Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T04:50:50.107Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Climate Change
A Multidisciplinary Approach
, pp. 359 - 366
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander,, L. V.et al. (2006). Global observed dazes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111.CrossRefGoogle Scholar
Alley, R. B. (2000). The Two-Mile Time Machine: Ice Cores, Abrupt Climate Change and Our Future. Princeton, NJ, USA: Princeton University Press.Google Scholar
Baillie, M. G. L. (1995). A Slice through Time: Dendrochronology and Precision Dating. London, UK: Batsford.Google Scholar
Baldwin, M. P.et al. (2001). The Quasi-biennial Oscillation. Reviews of Geophysics, 32, 179–229.CrossRefGoogle Scholar
Barber, D. C.et al. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–8.CrossRefGoogle Scholar
Barnston, A. G. (1995). Our improving capability in ENSO forecasting. Weather, 50, 419–30.CrossRefGoogle Scholar
Barry, R. G. & Chorley, R. J. (2003). Atmosphere, Weather & Climate. Eighth edition. London, UK: Methuen.Google Scholar
Bertage (to follow)
Benton, M. J. (1995). Diversification and extinction in the history of life. Science. 268, 52–8.CrossRefGoogle ScholarPubMed
Bigg, G. R. (2003). The Oceans and Climate. Second edition. Cambridge, UK: Cambridge University Press.Google Scholar
Bonan, G. B., Pollard, D. & Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Nature, 359, 716–18.CrossRefGoogle Scholar
Bradley, R. S. & Jones, P. D. (eds) (1995). Climate since AD 1500. London, UK: Routledge.Google Scholar
Briffa, K. R.et al. (1990). A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 346, 434–9.CrossRefGoogle Scholar
Briffa, K. R.et al. (1995). Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature, 376, 156–9.CrossRefGoogle Scholar
Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–5.CrossRefGoogle Scholar
Broecker, W. S. (1995a). Chaotic climate. Scientific American, 267, No. 11, 44–50.Google Scholar
Broecker, W. S. (1995b). Cooling the tropics. Nature, 376, 212–13.CrossRefGoogle Scholar
Brown, G. C., Hawkesworth, C. J. & Wilson, R. C. L. (eds.) (1992). Understanding the Earth: a New Synthesis. Cambridge, UK: Cambridge University Press.Google Scholar
Bryant, E. (1997). Climate Process and Change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (1978). On running means and meteorological cycles. Weather, 33, 101–9.CrossRefGoogle Scholar
Burroughs, W. J. (1991). Watching the World's Weather. Cambridge, UK: Cambridge University Press.Google Scholar
Burroughs, W. J. (1994). Weather Cycles: Real or Imaginary?Cambridge, UK: Cambridge University Press.Google Scholar
Burroughs, W. J. (1997). Does the Weather Really Matter? The Social Implications of Climate Change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2001). Climate Change: A Multidisciplinary Approach; First Edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2003). Weather Cycles: Real or Imaginary? Second edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2005a). Climate Change in Prehistory: The End of the Reign of Chaos. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2005b). Does the Weather Really Matter?Cambridge, UK: Cambridge University Press.Google Scholar
Cess, R. D.et al. (1991). Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253, 888–92.CrossRefGoogle ScholarPubMed
Cess, R. D.et al. (1995). Absorption of solar radiation by clouds: observations versus models. Science, 267, 496–9.CrossRefGoogle ScholarPubMed
Chahine, M. T. (1992). The hydrological cycle and its influence on the climate. Nature, 359, 373–9.CrossRefGoogle Scholar
Chuine, I.et al. (2004). Grape ripening as a past climate indicator. Nature, 432, 289–90.CrossRefGoogle ScholarPubMed
CLIMAP Project Members. (1976). The surface of the ice-age Earth. Science, 191, 1131–7.CrossRef
CLIMAP. (1981). Seasonal Reconstruction of the Earth's Surface at the Last Glacial Maximum. Geological Society of America, Map and Chart Series, Vol. C36.
Cook, E. R.et al. (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5, 229–37.CrossRefGoogle Scholar
Courtillot, V. (1999). Evolutionary Catastrophes: The Science of Mass Extinctions. Cambridge, UK: Cambridge University Press.Google Scholar
Christy, J. R. & Norris, W. B. (2004). What may we conclude about global tropospheric temperature trends?Geophysical Research Letters, 31.CrossRefGoogle Scholar
Dansgaard, W. & Oeschger, H. (1989). In The Environmental Record in Glaciers and Ice Sheets, Oeschger, H. & Langway, C. C. (eds.). Chichester, UK: Wiley, pp. 287–318.Google Scholar
Dansgaard, W.et al. (1993). Evidence of general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–20.CrossRefGoogle Scholar
Davis, B. A. S.et al. (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 20, 1701–6.CrossRefGoogle Scholar
Dawson, A. G. (1992). Ice Age Earth: Late Quaternary Geology and Climate. London, UK: Routledge.Google Scholar
Diaz, H. F. & Markgraf, V. (eds.) (2000). El Niño and the Southern Oscillation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Doherty, R. M., Hulme, M. & Jones, C. G. (1999). A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974–1994. International Journal of Climatology, 19, 119–42.3.0.CO;2-X>CrossRefGoogle Scholar
EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–8.CrossRef
Fagan, B. (1999). Floods, Famines and Emperors: El Nino and the Fate of Civilisations. London, UK: Plimlico.Google Scholar
Fagan, B. (2004). The Long Summer: How Climate Changed Civilisation. New York, USA: Basic Books.Google Scholar
Folland, C. K. & Parker, D. E. (1995). Correction of instrumental biases in historical sea surface temperature data. Quarterly Journal Royal Meteorological Society, 121, 319–67.CrossRefGoogle Scholar
Frakes, L. A., Francis, J. E. & Syktus, J. I. (1992). Climate Modes of the Phanerozoic. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Frich, P.et al. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212.CrossRefGoogle Scholar
Fritts, H. C. (1976). Tree Rings and Climate. London, UK: Academic Press.Google Scholar
Giovanelli, R. (1984). Secrets of the Sun. Cambridge UK: Cambridge University Press.Google Scholar
Grafenstein, U.et al. (1999). A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science, 284, 1684–7.Google Scholar
Gray, L. J., Haigh, J. D. & Harrison, R. G. (2005). The influences of solar changes on the Earth's climate. Hadley Centre Technical Note 62 (HCTN62), available from the Hadley Centre website (http://www.met-office.gov.uk/research/hadleycentre/pubs/HCNT/.)
Gray, W. M. (1990). Strong association between West African rainfall and US landfall of intense hurricanes. Science, 249, 1251–6.CrossRefGoogle Scholar
Greenland Ice Core Project (GRIP) Members. (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364, 203–7.CrossRef
Grootes, P. M.et al. (1993). Comparison of oxygen isotope records from the GISP 2 and Greenland ice cores. Nature, 366, 552–4.CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age. London, UK: Methuen.CrossRefGoogle Scholar
Gurney, R. J., Foster, J. L. & Parkinson, C. L. (eds.) (1993). Atlas of Satellite Observations Related to Global Change. Cambridge, UK: Cambridge University Press.Google Scholar
Haigh, J. D. (2000). Solar variability and climate. Weather, 55, 399–405.CrossRefGoogle Scholar
Hammer, C. U., Clausen, H. B. & Dansgaard, W. (1980). Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature, 288, 230–5.CrossRefGoogle Scholar
Hansen, J. E.et al. (1995). Satellite and surface temperature data at odds?Climate Change, 30, 103–17.CrossRefGoogle Scholar
Harries, J. E. (1990). Earthwatch: the Climate from Space. London, UK: Ellis Horwood.Google Scholar
Hastenrath, S. (2002). Dipoles, temperature gradients, and tropical climate anomalies. Bulletin of the American Meteorological Society, 83, 735–8.2.3.CO;2>CrossRefGoogle Scholar
Haug, G. H.et al. (2003). Climate and the collapse of Maya civilisation. Science, 299, 1721–5.CrossRefGoogle Scholar
Hickey, M. & King, C. (1988). 100 Families of Flowering Plants, Second Edition. Cambridge, UK: Cambridge University Press.Google Scholar
Hostetler, S. W. & Mix, A. C. (1999). Reassessment of ice-age cooling of the tropical ocean and atmosphere. Nature, 399, 673–6.CrossRefGoogle Scholar
Houghton, J. (2002). The Physics of Atmospheres. Third edition. Cambridge, UK: Cambridge University Press.Google Scholar
Houghton, J. (2004). Global Warming: the Complete Briefing. Third edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hulme, M. & Barrow, E. (eds.) (1997). Climates of the British Isles: Present, Past and Future. London, UK: Routledge.Google Scholar
Hulme, M. & Jones, P. D. (1991). Temperatures and windiness over the United Kingdom during the winters of 1988/89 and 1989/90 compared with previous years. Weather, 46, 126–36.CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676–9.CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime tele-connections on Northern Hemisphere temperature. Geophysical Research Letters, 23, 665–8.CrossRefGoogle Scholar
Imbrie, J. & Imbrie, J. Z. (1979). Ices Ages: Solving the Mystery. London, UK: Macmillan.CrossRefGoogle Scholar
Imbrie, J. & Imbrie, J. Z. (1980). Modelling the climatic response of orbital variations. Science, 207, 943–53.CrossRefGoogle Scholar
Imbrie, J.et al. (1992). On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography, 7, 701–38.CrossRefGoogle Scholar
Imbrie, J.et al. (1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography, 8, 699–735.CrossRefGoogle Scholar
International Federation of Red Cross and Red Crescent Societies. (1999). World Disasters Report.
IPCC. (1990). Climate Change: The IPCC Scientific Assessment. Houghton, J. T., Jenkins, G. J. & Ephraums, G. G. (eds.). Cambridge, UK: Cambridge University Press. 365pp.Google Scholar
IPCC. (1992). Climate Change 1992: the Supplementary Report to IPCC Scientific Assessment, Houghton, J. T, Callander, B. A. & Varney, S. K. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC. (1994). Climate Change 1994: Radiative Forcing of Climate and an Evaluation of the IPCC IS92 Emission Scenarios, Houghton, J. T., Filho, L. G. Meira, Bruce, J., Lee, Hoesung, Callendar, B. A., Haites, E., Harris, N., & Maskell, K. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC, (1995). Climate Change 1995: The Science of Climate Change, Houghton, J. T., Filho, L. G. Meira, Callendar, B. A., Harris, N., Kattenberg, A. & Maskell, K.. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC, (2001). Climate Change 2001: The Scientific Basis, Houghton, J. T., Ding, Y., Griggs, D., Noguer, M., Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A, (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC, (2007). Climate Change 2007: The Scientific Basis, Cambridge, UK: Cambridge University Press.
Jablonski, D. (1997). Progress at the K-T boundary. Nature, 387, 354–5.CrossRefGoogle Scholar
Jolliffe, I. T. (1986). Principal Component Analysis. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Jones, P. D.et al. (1999). Review of Geophysics, 37, 173–99.CrossRef
Kalnay, E.et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meterological Society, 77, 437–71.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R.et al. (1995). Critical issues for long-term climate monitoring. Climatic Change, 31, 185–221.CrossRefGoogle Scholar
Karl, T. R.et al. (1996). Indices of climate change for the United States. Bulletin of the American Meteorological Society, 77, 279–92.2.0.CO;2>CrossRefGoogle Scholar
Kendall, M. (1976). Time Series. London, UK: Charles Griffin.Google Scholar
Kripalani, R. H. & Kulkarni, A. (1997). Climatic impact of the El Niño/La Niña on the Indian monsoon: a new perspective. Weather, 52, 39–46.CrossRefGoogle Scholar
Laird, K. R.et al. (1996). Greater drought intensity and frequency before ad 1200 in the Northern Great Plains, USA. Nature, 384, 552–4.CrossRefGoogle Scholar
LaMarche, V. C. Jr. (1974). Paleoclimatic inferences from long tree-ring records. Science, 183, 1043–8.CrossRefGoogle ScholarPubMed
Lamb, H. H. (1972). Climate: Present, Past and Future. Volume 1. London, UK: Methuen.Google Scholar
Lamb, H. H. (1977). Climate: Present, Past and Future. Volume 2. London, UK: Methuen.Google Scholar
Lamb, H. H. (1995). Climate, History and the Modern World (2nd edn). London, UK: Routledge.Google Scholar
Lambeck, K., Esat, T. M. & Potter, E.-K. (2003). Links between climate and sea levels for the past three million years. Nature, 419, 199–206.CrossRefGoogle Scholar
Landsea, C. W.et al. (1994). Seasonal forecasting of Atlantic hurricane activity. Weather, 49, 273–84.CrossRefGoogle Scholar
Landsea, C. W.et al. (1999). Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42, 89–129.CrossRefGoogle Scholar
Lean, J. (2000). Evolution of the Sun's Spectral Irradiance since the Maunder Minimum. Geophysical Research Letters, 27, 2425–8.CrossRefGoogle Scholar
Ladurie, Roy E. & Baulant, M. (1980). Grape harvests from the fifteenth through the nineteenth centuries. Journal of Interdisciplinary History, 10, 839–49.CrossRefGoogle Scholar
Li, X.et al. (1996). Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds. Nature, 380, 416–19.CrossRefGoogle Scholar
Lisiecki, L. E. & Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA 1003, doi:10.1029/2004PA001071.Google Scholar
Lockwood, M. & Stamper, R. (1999). Long term drift in the coronal source magnetic flux and total solar irradiance. Geophysical Research Letters, 26, 2461–5.CrossRefGoogle Scholar
Lovelock, J. E. (1988). The Ages of Gaia. Oxford, UK: Oxford University Press.Google Scholar
Lundin, R., Eliasson, L. & Murphree, J. S. (1991) The quiet time aurora. In Auroral Physics, Meng, C.-I., Rycroft, M. J. & Frank, L. A. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
Luterbacher, J.et al. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 1499–503.CrossRefGoogle ScholarPubMed
Mann, M. E. & Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters, 30, 1820, doi:10.1029/2003GL017814.CrossRefGoogle Scholar
Mangini, A, Spotl, C, & Verdes, P. (2005). Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth & Planetary Science Letters, 235, 741–51.CrossRefGoogle Scholar
Manley, G. (1974). Central England Temperatures: monthly means 1659 to 1973. Quarterly Journal Royal Meteorlogical Society, 100, 389–405.CrossRefGoogle Scholar
Markson, R. (1978). Solar modification of atmospheric electrification and possible implications for the Sun-weather relationship. Nature, 244, 197–200.Google Scholar
Marshall, J., et al. (2001). North Atlantic climate variability: Phenomena, impacts and mechanisms: A Review. International Journal of Climatology, 21, 1863–98.CrossRefGoogle Scholar
Martinson, D. G., et al. (1987). Age dating and the orbital theory of the Ice Age:development of a high resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 17, 1–30.CrossRefGoogle Scholar
McIlveen, R. (1992). Fundamentals of Weather and Climate. London, UK: Chapman and Hall.CrossRefGoogle Scholar
Mitchell, J. F. B.et al. (1995). Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501–4.CrossRefGoogle Scholar
Mitchell, J. M., Stockton, C. W. & Meko, D. M. (1979). Evidence of a 22-year rhythm of drought in the Western United States related to the Hale Solar Cycle since the 17th century. In Solar-Terrestrial Influences on Weather and Climate, McCormac, B. M & Seliga, T. A, (eds.). Dordrecht, The Netherlands: Reidel Publishing Co.CrossRefGoogle Scholar
Mitchell, J. M. (1990) Climatic variability: past, present & future. Climatic Change, 16, 231–46.CrossRefGoogle Scholar
Mix, A. C., Bard, E. & Schneider, R. (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews, 20, 627–57.CrossRefGoogle Scholar
Moberg, A.et al. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature, 433, 613–17.CrossRefGoogle ScholarPubMed
Musk, L. F. (1988). Weather Systems. Cambridge, UK: Cambridge University Press.Google Scholar
Palmer, T. (1993). A nonlinear dynamical perspective on climate change. Weather, 48, 314–25.CrossRefGoogle Scholar
North Greenland Ice Core Project members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–55.CrossRef
Open University (2001). Ocean Circulation. London: Butterworth Heinemann (in association with The Open University, Milton Keynes).
Paillard, D. (1998). The timing of Pleistocene glaciations from a simple multiple-state model. Nature, 391, 378–81.CrossRefGoogle Scholar
Parker, D. E., Legg, T. P. & Folland, C. K. (1992). A new daily Central England temperature series, 1772–1991. International Journal of Climatology. 12, 317–42.CrossRefGoogle Scholar
Parry, M. & Duncan, R. (eds.). (1995). The Economic Implications of Climate Change in Britain. London, UK: Earthscan.Google Scholar
Pecker, J. C. & Runcorn, S. K. (eds.). (1990). The Earth's Climate and Variability of the Sun over Recent Millennia: Geophysical, Astronomical and Archaeological Aspects. London, UK: The Royal Society.Google Scholar
Petit, J. R.et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–36.CrossRefGoogle Scholar
Pfister, C. (1995). Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In Climate Since AD 1500, Bradley, R. S. & Jones, P. D. (eds.) (Chapter 6). London, UK: Routledge. [Data on temperature and precipitation indices available on disk from the National Geophysical Data Center, Boulder, Co 80309, USA.]Google Scholar
Philander, S. G. H. (1983). El Niño Southern Oscillation. Nature, 302, 295–301.CrossRefGoogle Scholar
Pimental, D.et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–23.CrossRefGoogle Scholar
Piekle, R. A. & Landsea, C. W. (1998). Normalized hurricane damage in the United States: 1925–95. Weather and Forecasting. 13, 621–31.Google Scholar
Rampino, M. R. & Self, S. (1992). Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 50–2.CrossRefGoogle Scholar
Raup, D. M. (1991). Extinction: Bad Genes or Bad Luck?New York, UK: W. W. Norton.Google ScholarPubMed
Richerson, P. J., Boyd, R. & Bettinger, R. L. (2001). Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. American Antiquity, 66, 1–50.CrossRefGoogle Scholar
Robin, G. de Q. (1983). The Climatic Record in Polar Ice Sheets, Cambridge, UK: Cambridge University Press.Google Scholar
Rosenzweig, C. & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367, 133–8.CrossRefGoogle Scholar
Sherratt, A. (1980). The Cambridge Encyclopedia of Archaeology. Cambridge, UK: Cambridge University Press.Google Scholar
Sherwood, S., Lanzante, J. & Meyen, C. (2004). Radiosonde daytime biases and late–20th century warming. Science, 309, 1556–9.CrossRefGoogle Scholar
Shoemaker, E. M. (1983). Asteroid and comet bombardment of the Earth. Annual Review of Earth and Planetary Science, 11, 461–94.CrossRefGoogle Scholar
Smith, D. G. (1982). Cambridge Encyclopaedia of Earth Sciences. Cambridge, UK: Cambridge University Press.Google Scholar
Stommel, H. & Stommel, E. (1979). The year without a summer. Scientific American, 240, June, 134–40.CrossRefGoogle Scholar
Stothers, R. B. (1984). Mystery cloud of ad 536. Nature, 307, 344–5.CrossRefGoogle Scholar
Stouffer, R. J., Manabe, S. & Vinnilcov, K. Ya. (1994). Model assessment of the role of natural variability in recent global warming. Nature, 367, 634–6.CrossRefGoogle Scholar
Strzepek, K. M. & Smith, J. B. (eds.) (1995). As Climate Changes: International Impacts and Implications. Cambridge, UK: Cambridge University Press.Google Scholar
Taylor, K. C.et al. (1993). The “flickering switch” of late Pleistocene climate change. Nature, 361, 432–6.CrossRefGoogle Scholar
Storch, F. & Zwiers, F. W. (2002) Statistical Analysis in Climate Research. Cambridge, UK: Cambridge University Press.Google Scholar
Tengen, I., Lacis, A. A. & Fung, I. (1996). The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–22.CrossRefGoogle Scholar
Tett, S. F. B.et al. (1999). Causes of twentieth century climate change. Nature, 399, 569–72.CrossRefGoogle Scholar
Thomas, D. S. G. & Middleton, N. J. (1994). Desertification: Exploding the Myth. Chichester UK: Wiley.Google Scholar
Toumi, R., Bekki, S. & Law, K. (1995). Indirect influence of ozone depletion on climate forcing by clouds. Nature, 372, 348–51.CrossRefGoogle Scholar
Trenberth, K. E. (ed) (1992). Climate System Modelling. Cambridge, UK: Cambridge University Press.Google Scholar
Tucker, C. J., Dregne, H. E. & Newcomb, W. W. (1991). Expansion and contraction of the Sahara Desert from 1980 to 1990. Science, 253, 299–301.CrossRefGoogle ScholarPubMed
Andel, T. H. (1994). New Views on an Old Planet: a History of Global Change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Weaver, A. J. & Hughes, T. M. C. (1994). Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature, 367, 447–50.CrossRefGoogle Scholar
Weaver, A. J., Sarachik, E. S. & Marotzke, J. (1991). Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353, 836–8.CrossRefGoogle Scholar
Whitlock, C. & Bartlein, P. J. (1997). Vegetation and climate change in northwest America during the last 125 kyr. Nature, 388, 57–61.CrossRefGoogle Scholar
Wigley, T. M. L., Ingram, M. J. & Farmer, G. (1981). Climate and History: Studies in Past Climates and their Impact on Man. Cambridge, UK: Cambridge University Press, UK.Google Scholar
Wigley, T. M. L., Lough, J. M. & Jones, P. D. (1984). Spatial patterns of precipitation in England and Wales and a revised homogeneous England and Wales precipitation series. Journal of Climatology, 4, 1–25.CrossRefGoogle Scholar
Willson, R. C. & Hudson, H. S. (1991). The Sun's luminosity over a complete cycle. Nature, 351, 42–4.CrossRefGoogle Scholar
Wiscombe, W. J. (1995). An absorbing mystery. Nature, 376, 466–7.CrossRefGoogle Scholar
Zachos, J.et al. (2001). Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292, 686–93.CrossRefGoogle ScholarPubMed
Alexander,, L. V.et al. (2006). Global observed dazes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111.CrossRefGoogle Scholar
Alley, R. B. (2000). The Two-Mile Time Machine: Ice Cores, Abrupt Climate Change and Our Future. Princeton, NJ, USA: Princeton University Press.Google Scholar
Baillie, M. G. L. (1995). A Slice through Time: Dendrochronology and Precision Dating. London, UK: Batsford.Google Scholar
Baldwin, M. P.et al. (2001). The Quasi-biennial Oscillation. Reviews of Geophysics, 32, 179–229.CrossRefGoogle Scholar
Barber, D. C.et al. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–8.CrossRefGoogle Scholar
Barnston, A. G. (1995). Our improving capability in ENSO forecasting. Weather, 50, 419–30.CrossRefGoogle Scholar
Barry, R. G. & Chorley, R. J. (2003). Atmosphere, Weather & Climate. Eighth edition. London, UK: Methuen.Google Scholar
Bertage (to follow)
Benton, M. J. (1995). Diversification and extinction in the history of life. Science. 268, 52–8.CrossRefGoogle ScholarPubMed
Bigg, G. R. (2003). The Oceans and Climate. Second edition. Cambridge, UK: Cambridge University Press.Google Scholar
Bonan, G. B., Pollard, D. & Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Nature, 359, 716–18.CrossRefGoogle Scholar
Bradley, R. S. & Jones, P. D. (eds) (1995). Climate since AD 1500. London, UK: Routledge.Google Scholar
Briffa, K. R.et al. (1990). A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 346, 434–9.CrossRefGoogle Scholar
Briffa, K. R.et al. (1995). Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature, 376, 156–9.CrossRefGoogle Scholar
Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–5.CrossRefGoogle Scholar
Broecker, W. S. (1995a). Chaotic climate. Scientific American, 267, No. 11, 44–50.Google Scholar
Broecker, W. S. (1995b). Cooling the tropics. Nature, 376, 212–13.CrossRefGoogle Scholar
Brown, G. C., Hawkesworth, C. J. & Wilson, R. C. L. (eds.) (1992). Understanding the Earth: a New Synthesis. Cambridge, UK: Cambridge University Press.Google Scholar
Bryant, E. (1997). Climate Process and Change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (1978). On running means and meteorological cycles. Weather, 33, 101–9.CrossRefGoogle Scholar
Burroughs, W. J. (1991). Watching the World's Weather. Cambridge, UK: Cambridge University Press.Google Scholar
Burroughs, W. J. (1994). Weather Cycles: Real or Imaginary?Cambridge, UK: Cambridge University Press.Google Scholar
Burroughs, W. J. (1997). Does the Weather Really Matter? The Social Implications of Climate Change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2001). Climate Change: A Multidisciplinary Approach; First Edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2003). Weather Cycles: Real or Imaginary? Second edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2005a). Climate Change in Prehistory: The End of the Reign of Chaos. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burroughs, W. J. (2005b). Does the Weather Really Matter?Cambridge, UK: Cambridge University Press.Google Scholar
Cess, R. D.et al. (1991). Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253, 888–92.CrossRefGoogle ScholarPubMed
Cess, R. D.et al. (1995). Absorption of solar radiation by clouds: observations versus models. Science, 267, 496–9.CrossRefGoogle ScholarPubMed
Chahine, M. T. (1992). The hydrological cycle and its influence on the climate. Nature, 359, 373–9.CrossRefGoogle Scholar
Chuine, I.et al. (2004). Grape ripening as a past climate indicator. Nature, 432, 289–90.CrossRefGoogle ScholarPubMed
CLIMAP Project Members. (1976). The surface of the ice-age Earth. Science, 191, 1131–7.CrossRef
CLIMAP. (1981). Seasonal Reconstruction of the Earth's Surface at the Last Glacial Maximum. Geological Society of America, Map and Chart Series, Vol. C36.
Cook, E. R.et al. (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5, 229–37.CrossRefGoogle Scholar
Courtillot, V. (1999). Evolutionary Catastrophes: The Science of Mass Extinctions. Cambridge, UK: Cambridge University Press.Google Scholar
Christy, J. R. & Norris, W. B. (2004). What may we conclude about global tropospheric temperature trends?Geophysical Research Letters, 31.CrossRefGoogle Scholar
Dansgaard, W. & Oeschger, H. (1989). In The Environmental Record in Glaciers and Ice Sheets, Oeschger, H. & Langway, C. C. (eds.). Chichester, UK: Wiley, pp. 287–318.Google Scholar
Dansgaard, W.et al. (1993). Evidence of general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–20.CrossRefGoogle Scholar
Davis, B. A. S.et al. (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 20, 1701–6.CrossRefGoogle Scholar
Dawson, A. G. (1992). Ice Age Earth: Late Quaternary Geology and Climate. London, UK: Routledge.Google Scholar
Diaz, H. F. & Markgraf, V. (eds.) (2000). El Niño and the Southern Oscillation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Doherty, R. M., Hulme, M. & Jones, C. G. (1999). A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974–1994. International Journal of Climatology, 19, 119–42.3.0.CO;2-X>CrossRefGoogle Scholar
EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–8.CrossRef
Fagan, B. (1999). Floods, Famines and Emperors: El Nino and the Fate of Civilisations. London, UK: Plimlico.Google Scholar
Fagan, B. (2004). The Long Summer: How Climate Changed Civilisation. New York, USA: Basic Books.Google Scholar
Folland, C. K. & Parker, D. E. (1995). Correction of instrumental biases in historical sea surface temperature data. Quarterly Journal Royal Meteorological Society, 121, 319–67.CrossRefGoogle Scholar
Frakes, L. A., Francis, J. E. & Syktus, J. I. (1992). Climate Modes of the Phanerozoic. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Frich, P.et al. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212.CrossRefGoogle Scholar
Fritts, H. C. (1976). Tree Rings and Climate. London, UK: Academic Press.Google Scholar
Giovanelli, R. (1984). Secrets of the Sun. Cambridge UK: Cambridge University Press.Google Scholar
Grafenstein, U.et al. (1999). A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science, 284, 1684–7.Google Scholar
Gray, L. J., Haigh, J. D. & Harrison, R. G. (2005). The influences of solar changes on the Earth's climate. Hadley Centre Technical Note 62 (HCTN62), available from the Hadley Centre website (http://www.met-office.gov.uk/research/hadleycentre/pubs/HCNT/.)
Gray, W. M. (1990). Strong association between West African rainfall and US landfall of intense hurricanes. Science, 249, 1251–6.CrossRefGoogle Scholar
Greenland Ice Core Project (GRIP) Members. (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364, 203–7.CrossRef
Grootes, P. M.et al. (1993). Comparison of oxygen isotope records from the GISP 2 and Greenland ice cores. Nature, 366, 552–4.CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age. London, UK: Methuen.CrossRefGoogle Scholar
Gurney, R. J., Foster, J. L. & Parkinson, C. L. (eds.) (1993). Atlas of Satellite Observations Related to Global Change. Cambridge, UK: Cambridge University Press.Google Scholar
Haigh, J. D. (2000). Solar variability and climate. Weather, 55, 399–405.CrossRefGoogle Scholar
Hammer, C. U., Clausen, H. B. & Dansgaard, W. (1980). Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature, 288, 230–5.CrossRefGoogle Scholar
Hansen, J. E.et al. (1995). Satellite and surface temperature data at odds?Climate Change, 30, 103–17.CrossRefGoogle Scholar
Harries, J. E. (1990). Earthwatch: the Climate from Space. London, UK: Ellis Horwood.Google Scholar
Hastenrath, S. (2002). Dipoles, temperature gradients, and tropical climate anomalies. Bulletin of the American Meteorological Society, 83, 735–8.2.3.CO;2>CrossRefGoogle Scholar
Haug, G. H.et al. (2003). Climate and the collapse of Maya civilisation. Science, 299, 1721–5.CrossRefGoogle Scholar
Hickey, M. & King, C. (1988). 100 Families of Flowering Plants, Second Edition. Cambridge, UK: Cambridge University Press.Google Scholar
Hostetler, S. W. & Mix, A. C. (1999). Reassessment of ice-age cooling of the tropical ocean and atmosphere. Nature, 399, 673–6.CrossRefGoogle Scholar
Houghton, J. (2002). The Physics of Atmospheres. Third edition. Cambridge, UK: Cambridge University Press.Google Scholar
Houghton, J. (2004). Global Warming: the Complete Briefing. Third edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hulme, M. & Barrow, E. (eds.) (1997). Climates of the British Isles: Present, Past and Future. London, UK: Routledge.Google Scholar
Hulme, M. & Jones, P. D. (1991). Temperatures and windiness over the United Kingdom during the winters of 1988/89 and 1989/90 compared with previous years. Weather, 46, 126–36.CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676–9.CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influence of variations in extratropical wintertime tele-connections on Northern Hemisphere temperature. Geophysical Research Letters, 23, 665–8.CrossRefGoogle Scholar
Imbrie, J. & Imbrie, J. Z. (1979). Ices Ages: Solving the Mystery. London, UK: Macmillan.CrossRefGoogle Scholar
Imbrie, J. & Imbrie, J. Z. (1980). Modelling the climatic response of orbital variations. Science, 207, 943–53.CrossRefGoogle Scholar
Imbrie, J.et al. (1992). On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography, 7, 701–38.CrossRefGoogle Scholar
Imbrie, J.et al. (1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography, 8, 699–735.CrossRefGoogle Scholar
International Federation of Red Cross and Red Crescent Societies. (1999). World Disasters Report.
IPCC. (1990). Climate Change: The IPCC Scientific Assessment. Houghton, J. T., Jenkins, G. J. & Ephraums, G. G. (eds.). Cambridge, UK: Cambridge University Press. 365pp.Google Scholar
IPCC. (1992). Climate Change 1992: the Supplementary Report to IPCC Scientific Assessment, Houghton, J. T, Callander, B. A. & Varney, S. K. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC. (1994). Climate Change 1994: Radiative Forcing of Climate and an Evaluation of the IPCC IS92 Emission Scenarios, Houghton, J. T., Filho, L. G. Meira, Bruce, J., Lee, Hoesung, Callendar, B. A., Haites, E., Harris, N., & Maskell, K. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC, (1995). Climate Change 1995: The Science of Climate Change, Houghton, J. T., Filho, L. G. Meira, Callendar, B. A., Harris, N., Kattenberg, A. & Maskell, K.. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC, (2001). Climate Change 2001: The Scientific Basis, Houghton, J. T., Ding, Y., Griggs, D., Noguer, M., Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A, (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC, (2007). Climate Change 2007: The Scientific Basis, Cambridge, UK: Cambridge University Press.
Jablonski, D. (1997). Progress at the K-T boundary. Nature, 387, 354–5.CrossRefGoogle Scholar
Jolliffe, I. T. (1986). Principal Component Analysis. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Jones, P. D.et al. (1999). Review of Geophysics, 37, 173–99.CrossRef
Kalnay, E.et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meterological Society, 77, 437–71.2.0.CO;2>CrossRefGoogle Scholar
Karl, T. R.et al. (1995). Critical issues for long-term climate monitoring. Climatic Change, 31, 185–221.CrossRefGoogle Scholar
Karl, T. R.et al. (1996). Indices of climate change for the United States. Bulletin of the American Meteorological Society, 77, 279–92.2.0.CO;2>CrossRefGoogle Scholar
Kendall, M. (1976). Time Series. London, UK: Charles Griffin.Google Scholar
Kripalani, R. H. & Kulkarni, A. (1997). Climatic impact of the El Niño/La Niña on the Indian monsoon: a new perspective. Weather, 52, 39–46.CrossRefGoogle Scholar
Laird, K. R.et al. (1996). Greater drought intensity and frequency before ad 1200 in the Northern Great Plains, USA. Nature, 384, 552–4.CrossRefGoogle Scholar
LaMarche, V. C. Jr. (1974). Paleoclimatic inferences from long tree-ring records. Science, 183, 1043–8.CrossRefGoogle ScholarPubMed
Lamb, H. H. (1972). Climate: Present, Past and Future. Volume 1. London, UK: Methuen.Google Scholar
Lamb, H. H. (1977). Climate: Present, Past and Future. Volume 2. London, UK: Methuen.Google Scholar
Lamb, H. H. (1995). Climate, History and the Modern World (2nd edn). London, UK: Routledge.Google Scholar
Lambeck, K., Esat, T. M. & Potter, E.-K. (2003). Links between climate and sea levels for the past three million years. Nature, 419, 199–206.CrossRefGoogle Scholar
Landsea, C. W.et al. (1994). Seasonal forecasting of Atlantic hurricane activity. Weather, 49, 273–84.CrossRefGoogle Scholar
Landsea, C. W.et al. (1999). Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42, 89–129.CrossRefGoogle Scholar
Lean, J. (2000). Evolution of the Sun's Spectral Irradiance since the Maunder Minimum. Geophysical Research Letters, 27, 2425–8.CrossRefGoogle Scholar
Ladurie, Roy E. & Baulant, M. (1980). Grape harvests from the fifteenth through the nineteenth centuries. Journal of Interdisciplinary History, 10, 839–49.CrossRefGoogle Scholar
Li, X.et al. (1996). Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds. Nature, 380, 416–19.CrossRefGoogle Scholar
Lisiecki, L. E. & Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA 1003, doi:10.1029/2004PA001071.Google Scholar
Lockwood, M. & Stamper, R. (1999). Long term drift in the coronal source magnetic flux and total solar irradiance. Geophysical Research Letters, 26, 2461–5.CrossRefGoogle Scholar
Lovelock, J. E. (1988). The Ages of Gaia. Oxford, UK: Oxford University Press.Google Scholar
Lundin, R., Eliasson, L. & Murphree, J. S. (1991) The quiet time aurora. In Auroral Physics, Meng, C.-I., Rycroft, M. J. & Frank, L. A. (eds.). Cambridge, UK: Cambridge University Press.Google Scholar
Luterbacher, J.et al. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 1499–503.CrossRefGoogle ScholarPubMed
Mann, M. E. & Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters, 30, 1820, doi:10.1029/2003GL017814.CrossRefGoogle Scholar
Mangini, A, Spotl, C, & Verdes, P. (2005). Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth & Planetary Science Letters, 235, 741–51.CrossRefGoogle Scholar
Manley, G. (1974). Central England Temperatures: monthly means 1659 to 1973. Quarterly Journal Royal Meteorlogical Society, 100, 389–405.CrossRefGoogle Scholar
Markson, R. (1978). Solar modification of atmospheric electrification and possible implications for the Sun-weather relationship. Nature, 244, 197–200.Google Scholar
Marshall, J., et al. (2001). North Atlantic climate variability: Phenomena, impacts and mechanisms: A Review. International Journal of Climatology, 21, 1863–98.CrossRefGoogle Scholar
Martinson, D. G., et al. (1987). Age dating and the orbital theory of the Ice Age:development of a high resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 17, 1–30.CrossRefGoogle Scholar
McIlveen, R. (1992). Fundamentals of Weather and Climate. London, UK: Chapman and Hall.CrossRefGoogle Scholar
Mitchell, J. F. B.et al. (1995). Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501–4.CrossRefGoogle Scholar
Mitchell, J. M., Stockton, C. W. & Meko, D. M. (1979). Evidence of a 22-year rhythm of drought in the Western United States related to the Hale Solar Cycle since the 17th century. In Solar-Terrestrial Influences on Weather and Climate, McCormac, B. M & Seliga, T. A, (eds.). Dordrecht, The Netherlands: Reidel Publishing Co.CrossRefGoogle Scholar
Mitchell, J. M. (1990) Climatic variability: past, present & future. Climatic Change, 16, 231–46.CrossRefGoogle Scholar
Mix, A. C., Bard, E. & Schneider, R. (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews, 20, 627–57.CrossRefGoogle Scholar
Moberg, A.et al. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature, 433, 613–17.CrossRefGoogle ScholarPubMed
Musk, L. F. (1988). Weather Systems. Cambridge, UK: Cambridge University Press.Google Scholar
Palmer, T. (1993). A nonlinear dynamical perspective on climate change. Weather, 48, 314–25.CrossRefGoogle Scholar
North Greenland Ice Core Project members. (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147–55.CrossRef
Open University (2001). Ocean Circulation. London: Butterworth Heinemann (in association with The Open University, Milton Keynes).
Paillard, D. (1998). The timing of Pleistocene glaciations from a simple multiple-state model. Nature, 391, 378–81.CrossRefGoogle Scholar
Parker, D. E., Legg, T. P. & Folland, C. K. (1992). A new daily Central England temperature series, 1772–1991. International Journal of Climatology. 12, 317–42.CrossRefGoogle Scholar
Parry, M. & Duncan, R. (eds.). (1995). The Economic Implications of Climate Change in Britain. London, UK: Earthscan.Google Scholar
Pecker, J. C. & Runcorn, S. K. (eds.). (1990). The Earth's Climate and Variability of the Sun over Recent Millennia: Geophysical, Astronomical and Archaeological Aspects. London, UK: The Royal Society.Google Scholar
Petit, J. R.et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–36.CrossRefGoogle Scholar
Pfister, C. (1995). Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In Climate Since AD 1500, Bradley, R. S. & Jones, P. D. (eds.) (Chapter 6). London, UK: Routledge. [Data on temperature and precipitation indices available on disk from the National Geophysical Data Center, Boulder, Co 80309, USA.]Google Scholar
Philander, S. G. H. (1983). El Niño Southern Oscillation. Nature, 302, 295–301.CrossRefGoogle Scholar
Pimental, D.et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–23.CrossRefGoogle Scholar
Piekle, R. A. & Landsea, C. W. (1998). Normalized hurricane damage in the United States: 1925–95. Weather and Forecasting. 13, 621–31.Google Scholar
Rampino, M. R. & Self, S. (1992). Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 50–2.CrossRefGoogle Scholar
Raup, D. M. (1991). Extinction: Bad Genes or Bad Luck?New York, UK: W. W. Norton.Google ScholarPubMed
Richerson, P. J., Boyd, R. & Bettinger, R. L. (2001). Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. American Antiquity, 66, 1–50.CrossRefGoogle Scholar
Robin, G. de Q. (1983). The Climatic Record in Polar Ice Sheets, Cambridge, UK: Cambridge University Press.Google Scholar
Rosenzweig, C. & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367, 133–8.CrossRefGoogle Scholar
Sherratt, A. (1980). The Cambridge Encyclopedia of Archaeology. Cambridge, UK: Cambridge University Press.Google Scholar
Sherwood, S., Lanzante, J. & Meyen, C. (2004). Radiosonde daytime biases and late–20th century warming. Science, 309, 1556–9.CrossRefGoogle Scholar
Shoemaker, E. M. (1983). Asteroid and comet bombardment of the Earth. Annual Review of Earth and Planetary Science, 11, 461–94.CrossRefGoogle Scholar
Smith, D. G. (1982). Cambridge Encyclopaedia of Earth Sciences. Cambridge, UK: Cambridge University Press.Google Scholar
Stommel, H. & Stommel, E. (1979). The year without a summer. Scientific American, 240, June, 134–40.CrossRefGoogle Scholar
Stothers, R. B. (1984). Mystery cloud of ad 536. Nature, 307, 344–5.CrossRefGoogle Scholar
Stouffer, R. J., Manabe, S. & Vinnilcov, K. Ya. (1994). Model assessment of the role of natural variability in recent global warming. Nature, 367, 634–6.CrossRefGoogle Scholar
Strzepek, K. M. & Smith, J. B. (eds.) (1995). As Climate Changes: International Impacts and Implications. Cambridge, UK: Cambridge University Press.Google Scholar
Taylor, K. C.et al. (1993). The “flickering switch” of late Pleistocene climate change. Nature, 361, 432–6.CrossRefGoogle Scholar
Storch, F. & Zwiers, F. W. (2002) Statistical Analysis in Climate Research. Cambridge, UK: Cambridge University Press.Google Scholar
Tengen, I., Lacis, A. A. & Fung, I. (1996). The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–22.CrossRefGoogle Scholar
Tett, S. F. B.et al. (1999). Causes of twentieth century climate change. Nature, 399, 569–72.CrossRefGoogle Scholar
Thomas, D. S. G. & Middleton, N. J. (1994). Desertification: Exploding the Myth. Chichester UK: Wiley.Google Scholar
Toumi, R., Bekki, S. & Law, K. (1995). Indirect influence of ozone depletion on climate forcing by clouds. Nature, 372, 348–51.CrossRefGoogle Scholar
Trenberth, K. E. (ed) (1992). Climate System Modelling. Cambridge, UK: Cambridge University Press.Google Scholar
Tucker, C. J., Dregne, H. E. & Newcomb, W. W. (1991). Expansion and contraction of the Sahara Desert from 1980 to 1990. Science, 253, 299–301.CrossRefGoogle ScholarPubMed
Andel, T. H. (1994). New Views on an Old Planet: a History of Global Change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Weaver, A. J. & Hughes, T. M. C. (1994). Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature, 367, 447–50.CrossRefGoogle Scholar
Weaver, A. J., Sarachik, E. S. & Marotzke, J. (1991). Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353, 836–8.CrossRefGoogle Scholar
Whitlock, C. & Bartlein, P. J. (1997). Vegetation and climate change in northwest America during the last 125 kyr. Nature, 388, 57–61.CrossRefGoogle Scholar
Wigley, T. M. L., Ingram, M. J. & Farmer, G. (1981). Climate and History: Studies in Past Climates and their Impact on Man. Cambridge, UK: Cambridge University Press, UK.Google Scholar
Wigley, T. M. L., Lough, J. M. & Jones, P. D. (1984). Spatial patterns of precipitation in England and Wales and a revised homogeneous England and Wales precipitation series. Journal of Climatology, 4, 1–25.CrossRefGoogle Scholar
Willson, R. C. & Hudson, H. S. (1991). The Sun's luminosity over a complete cycle. Nature, 351, 42–4.CrossRefGoogle Scholar
Wiscombe, W. J. (1995). An absorbing mystery. Nature, 376, 466–7.CrossRefGoogle Scholar
Zachos, J.et al. (2001). Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292, 686–93.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×