Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T20:54:22.534Z Has data issue: false hasContentIssue false

3 - Climate Variability. Part II: Interannual to Interdecadal Variability

Published online by Cambridge University Press:  17 February 2022

Pao-Shin Chu
Affiliation:
University of Hawaii, Manoa
Hiroyuki Murakami
Affiliation:
UCAR
Get access

Summary

It is well known that the El Niño–Southern Oscillation (ENSO) is the most prominent mode of interannual climate variability in the tropics. The ENSO is a coupled, tropical ocean–atmosphere system that fluctuates on a time scale of two to seven years in the Pacific (Philander, 1990). The ENSO extremes are labeled as either a warm or cold phase, yet its amplitude varies across a continuum with essentially Gaussian statistics (Trenberth, 1997). Characterizing the warm (cold) ENSO phase is the presence of the anomalously warm (cold) sea surface temperatures (SSTs) in the eastern and/or central equatorial Pacific known as the El Niño (La Niña) event.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. A., 1990: Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Clim. Dyn., 5, 5365.Google Scholar
Alexander, M. A., 1992: Midlatitude atmosphere-ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5, 944958.Google Scholar
Alexdander, M. A., and Deser, C., 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137.Google Scholar
Alexander, M. A., and Coauthors, 2002: The atmospheric bridge: The influence of ENSO teleconnection on air–sea interaction over the global oceans. J. Climate, 15, 22052231.Google Scholar
An, S.-I., and Jin, F.-F., 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432.2.0.CO;2>CrossRefGoogle Scholar
Ashok, K., and Coauthors, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007.CrossRefGoogle Scholar
Barnston, A. G., and Coauthors, 1994: Long-lead seasonal forecasts: Where do we stand? Bull. Amer. Meteorol. Soc., 75, 20972114.Google Scholar
Barnston, A. G., Glantz, M. H., and He, Y., 1999: Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteorol. Soc., 80, 217243.2.0.CO;2>CrossRefGoogle Scholar
Barnston, A. G., and Coauthors, 2012: Skill of real-time seasonal ENSO model predictions during 2002–2011. Bull. Amer. Meteorol. Soc., 93, 631651.Google Scholar
Battisti, D. S., and Hirst, A. C., 1989: Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712.Google Scholar
Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829.Google Scholar
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.Google Scholar
Bretherton, C., Smith, C., and Wallace, J. M., 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. T., Lozier, M. S., Zhang, R., and Li, W., 2016: The necessity of cloud feedback for a basin-scale Atlantic multidecadal oscillation. Geophys. Res. Lett., 43, GL068303.Google Scholar
Cane, M. A., and Zebiak, S. E., 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087.CrossRefGoogle ScholarPubMed
Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteorol. Soc., 96, 921938.CrossRefGoogle Scholar
Cayan, D. R., Redmond, K. T., and Riddle, L. G., 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893.Google Scholar
Chang, P., Ji, L., and Li, H., 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518.Google Scholar
Chang, P., and Coauthors, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608.Google Scholar
Chen, W. Y., 1982: Assessment of Southern Oscillation sea-level pressure indices. Mon. Wea. Rev., 110, 800807.2.0.CO;2>CrossRefGoogle Scholar
Chiang, J. C. H., and Vimont, D. J., 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Climate, 17, 41434158.Google Scholar
Choi, K.-Y., Vecchi, G. A., and Wittenberg, A. T., 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476.Google Scholar
Chu, P.-S., 1995: Hawaii rainfall anomalies and El Niño. J. Climate, 8, 16971703.Google Scholar
Chu, P.-S., 2004: ENSO and tropical cyclone activity. In Hurricanes and Typhoons: Past, Present, and Future. Murnane, R. J. and Liu, K.-B., Eds. Columbia University Press, 297332.Google Scholar
Chu, P.-S., and Katz, R. W., 1985: Modeling and forecasting the Southern Oscillation: A time-domain approach. Mon. Wea. Rev., 113, 18761888.Google Scholar
Chu, P.-S., and Wang, J., 1997: Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño and non-El Niño years significant? J. Climate, 10, 26832689.Google Scholar
Chu, P.-S., Frederick, J., and Nash, A. J., 1991: Exploratory analysis of surface winds in the equatorial western Pacific and El Niño. J. Climate, 4, 10871102.Google Scholar
Clement, A., and Coauthors, 2015: The Atlantic multidecadal oscillation with a role of ocean circulation. Science, 350, 320324.Google Scholar
Covey, D. L., and Hastenrath, S., 1978: The Pacific El Niño phenomenon and the Atlantic circulation. Mon. Wea. Rev., 106, 12801287.Google Scholar
Czaja, A., van der Vaart, P., and Marshall, J., 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290.Google Scholar
Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys., Oceanogr., 6, 249266.Google Scholar
Delworth, T. L., and Mann, M. E., 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn., 16, 661676.Google Scholar
Delworth, T. L., Manabe, S., and Stouffer, R. J., 1993: Interdecadal variations in the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate, 6, 19932011.2.0.CO;2>CrossRefGoogle Scholar
Deser, C., Phillips, A. S., and Hurrell, J. W., 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1990. J. Climate, 17, 31093124.Google Scholar
Dommenget, D., Bayr, T., and Frauen, C., 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Clim. Dyn., 40, 28252847.Google Scholar
Enfield, D. B., and Mayer, D. A., 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102, 929945.Google Scholar
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J., 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.Google Scholar
Fedorov, A. V., Hu, S., Lengaigne, M., and Guilyardi, E., 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim. Dyn., 44, 13811401.Google Scholar
Folland, C. K., and Coauthors, 2009: The summer North Atlantic Oscillation. Past, Present, and Future. J. Climate, 22, 10821103.Google Scholar
Frankignoul, C., and Reynolds, R. W., 1983: Testing a dynamical model for midlatitude sea surface temperature anomalies. J. Phys. Oceanogr., 13, 11311145.Google Scholar
Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society, 2nd ed. Cambridge University Press.Google Scholar
Glantz, M. H., Katz, R. W., and Nicholls, N., 1991: Teleconnections Linking Worldwide Climate Anomalies. Cambridge University Press.Google Scholar
Goldenberg, S. B., Landsea, C., Mesias-Nuñez, A. M., and Gray, W. M., 2001: The recent increase in Atlantic hurricane activity: Causes and implication. Science, 293, 474479.Google Scholar
Guan, C., and McPhaden, M. J., 2016: Ocean processes affecting the twenty-first-century shift in ENSO SST Variability. J. Climate, 29, 68616879.Google Scholar
Guilyardi, E., and Coauthors, 2009: Understanding El Niño in ocean-atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteorol. Soc., 90, 325340.Google Scholar
Guo, Y.-Y., Ting, M., Wen, Z., and Lee, D. E., 2017: Distinct patterns of tropical Pacific SST anomaly and their impacts on North American climate, J. Climate, 30, 52215241.Google Scholar
Ham, Y.-G., Kim, J.-H., and Luo, J.-J., 2019: Deep learning for multi-year ENSO forecasts. Nature, 573(7775), 568572.Google Scholar
Haney, R. L., 1985: Midlatitude sea surface temperature anomalies: A numerical hindcast. J. Phys. Oceanogr., 15, 787799.Google Scholar
Harrison, D. E., and Giese, B. S., 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96, 32213237.Google Scholar
Hastenrath, S., 1985: Climate and Circulation of the Tropics. D. Reidel Publishing Company.Google Scholar
Hastenrath, S., and Heller, L., 1977: Dynamics of climate hazards in northeast Brazil. Quart. J. Roy. Meteorol. Soc., 103, 7792.Google Scholar
He, Y. and Barnston, A. G., 1996: Long-lead forecasts of seasonal precipitation in the tropical Pacific Islands Using CCA. J. Climate, 9, 20202035.Google Scholar
Hoerling, M. P., and Kumar, A., 1997: Why do North American climate anomalies differ from one El Niño event to another? Geophys. Res. Lett., 24, 10591062.CrossRefGoogle Scholar
Hoskins, B. J., and Karoly, D. J., 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.2.0.CO;2>CrossRefGoogle Scholar
Hsu, W.-R., and Murphy, A. H., 1986: The attributes diagram: A geometrical framework for assessing the quality of probability forecasts, Int. J. Forecast., 2, 285293, doi:10.1016/0169-2070(86)90048-8.Google Scholar
Hu, Z. Z., and Huang, B., 2006: Physical processes associated with the tropical Atlantic meridional gradient. J. Climate, 19, 55005518.Google Scholar
Hurrell, J., Kushnir, Y., and Visbeck, M., 2001: The North Atlantic Oscillation. Science, 291, 603605.Google Scholar
Intergovernmental Panel on Climate Change (IPCC), 2014: Fifth Assessment Report. WMO/UNEP, Geneva.Google Scholar
Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dyn. 31, 647664.Google Scholar
Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual mode. J. Atmos. Sci., 54, 811829.Google Scholar
Johnson, N., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164817.Google Scholar
Kao, H.-Y., and Yu, J.-Y., 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 22, 615632.Google Scholar
Kim, S. T., Yu, J.-Y., Kumar, A., and Wang, H., 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical association. Mon. Wea. Rev., 140, 19081923.CrossRefGoogle Scholar
Kirtman, B. P., and Min, D., 2009: Multimodel ensemble ENSO prediction with CCSM and CFS. Mon. Wea. Rev., 137, 29082930.Google Scholar
Knaff, J. A., and Landsea, C. W., 1997: An El Niño-Southern Oscillation climatology and persistence (CLIPER) forecasting scheme. Wea. Forecasting, 12, 633651.Google Scholar
Kossin, J. P., and Vimont, D. J., 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteorol. Soc., 88, 17671781.Google Scholar
Kug, J.-S., Jin, F.-F., and An, S.-I., 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.Google Scholar
Kug, J.-S., Choi, J.. An, S.-I., and Wittenberg, A.-T., 2010: Warm pool and cold tongue El Niño events as simulated by GFDL2.1 coupled GCM. J. Climate, 23, 12261239.Google Scholar
Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157.Google Scholar
Kushnir, Y., and Lau, N.-C., 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on time scale and pattern polarity. J. Climate, 5, 271283.Google Scholar
Lamb, P. J., 1978: Large-scale tropical Atlantic circulation patterns associated with subsaharan weather anomalies. Tellus, 30, 240251.Google Scholar
Landsea, C. W., and Knaff, J. A., 2000: How much skill was there to forecasting the very strong 1997-98 El Niño? Bull. Amer. Meteorol. Soc., 81, 21072119.Google Scholar
Larkin, N. K., and Harrison, D. E., 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140.Google Scholar
Latif, M., and Barnett, T. P., 1994: Causes of decadal climate variability over the North Pacific and North America. Sciences, 266, 634637.Google Scholar
Latif, M., and Barnett, T. P., 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423.Google Scholar
Latif, M., and Coauthors, 1994: A review of ENSO prediction studies. Clim. Dyn., 9, 167179.Google Scholar
Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103(C7) 1437514393.CrossRefGoogle Scholar
Lau, N. C., and Nath, M. J., 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J. Climate, 7, 11841207.2.0.CO;2>CrossRefGoogle Scholar
Lau, N. C., and Nath, M. J., 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057.Google Scholar
Lee, T., and McPhaden, M. J., 2010: Increasing intensity of El Niño in the central equatorial Pacific. Geophys. Res. Lett., 37, L14603.Google Scholar
L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteorol. Soc., 98, 13631382.Google Scholar
Li, T., 1997: Air–sea interactions of relevance to the ITCZ: Analysis of coupled instabilities and experiments in a hybrid coupled GCM. J. Atmos. Sci., 54, 134147.Google Scholar
Li, T., and Hsu, P.-C., 2018: Fundamentals of Tropical Climate Dynamics. Springer.Google Scholar
Li, T., and Philander, S. G. H., 1996: On the annual cycle of the eastern equatorial Pacific. J. Climate, 9, 29862998.Google Scholar
Lindzen, R. S., and Nigam, S., 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sc., 44, 24402458.Google Scholar
Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995.Google Scholar
Liu, Z., and Lorenzo, E. D., 2018: Mechanisms and predictability of Pacific decadal variability. Curr. Clim. Change Rep., 4, 128144, doi.org/10.1007/s40641–018-0090-5.Google Scholar
Lu, B., Chu, P.-S., Kim, S.-H., and Karamperidou, C., 2020: Hawaiian regional climate variability during two types of El Niño. J. Climate, 33, 99299943.Google Scholar
Luther, D. S., Harrison, D. E., and Knox, R. A., 1983: Zonal winds in the equatorial Pacific and El Niño. Sciences, 222, 327330.Google Scholar
Mantua, N. J., et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc., 78, 10691079.Google Scholar
McCreary, J. P., 1983: A model of tropical ocean-atmosphere interaction. Mon. Wea. Rev., 111, 370387.2.0.CO;2>CrossRefGoogle Scholar
McPhaden, M. J., and Coauthors, 1988: The response of the equatorial Pacific Ocean to a westerly wind burst. J. Geophys. Res., C9(92), 94649468.Google Scholar
Meinen, C. S., and McPhaden, M. J., 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559.Google Scholar
Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686.Google Scholar
Murakami, H., and Coauthors, 2016: Statistical-dynamical seasonal forecasts of North Atlantic and U.S. landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. Mon. Wea. Rev., 144, 21012123.Google Scholar
Murakami, H., and Coauthors, 2017: Dominant role of subtropical warming in extreme eastern Pacific hurricane season: 2015 and the future. J. Climate, 30, 243264.Google Scholar
Nakamura, H., Lin, G., and Yamagata, T., 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteorol. Soc., 78, 22152225.Google Scholar
Namias, J., and Born, R. M., 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 59525955.Google Scholar
Namias, J., and Born, R. M., 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res., 79, 797798.Google Scholar
Newman, M., Compo, G. P., and Alexander, M., 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857.Google Scholar
Newman, M., Alexander, M. A., and Scott, J. D., 2011: An empirical model of tropical ocean dynamics. Clim. Dyn., 37, 18231844.Google Scholar
Newman, M., et al., 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427.Google Scholar
Nobre, P., and Shukla, J., 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479.Google Scholar
Okumura, Y., Xie, S.-P., Numaguti, A., and Tanimoto, Y., 2001: Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys. Res. Lett., 28, 15071510.Google Scholar
O’Reilly, C. H., Huber, L. M., Woollings, T., and Zanna, L., 2016: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophys. Res. Lett. 43, 28102818.Google Scholar
Paek, H., Yu, J.-Y., and Qian, C., 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, doi:10.1002/2016GL071515.Google Scholar
Patricola, C. M., Saravanan, R., and Chang, P., 2014: The impact of the El Niño–Southern Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activity. J. Climate, 27, 53115328.CrossRefGoogle Scholar
Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293pp.Google Scholar
Picaut, J., Masia, F., and du Penhoat, Y., 1997: An advective-reflective conceptual model for the oscillatory nature of ENSO. Science, 277, 663666.Google Scholar
Qiu, B., and Chen, S., 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103.CrossRefGoogle Scholar
Qiu, B., and Chen, S., 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res., II.57, 10981110.Google Scholar
Raftery, A. E., Gneiting, T., T., Balabdaoui, F., and Polakowski, M., 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174.Google Scholar
Rasmusson, E. M., and Carpenter, T. H., 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384.Google Scholar
Ren, H.-L., and Jin, F.-F., 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523.Google Scholar
Rogers, J. C., 1981: The North Pacific Oscillation. Int. J. Climatol., 1, 3957.Google Scholar
Ropelewski, C. F., and Halpert, M. S., 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.Google Scholar
Sadler, J., 1983: Tropical Pacific atmospheric anomalies during 1982-83. In Proceedings of the 1982/83 El Niño/Southern Oscillation Workshop, 1–10. Miami, NOAA Atlantic Oceanographic and Meteorological Laboratory.Google Scholar
Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 34833517.Google Scholar
Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 21852208.Google Scholar
Sarachik, E. S., and Cane, M. A., 2010: The El Niño-Southern Oscillation Phenomenon. Cambridge University Press.Google Scholar
Sardeshmukh, P. D., and Hoskins, B. J., 1985: The generation of global rotational flow by steady, idealized tropical divergence. J. Atmos. Sci., 45, 12281251.Google Scholar
Schlesinger, M. E., and Ramankutty, N., 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.Google Scholar
Schneider, N., and Cornuelle, B. D., 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373.Google Scholar
Schneider, N., Miller, A. J., and Pierce, D. W., 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586605.Google Scholar
Servain, J., Wainer, I., McCreary, J. P., and Dessier, A., 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488.Google Scholar
Stuecker, M. F., 2018: Revisiting the Pacific Meridional Mode. Sci. Rep., 8, 3216.Google Scholar
Suarez, M. J., and Schopf, P. S., 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287.Google Scholar
Taguchi, B., and Coauthors, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377.Google Scholar
Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B., 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10740.Google Scholar
Thomas, E. E., and Vimont, D. J., 2016: Modeling the mechanisms of linear and nonlinear ENSO responses to the Pacific Meridional Mode. J. Climate, 29, 87458761.Google Scholar
Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545.Google Scholar
Ting, M., Kushnir, Y., Seager, R., and Li, C., 2009: Forced and internal twentieth-century SST trend in the North Atlantic. J. Climate, 22, 14691481.Google Scholar
Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteorol. Soc., 78, 27712777.Google Scholar
Trenberth, K. E., and Hurrell, J. W., 1994: Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn., 9, 303319.Google Scholar
Trenberth, K. E., and Shea, D. J., 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704.Google Scholar
Trenberth, K. E., and Coauthors, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14,29114,324.Google Scholar
Van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314324.Google Scholar
Van Oldenborgh, G. J., Raa, L. A., Dijkstra, H. A., and Philip, S. Y., 2009: Frequency of amplitude dependent effects of the Atlantic multidecadal overturning on the tropical Pacific Ocean. Ocean Sci., 5, 293301.Google Scholar
Vimont, D. J., and Kossin, J. P., 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709.Google Scholar
Vimont, D. J., Wallace, J. M., and Battisti, D. S., 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675.Google Scholar
Wallace, J. M., and Gutzler, D. S., 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.Google Scholar
Wang, B., and Coauthors, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci., 116(45), 2251222517.Google Scholar
Wang, C., 2001: A unified oscillator model for the El Niño-Southern Oscillation. J. Climate, 14, 98115.Google Scholar
Wang, X., Liu, H., and Foltz, G. R., 2017: Persistent influence of tropical North Atlantic wintertime sea surface temperature on the subsequent Atlantic hurricane season. Geophys. Res. Lett., 44, 79277935, doi:10.1002/2017GL074801.Google Scholar
Webster, P. J., and Yang, S., 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteorol. Soc., 118, 877925.Google Scholar
Weisberg, R. H., and Wang, C., 1997: A Western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett., 24, 779782.Google Scholar
Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press.Google Scholar
Wyrtki, K., 1975: El Niño – The dynamical response of the ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584.Google Scholar
Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 71297132.Google Scholar
Xie, S.-P., 1998: Ocean–atmosphere interaction in the making of the Walker circulation and equatorial cold tongue. J. Climate, 11, 189201.Google Scholar
Xie., S.-P. and Philander, S. G. H., 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.Google Scholar
Xie, S.-P., and Tanimoto, Y., 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett., 25, 21852188.Google Scholar
Xue, Y., and Leetmaa, A., 2000: Forecasts of tropical Pacific SST and sea level using a Markov model. Geophys. Res. Lett., 27, 27012704.Google Scholar
Yu, J.-Y., and Kim, S. T., 2010: Three evolution patterns of Central-Pacific El Niño. Geophys. Res. Lett., 37, L08706.Google Scholar
Yuan, T., and Coauthors, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic multidecadal oscillation. Geophys. Res. Lett., 43, 13491356.Google Scholar
Zebiak, S. E., and Cane, M. A., 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 22622278.Google Scholar
Zhang, H., Clement, A., and Di Nezio, P., 2014: The South Pacific Meridional Mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783.Google Scholar
Zhang, H., Chu, P.-S., He, L., and Unger, D., 2019: Improving the CPC’s ENSO forecasts using Bayesian model averaging. Clim. Dyn. 53, 33733385.Google Scholar
Zhang, L., Chang, P., and Ji, L., 2009: Linking the Pacific meridional mode to ENSO: Coupled model analysis. J. Climate, 22, 34883505.Google Scholar
Zhang, W., and Coauthors, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381398.Google Scholar
Zhang, Y., Wallace, J. M., and Battisti, D. S., 1997: ENSO-like interdecadal variability: 1900-93. J. Climate, 10, 10041020.Google Scholar
Zhao, S., Jin, F.-F., Long, X., and Cane, M. A., 2021: On the breakdown of ENSO’s relationship with thermocline depth in the central-equatorial Pacific. Geophys. Res. Lett., 48, e2020GL092335.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×