Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T06:15:19.437Z Has data issue: false hasContentIssue false

5 - Mass transfer

Published online by Cambridge University Press:  05 April 2015

Roger-Marc Nicoud
Affiliation:
Ypso-Facto, Nancy, France
Get access

Summary

Let's take the time

In the previous chapters, the basics of chromatography modeling were provided under the assumption that kinetic limitations either were non-existent (Chapter 3 for non-linear chromatography) or could be modeled via a first-order approximation (Chapter 2 for linear chromatography). We have shown in Chapter 2 that, as long as kinetic limitations are not extremely strong, a good approximation for modeling chromatographic columns is to lump hydrodynamic dispersion and mass transfer limitations into a single parameter known as the plate number. We will show in the following sections and in Chapter 7 that this approach is often sufficient for modeling preparative scale chromatography. In certain situations, however, when kinetic limitations are strong, in the case of strongly non-linear chromatography or when specific precision is required because of challenging purity targets, this approximation may not be accurate enough and more detailed descriptions will be needed.

It is generally accepted that kinetic limitations can be attributed to diffusional transfer occurring either outside the beads, thus referred to as external diffusion, or inside the beads, thus referred to as internal diffusion. Usually, the adsorption step is very fast and is assumed to be kinetically instantaneous. However, because very small particle sizes are now available, the influence of diffusional limitations could in principle decrease to such an extent that, in certain rare cases, the overall kinetics of chromatography may be limited by the kinetics of the adsorption step.

We want to stress the fact that the distinction between external diffusion, internal diffusion and adsorption kinetics is not purely academic, because these three possible processes are impacted differently by operating parameters like particle size and fluid velocity. The ability to identify and properly model these different processes is thus key.

We will use the lumped model and the porous model introduced in Chapter 1 to model mass transfer around and inside particles. The lumped model clearly has the advantage of simplicity, whereas more or less complex descriptions associated with the porous model allow a better understanding of the influence of certain operating parameters on kinetics.

Type
Chapter
Information
Chromatographic Processes
Modeling, Simulation, and Design
, pp. 216 - 316
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afeyan, N. B., Gordon, N. F., Mazsaroff, I., Varady, L., Fulton, S. P., Yang, Y. B. and Regnier, F. E. (1990), J. Chromatogr. A 519(1), 1–29.CrossRef
Boyd, G. and Soldano, B. (1953), J. Am. Chem. Soc. 75, 6091–6099.
Boyd, G. and Soldano, B. (1954), J. Am. Chem. Soc. 75, 6105.CrossRef
Boyd, G., Soldano, B. and Bonner, O. (1954), J. Phys. Chem. 58, 456–459.CrossRef
Cale, T.S., Lawson, J. M. and Ludlow, D.K. (1987), Chem. Eng. Commun. 56(1–6), 169–181.CrossRef
Carta, G. (1998), Chem. Eng. Sci. 43, 2877.CrossRef
Carta, G. and Bauer, J. (1990), AIChE J.. 36, 147.CrossRef
Carta, G. and Cincotti, A. (1998), Chem. Eng. Sci. 53, 3483.CrossRef
Carta, G., Cincotti, A. and Gao, G. (1999), Sep. Sci. Technol. 34(1), 1–16.
Carta, G., Gregory, M. E., Kirwan, D. J. and Massaldi, H. A. (1992), Sep. Technol. 2(2), 62–72.CrossRef
Carta, G. and Lewus, R. (1999), Sep. Sci. Technol. 34, 2685–2697.
Chang, C. and Lenhoff, A. (1998), J. Chromatogr. A 827, 281–293.CrossRef
Conder, J. and Hayek, B. (2000), Biochem. Eng. J. 6, 15–223.
Coquebert de Neuville, B., Tarafder, A. and Morbidelli, M. (2013), J. Chromatogr. A 1298, 26–34.CrossRef
Coquebert de Neuville, B., Thomas, H. and Morbidelli, M. (2013), J. Chromatogr. A 1314, 77–85.CrossRef
Dodds, J. and Tondeur, D. (1974), J. Chim. Phys. 71, 238.CrossRef
Dwivedi, P.N. and Upadhyay, S.N. (1977), Ind. Eng. Chem. Process Des. Dev. 16(2), 157–165.CrossRef
Epstein, N. (1989), Chem. Eng. Sci. 44, 777–779.CrossRef
Farnan, D., Frey, D. and Horvath, C. (2002), J. Chromatogr. A 959, 65–73.CrossRef
Glueckauf, E. (1949), Discuss. Faraday Soc. 7, 12–25.
Gorius, A., Bailly, M. and Tondeur, D. (1991), Chem. Eng. Sci. 46(2), 685–692.
Grosfils, V. (2009), Modelling and parametric estimation of simulated moving bed chromatographic processes. PhD thesis, Université Libre de Bruxelles.
Guiochon, G., Felinger, A., Golshan-Shirazi, S. and Katti, A. M. (2006), Fundamentals of Preparative and Nonlinear Chromatography, Elsevier Academic Press.Google Scholar
Gutenwik, J., Nilsson, B. and Axelsson, A. (2004), Biochem. Eng. J. 19, 1–7.CrossRef
Hasnat, A. and Jvekar, V. (1996), AIChEJ. 42(1), 161–175.
Heinonen, J., Rubiera Landa, H., Sainio, T. and Seidel-Morgenstern, A. (2012), Sep. Purif. Technol. 95, 235–247.CrossRef
Helfferich, F. G. (1962), Ion Exchange, McGraw-Hill.Google Scholar
Helfferich, F. G. and Plesset, M. S. (1958), J. Chem. Phys. 28, 418–424.CrossRef
Holger, M. (1978), Chem. Eng. Sci. 33, 913–919.
Jackson, R. (1977), Transport in Porous Catalysts, Elsevier.Google Scholar
Johnston, A. and Hearn, M. (1991), J. Chromatogr. 557, 335–358.CrossRef
Kaczmarski, K., Cavazzini, A., Szabelski, P., Zhou, D., Liu, X. and Guiochon, G. (2002), J. Chromatogr. A 962, 57–67.CrossRef
Kaczmarski, K., Gubernak, M., Zhou, D. and Guiochon, G. (2003), Chem. Eng. Sci. 58, 2325–2338.CrossRef
Krishna, R. (1990), Chem. Eng. Sci. 45(7), 1779–1791.CrossRef
Krishna, R. (1993), Gas Sep. Purif. 7(2), 91–104.CrossRef
Krishna, R. and Wesselingh, J. (1997), Chem. Eng. Sci. 52(6), 861–911.CrossRef
Kucera, E. (1965), J. Chromatogr. 19(2), 237–248.CrossRef
Kunii, D. and Suzuki, M. (1967), Int. J. Heat Mass Transfer 10(7), 845–852.
Leitão, A. and Rodrigues, A. E. (1995), Chem. Eng. J. 60, 81–87.
Leitão, A. and Rodrigues, A. E. (1999), Biochem. Eng. J. 3, 131–139.CrossRef
Lewus, R. and Carta, G. (1999), AIChEJ. 45 (3), 512–522.CrossRef
Liberti, L. and Passino, R. (1985). In J. A., Marinski and Y., Marcus, eds., Ion Exchange and Solvent Extraction Vol. 9, Marcel Dekker, pp.175–210.
Ma, Z., Whitley, R. and Wang, N. (1996), AIChEJ. 42(5), 1244–1262.CrossRef
Martin, C., Iberer, G., Ubiera, A. and Carta, G. (2005), J. Chromatogr. A 1079, 105–115.CrossRef
Melis, S., Markos, J., Cao, G. and Morbidelli, M. (1996), Ind. Eng. Chem. Res. 35, 3629–3636.
Melter, L., Butté, A. and Morbidelli, M. (2008), J. Chromatogr. A 1200, 156–65.CrossRef
Miyabe, K. and Guiochon, G. (2000a), J. Chromatogr. A 866, 147–171.CrossRef
Miyabe, K. and Guiochon, G. (2000b), J. Chromatogr. A 890, 211–223.CrossRef
Miyabe, K. and Guiochon, G. (2002), J. Chromatogr. A 961, 23–33.CrossRef
Morbidelli, M., Servida, A., Storti, G. and Carra, S. (1982), Ind. Eng. Chem. Fundam. 21(2), 123–131.
Morbidelli, M., Storti, G., Carra, S., Niederjaufner, G. and Pontoglio, A. (1984), Chem. Eng. Sci. 39, 384.CrossRef
Mota, J. (2004). In G., Lu and X., Zhao eds., Nanoporous Materials: Science and Engineering, Imperial College Press p. 694.CrossRefGoogle Scholar
Nelson, P.A. and Galloway, T.R. (1975), Chem. Eng. Sci. 30(1), 1–6.CrossRef
Nicoud, R. M. (1987), Influence respective des facteurs thermodynamiques, hydrodynamiques et diffusionnels sur le fonctionnement des echangeurs d'ions. Application aunprocede d'echange ionique: Le Nymphea PhD thesis, Institut National Polytechnique de Lorraine, Nancy.
Nicoud, R.M. and Perrut, M. (1993). In G., Ganetsos and P.E., Barker, eds., Preparative and Production Scale Chromatography, vol. 61 of Chromatographic Science Series, Marcel Dekker, pp. 47–77.Google Scholar
Nicoud, R.M. and Schweich, D. (1988), J.Chim. Phys. 85(2), 239–246.CrossRef
Nicoud, R.M. and Schweich, D. (1989), Water Resour. Res. 25(6), 1071–1082.CrossRef
Piatkowski, W., Gritti, F., Kaczmarski, K. and Guiochon, G. (2003), J. Chromatogr. A 989, 207–219.CrossRef
Poling, B., Prausnitz, J. and O'Connell, J. (2001), The Properties of Gases and Liquids, 5th edn., McGraw-Hill.Google Scholar
Rearden, P., Sajonz, P. and Guiochon, G. (1998), J. Chromatogr. A 813, 1–9.CrossRef
Rendueles de la Vega, M., Loureiro, J. and Rodrigues, A.E. (1996), Chem. Eng. J. 61, 123–126.
Rexwinkel, G., Heesink, A. and Van Swaaij, W. (1996), Chem. Eng. Sci. 52(21–22), 3995–4003.
Rodrigues, A.E. (1993), LC-GC International 6(1), 20–29.
Rodrigues, A.E., Ahn, B. and Zoulalian, A. (1982), AIChE J. 28, 541–546.CrossRef
Rodriguez, J., Valverde, J. and Rodrigues, A. E. (1998), Ind. Eng. Chem. Res. 37, 2020–2028.CrossRef
Russell, A. and Carta, G. (2005), AIChE J. 51, 2469–2480.CrossRef
Ruthven, D.M. (1984), Principles of Adsorption and Adsorption Processes, John Wiley & Sons.Google Scholar
Ruthven, D.M. and Ching, C.B. (1993). In G., Ganetsos and P.E., Barker, eds., Preparative and Production Scale Chromatography, vol. 61 of Chromatographic Science Series, Marcel Dekker, pp. 629–671.Google Scholar
Sajonz, P., Kele, M., Zhong, G., Sellergen, B. and Guiochon, G. (1998), J. Chromatogr. A 810, 1–17.CrossRef
Sardin, M., Schweich, D., Leij, F. and Van Genuchten, M.V. (1991), Water Resour. Res. 27(9), 2287–2307.CrossRef
Schmidt-Traub, H., Kaspereit, M., Engell, S., Susanto, A., Epping, A. and Jupke, A. (2012). In H., Schmidt-Traub, M., Schulte and A., Seidel-Morgenstern, eds., Preparative Chromatography, 2nd edn., Wiley-VCH, p. 425.CrossRefGoogle Scholar
Schröder, M., Von Lieres, E. and Hubbuch, J. (2006), J. Phys. Chem. B 110, 1420–1436.
Silva, C. and Lito, P. (2007), Chem. Eng. Sci. 62, 6939–6946.CrossRef
Sircar, S. and Hufton, J. (2000), Adsorption 6, 137–147.
Taylor, R. and Krishna, R. (1993), Multicomponent Mass Transfer, John Wiley & Sons.Google Scholar
Van Brocklin, L.P. and David, M.M. (1972), Ind. Eng. Chem. Fundam. 11(1), 91–99.CrossRef
Van Deemter, J.J., Zuiderweg, F.J. and Klinkenberg, A. (1956), Chem. Eng. Sci 5(6), 271–289.CrossRef
Villermaux, J. (1981). In A.E., Rodrigues and D., Tondeur, eds., Percolation Processes: Theory and Applications, vol 33 of NATO ASI Series, Series E: Applied Sciences, Sijthoff & Noordhof, pp. 83–140.Google Scholar
Wakao, N. and Funazkri, T. (1978), Chem. Eng. Sci. 33(10), 1375–1384.
Wesselingh, J. and Krishna, R. (2006), Mass Transfer in Multicomponent Mixtures, VSSD.
Wilson, E.J. and Geankopolis, C.J. (1966), Ind. Eng. Chem. Fundam. 5(1), 9–14.CrossRef
Yoshida, H., Yoshikawa, M. and Katoaka, T. (1994), AIChE J. 40(12), 2035–2044.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mass transfer
  • Roger-Marc Nicoud
  • Book: Chromatographic Processes
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139998284.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mass transfer
  • Roger-Marc Nicoud
  • Book: Chromatographic Processes
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139998284.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mass transfer
  • Roger-Marc Nicoud
  • Book: Chromatographic Processes
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139998284.006
Available formats
×