et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 2008;73(1):34–42. Epub 2007/10/05.CrossRefGoogle ScholarPubMed
Hirayama, A, Nagase, S, Ueda, A, et al. In vivo imaging of oxidative stress in ischemia-reperfusion renal injury using electron paramagnetic resonance. Am J Physiol Renal Physiol 2005;288(3):F597–603. Epub 2004/11/13.CrossRefGoogle ScholarPubMed
Subramanian, S, Yamada, K, Irie, A, et al. Noninvasive in vivo oximetric imaging by radiofrequency FT EPR. Magn Reson Med 2002;47(5):1001–8. Epub 2002/04/30.CrossRefGoogle ScholarPubMed
Kempe, S, Metz, H, Mader, K.Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research – chances and challenges. Eur J Pharm Biopharm 2010;74(1):55–66. Epub 2009/09/03.CrossRefGoogle ScholarPubMed
Matthews, PM, Jezzard, P.Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2004;75(1):6–12. Epub 2004/01/07.Google ScholarPubMed
Rajagopalan, P, Krishnan, KR, Passe, TJ, Macfall, JR.Magnetic resonance imaging using deoxyhemoglobin contrast versus positron emission tomography in the assessment of brain function. Prog Neuropsychopharmacol Biol Psychiatry. 1995;19(3):351–66. Epub 1995/05/01.CrossRefGoogle ScholarPubMed
Ugurbil, K, Hu, X, Chen, W, et al. Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 1999;354(1387):1195–213. Epub 1999/08/31.CrossRefGoogle ScholarPubMed
Dunn, JF, Swartz, HM.Blood oxygenation. Heterogeneity of hypoxic tissues monitored using bold MR imaging. Adv Exp Med Biol 1997;428:645–50. Epub 1997/01/01.CrossRefGoogle ScholarPubMed
Prasad, PV, Chen, Q, Goldfarb, JW, Epstein, FH, Edelman, RR.Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging 1997;7(6):1163–5. Epub 1997/12/24.CrossRefGoogle ScholarPubMed
Prasad, PV, Edelman, RR, Epstein, FH.Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 1996;94(12):3271–5. Epub 1996/12/15.CrossRefGoogle ScholarPubMed
Priatna, A, Epstein, FH, Spokes, K, Prasad, PV.Evaluation of changes in intrarenal oxygenation in rats using multiple gradient-recalled echo (mGRE) sequence. J Magn Reson Imaging 1999;9(6):842–6. Epub 1999/06/18.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Textor, SC, Glockner, JF, Lerman, LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol 2008;19(4):780–8. Epub 2008/02/22.CrossRefGoogle ScholarPubMed
Cheung, CM, Shurrab, AE, Buckley, DL, et al. MR-derived renal morphology and renal function in patients with atherosclerotic renovascular disease. Kidney Int 2006;69(4):715–22. Epub 2006/01/06.CrossRefGoogle ScholarPubMed
Han, F, Xiao, W, Xu, Y, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant 2008;23(8):2666–72. Epub 2008/03/01.CrossRefGoogle ScholarPubMed
Djamali, A, Sadowski, EA, Samaniego-Picota, M, et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation 2006;82(5):621–8. Epub 2006/09/14.CrossRefGoogle ScholarPubMed
Sadowski, EA, Fain, SB, Alford, SK, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 2005;236(3):911–19. Epub 2005/08/25.CrossRefGoogle ScholarPubMed
de Bazelaire, C, Alsop, DC, George, D, et al. Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res 2008;14(17):5548–54. Epub 2008/09/04.CrossRefGoogle ScholarPubMed
De Bazelaire, C, Rofsky, NM, Duhamel, G, et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol 2005;12(3):347–57. Epub 2005/03/16.CrossRefGoogle Scholar
Chiandussi, L, Greco, F, Sardi, G, et al. Estimation of hepatic arterial and portal venous blood flow by direct catheterization of the vena porta through the umbilical cord in man. Preliminary results. Acta Hepatosplenol 1968;15(3):166–71.Google ScholarPubMed
Gulberg, V, Haag, K, Rossie, M, Gerbes, AL.Hepatic arterial buffer response in patients with advanced cirrhosis. Hepatology 2002;35(3):630–4.CrossRefGoogle ScholarPubMed
Richter, S, Mucke, I, Menger, MD, Vollmar, B.Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol 2000; 279(2):G454–62.CrossRefGoogle ScholarPubMed
Sarper, R, Fajman, WA, Rypins, EB, et al. A noninvasive method for measuring portal venous/total hepatic blood flow by hepatosplenic radionuclide angiography. Radiology 1981;141(1):179–84.CrossRefGoogle ScholarPubMed
Miles, KA, Hayball, MP, Dixon, AK.Functional images of hepatic perfusion obtained with dynamic CT. Radiology 1993;188(2):405–11.CrossRefGoogle ScholarPubMed
Bolton, RP, Mairiang, EO, Parkin, A, et al. Dynamic liver scanning in cirrhosis. Nucl Med Commun 1988;9(3):235–47.CrossRefGoogle ScholarPubMed
Zapletal, C, Mehrabi, A, Scharf, J, et al. Experimental evaluation of dynamic MRI for quantification of liver perfusion. Transplant Proc 1999;31(1–2):421–2. Epub 1999/03/20.CrossRefGoogle ScholarPubMed
Scharf, J, Kemmling, A, Hess, T, et al. Assessment of hepatic perfusion in transplanted livers by pharmacokinetic analysis of dynamic magnetic resonance measurements. Invest Radiol 2007;42(4):224–9. Epub 2007/03/14.CrossRefGoogle ScholarPubMed
Jackson, A, Haroon, H, Zhu, XP, et al. Breath hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 2002;15(2):164–73. Epub 2002/03/01.CrossRefGoogle Scholar
Hagiwara, M, Rusinek, H, Lee, VS, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging–initial experience. Radiology 2008;246(3):926–34. Epub 2008/01/16.CrossRefGoogle ScholarPubMed
Patel, J, Sigmund, EE, Rusinek, H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010;31(3):589–600. Epub 2010/02/27.CrossRefGoogle ScholarPubMed
Sharma, P, Kalb, B, Kitajima, HD, et al. Optimization of single injection liver arterial phase gadolinium enhanced MRI using bolus track real-time imaging. J Magn Reson Imaging 2011;33(1):110–18. Epub 2010/12/25.CrossRefGoogle ScholarPubMed
Do, RK, Rusinek, H, Taouli, B.Dynamic contrast-enhanced MR imaging of the liver: current status and future directions. Magn Reson Imaging Clin N Am 2009;17(2):339–49. Epub 2009/05/02.CrossRefGoogle ScholarPubMed
Thng, CH, Koh, TS, Collins, DJ, Koh, DM.Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 2010;16(13):1598–609. Epub 2010/04/01.CrossRefGoogle ScholarPubMed
Haque, M, Koktzoglou, I, Li, W, Carbray, J, Prasad, P.Functional MRI of liver using BOLD MRI: effect of glucose. J Magn Reson Imaging 2010;32(4):988–91. Epub 2010/10/01.CrossRefGoogle ScholarPubMed
Fan, Z, Elzibak, A, Boylan, C, Noseworthy, MD.Blood oxygen level-dependent magnetic resonance imaging of the human liver: preliminary results. J Comput Assist Tomogr 2010;34(4):523–31. Epub 2010/07/27.CrossRefGoogle ScholarPubMed
Jin, N, Deng, J, Chadashvili, T, et al. Carbogen gas-challenge BOLD MR imaging in a rat model of diethylnitrosamine-induced liver fibrosis. Radiology 2010;254(1):129–37. Epub 2009/12/25.CrossRefGoogle Scholar
Worsley, DF, Alavi, A.Radionuclide imaging of acute pulmonary embolism. Semin Nucl Med 2003;33(4):259–78. Epub 2003/11/20.CrossRefGoogle ScholarPubMed
Hopkins, SR, Prisk, GK.Lung perfusion measured using magnetic resonance imaging: new tools for physiological insights into the pulmonary circulation. J Magn Reson Imaging 2010;32(6):1287–301. Epub 2010/11/26.CrossRefGoogle ScholarPubMed
Stein, PD, Hull, RD, Ghali, WA, et al. Tracking the uptake of evidence: two decades of hospital practice trends for diagnosing deep vein thrombosis and pulmonary embolism. Arch Intern Med 2003;163(10):1213–19. Epub 2003/05/28.CrossRefGoogle ScholarPubMed
Stein, PD, Henry, JW.Prevalence of acute pulmonary embolism among patients in a general hospital and at autopsy. Chest 1995;108(4):978–81. Epub 1995/10/01.CrossRefGoogle Scholar
Leblanc, M, Paul, N.V/Q SPECT and computed tomographic pulmonary angiography. Semin Nucl Med 2010;40(6):426–41. Epub 2010/10/06.CrossRefGoogle ScholarPubMed
Rubins, JB.The current approach to the diagnosis of pulmonary embolism: lessons from PIOPED II. Postgrad Med 2008;120(1):1–7. Epub 2008/05/10.CrossRefGoogle Scholar
Wielopolski, PA, Haacke, EM, Adler, LP.Three-dimensional MR imaging of the pulmonary vasculature: preliminary experience. Radiology 1992;183(2):465–72. Epub 1992/05/01.CrossRefGoogle ScholarPubMed
Meaney, JF, Weg, JG, Chenevert, TL, et al. Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med 1997;336(20):1422–7. Epub 1997/05/15.CrossRefGoogle ScholarPubMed
Stein, PD, Chenevert, TL, Fowler, SE, et al. Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 2010;152(7):434–43, W142–3. Epub 2010/04/07.CrossRefGoogle Scholar
Hatabu, H, Gaa, J, Kim, D, et al. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 1996;36(4):503–8. Epub 1996/10/01.CrossRefGoogle ScholarPubMed
Chen, Q, Levin, DL, Kim, D, et al. Pulmonary disorders: ventilation-perfusion MR imaging with animal models. Radiology 1999;213(3):871–9. Epub 1999/12/02.CrossRefGoogle ScholarPubMed
Hatabu, H, Tadamura, E, Prasad, PV, et al. Noninvasive pulmonary perfusion imaging by STAR-HASTE sequence. Magn Reson Med 2000;44(5):808–12. Epub 2000/11/07.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Hatabu, H, Wielopolski, PA, Tadamura, E.An attempt of pulmonary perfusion imaging utilizing ultrashort echo time turbo FLASH sequence with signal targeting and alternating radio-frequency (STAR). Eur J Radiol 1999;29(2):160–3. Epub 1999/06/22.CrossRefGoogle Scholar
Mai, VM, Berr, SS.MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9(3):483–7. Epub 1999/04/09.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Keilholz, SD, Mai, VM, Berr, SS, Fujiwara, N, Hagspiel, KD.Comparison of first-pass Gd-DOTA and FAIRER MR perfusion imaging in a rabbit model of pulmonary embolism. J Magn Reson Imaging 2002;16(2):168–71. Epub 2002/08/31.CrossRefGoogle Scholar
Eichinger, M, Heussel, CP, Kauczor, HU, Tiddens, H, Puderbach, M.Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J Magn Reson Imaging 2010;32(6):1370–8. Epub 2010/11/26.CrossRefGoogle ScholarPubMed
Ley, S, Grunig, E, Kiely, DG, van Beek, E, Wild, J.Computed tomography and magnetic resonance imaging of pulmonary hypertension: pulmonary vessels and right ventricle. J Magn Reson Imaging 2010;32(6):1313–24. Epub 2010/11/26.CrossRefGoogle ScholarPubMed
Prasad, PV, Goldfarb, J, Sundaram, C, et al. Captopril MR renography in a swine model: toward a comprehensive evaluation of renal arterial stenosis. Radiology 2000;217(3):813–18.CrossRefGoogle Scholar
Michaely, HJ, Schoenberg, SO, Ittrich, C, et al. Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol 2004;39(11):698–705. Epub 2004/10/16.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×