Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T15:06:10.540Z Has data issue: false hasContentIssue false

15 - Formation of Chondrules by Shock Waves

from Part II - Possible Chondrule-Forming Mechanisms

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Nebular shock heating is one of the most fully developed and rigorous models for chondrule formation, and is also the most consistent with the meteoritic record. In this review, we compare the results of current shock modeling to the wealth of meteoritic observations, to highlight where there is agreement and where there is potential failure of the models. The discussion is focused on gravitational disk instability-driven, large-scale shocks and on local bow shocks, with attention to the astrophysical setting for both. We suggest that more than one shock driver may be physically motivated and necessary to explain the variety of chondrules.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 375 - 399
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, I., Hayashi, C., and Nakazawa, K. (1976). The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress of Theoretical Physics, 56, 17561771.CrossRefGoogle Scholar
Alexander, C. M. O’D., Boss, A. P., and Carlson, R. W. (2001). The early evolution of the inner Solar System: a meteoritic perspective. Science, 293, 6469.CrossRefGoogle Scholar
Alexander, C. M. O’D. (2005). From supernovae to planets: the view from meteorites and interplanetary dust particles. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series 341, 972. (San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Alexander, C. M. O.’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics and Planetary Science, 47, 11571175.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. (2010). U-Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.CrossRefGoogle Scholar
Boley, A. C., and Durisen, R. H. (2008). Gravitational instabilities, chondrule formation, and the FU Orionis phenomenon. The Astrophysical Journal, 685, 11931209.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., & Desch, S. J. (2013). High-temperature processing of solids through solar nebular bow shocks: 3D radiation hydrodynamics simulations with particles. The Astrophysical Journal, 776, 101124.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2014). The Absolute Chronology of the Early Solar System Revisited. 77th Annual Meeting of the Meteoritical Society, 1800, 5234.Google Scholar
Boss, A. P., and Durisen, R. H. (2005). Chondrule-forming shock fronts in the solar nebula: a possible unified scenario for planet and chondrite formation. The Astrophysical Journal, 621, L137-L140.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, 113, 28862891.CrossRefGoogle ScholarPubMed
Ciesla, F. J. (2005). Chondrule-forming Processes – An Overview. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 811820. (San Francisco, CA: Astronomical Society of the Pacific).Google Scholar
Connolly, H. C. Jr., and Love, S. G. (1998). The formation of chondrules: Petrologic tests of the shock wave model. Science, 280, 6267.CrossRefGoogle Scholar
Connolly, H. C. Jr., Jones, B. D., and Hewins, R. H. (1998). The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors. Geochimica et Cosmochimica Acta, 62, 27252735.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Desch, S. J. (2004). On the origin of the “kleine Kügelchen” called Chondrules. Chemie der Erde / Geochemistry, 64, 95125.CrossRefGoogle Scholar
Connolly, H. C. Jr., Desch, S. J., Ash, R. D., and Jones, R. H. (2006). Transient heating events in the protoplanetary nebula. In Lauretta, D. S. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 383397. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., and Bizzarro, M. (2008). Chronology of the Solar System’s Oldest Solids. The Astrophysical Journal Letters, 675, L121L124.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C., and Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. Journal of Geophysical Research (Planets), 121, 8851899.Google Scholar
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Shariff, K. (2008). Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal, 687, 14321447.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. Jr.(2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics and Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., and Cuzzi, J. N. (2000). The generation of lightning in the solar nebula. Icarus, 143, 87105.CrossRefGoogle Scholar
Desch, S. J. (2007). Mass distribution and planet formation in the solar nebula. The Astrophysical Journal, 671, 878893.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteoritics and Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Durisen, R. H., Boss, A. P., Mayer, L., et al. (2007). Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In Reipurth, B., Jewitt, D., and Keil, K. (Eds.), Protostars and Planets V, 607622. Tucson, AZ: University of Arizona Press.Google Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 64, 339366.CrossRefGoogle Scholar
Farrington, O. C. (1915). Meteorites, their structure, composition, and terrestrial relations. Chicago, IL: Lakeside Press.Google Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 226250.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2016). Effects of dust enrichment on oxygen fugacity of cosmic gases. Meteoritics and Planetary Science, 51, 843850.CrossRefGoogle Scholar
Gammie, C. F. (1996). Linear Theory of magnetized, viscous, self-gravitating gas disks. The Astrophysical Journal, 462, 725731.CrossRefGoogle Scholar
Gooding, J. L., and Keil, K. (1981). Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics, 16, 1743.CrossRefGoogle Scholar
Grossman, L., Fedkin, A. V., and Simon, S. B. (2012). Formation of the first oxidized iron in the solar system. Meteoritics and Planetary Science, 47, 21602169.CrossRefGoogle Scholar
Haisch, K. E. Jr., Lada, E. A., and Lada, C. J. (2001). Disk frequencies and lifetimes in young clusters. The Astrophysical Journal Letters, 553, L153-L156.CrossRefGoogle Scholar
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 3553.CrossRefGoogle Scholar
Helled, R., Bodenheimer, P., Podolak, M., et al. (2014). Giant planet formation, evolution, and internal structure. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 643665. Tucson, AZ: University of Arizona Press.Google Scholar
Hewins, R. H., and Connolly, H. C. Jr. (1996). Peak temperatures of flash-melted chondrules. In Hewins, R. H., Scott, E., and Jones, R. (Eds.), Chondrules and the Protoplanetary Disk, 197204. Cambridge, UK: Cambridge University Press.Google Scholar
Hewins, R. H. (1997). Chondrules. Annual Review of Earth and Planetary Sciences, 25, 6183.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C., Lofgren, G. E. Jr., and Libourel, G. (2005). Experimental Constraints on Chondrule Formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 286316. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochimica et Cosmochimica Acta, 78, 117.CrossRefGoogle Scholar
Hezel, D. C., Palme, H., Brenker, F. E., and Nasdala, L. (2003). Evidence for fractional condensation and reprocessing at high temperatures in CH chondrites. Meteoritics and Planetary Science, 38, 1199.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters, 265, 716725.CrossRefGoogle Scholar
Hood, L. L. (1998). Thermal processing of chondrule and CAI precursors in planetesimal bow shocks. Meteoritics and Planetary Science, 33, 97107.CrossRefGoogle Scholar
Hood, L. L., Ciesla, F. J., Artemieva, N. A., Marzari, F., and Weidenschilling, S. J. (2009). Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteoritics and Planetary Science, 44, 327342.CrossRefGoogle Scholar
Hood, L. L., and Weidenschilling, S. J. (2012). The planetesimal bow shock model for chondrule formation: A more quantitative assessment of the standard (fixed Jupiter) case. Meteoritics and Planetary Science, 47, 17151727.CrossRefGoogle Scholar
Jones, R. H., Lee, T., Connolly, H. C. Jr., Love, S. G., and Shang, H. (2000). Formation of chondrules and CAIs: Theory vs. observation. In Mannings, V., Boss, A. P., and Russell, S. S. (Eds.), Protostars and Planets IV, 927962. Tucson, AZ: University of Arizona Press.Google Scholar
Kita, N. T., Huss, G. R., Tachibana, S., et al. (2005). constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 558587. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics and Planetary Science, 47, 11081119.CrossRefGoogle Scholar
Klerner, S., and Palme, H. (1999). Origin of Chondrules and Matrix in Carbonaceous Chondrites. Lunar and Planetary Science Conference, 30, 1272.Google Scholar
Krot, A. N., Fegley, B. Jr., Lodders, K., and Palme, H. (2000). Meteoritical and astrophysical constraints on the oxidation state of the solar nebula. In Mannings, V., Boss, A. P., and Russell, S. S. (Eds.), Protostars and Planets IV, 10191054. Tucson, AZ: University of Arizona Press.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Gödde, M., Burkhardt, C., and Wieler, R. (2014). Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth and Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta, 72, 3865.CrossRefGoogle Scholar
Lauretta, D. S., Buseck, P. R., and Zega, T. J. (2001). Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: Constraints on the chondrule formation environment. Geochimica et Cosmochimica Acta, 65, 13371353.CrossRefGoogle Scholar
Lauretta, D. S., Nagahara, H., and Alexander, C. M. O’D. (2006). Petrology and origin of ferromagnesian silicate chondrules. In Lauretta, D. S. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 431459. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591, 12201247.CrossRefGoogle Scholar
Lofgren, G. E. (1982). The importance of heterogeneous nucleation for the formation of microporphyritic chondrules. Chrondrules and their Origins, 493, 41.Google Scholar
Lofgren, G. (1989). Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta, 53, 461470.CrossRefGoogle Scholar
Lofgren, G., and Lanier, A. B. (1990). Dynamic crystallization study of barred olivine chondrules. Geochimica et Cosmochimica Acta, 54, 35373551.CrossRefGoogle Scholar
Lofgren, G. E. (1996). A dynamic crystallization model for chondrule melts. In Hewins, R. H., Scott, E., and Jones, R. (Eds.), Chondrules and the Protoplanetary Disk, 187196. Cambridge, UK: Cambridge University Press.Google Scholar
Mann, C. R., Boley, A. C., and Morris, M. A. (2016). Planetary embryo bow shocks as a mechanism for chondrule formation. The Astrophysical Journal, 818, 103123.CrossRefGoogle Scholar
Mihalas, D. (1978). Stellar atmospheres, 2nd edition. San Francisco, CA: W. H. Freeman and Co.Google Scholar
Mihalas, D., and Mihalas, B. W. (1984). Foundations of Radiation Hydrodynamics. New York, NY: Oxford University Press.Google Scholar
Miura, H., and Yamamoto, T. (2014). A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine. The Astronomical Journal, 147, 5463.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. The Astrophysical Journal, 752, 2744.CrossRefGoogle Scholar
Morris, M. A., and Desch, S. J. (2010). Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal, 722, 14741494.CrossRefGoogle Scholar
Morris, M. A., Desch, S. J., and Ciesla, F. J. (2009). Cooling of dense gas by H2O line emission and an assessment of its effects in chondrule-forming shocks. The Astrophysical Journal, 691, 320331.CrossRefGoogle Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015). New insight into the solar system’s transition disk phase provided by the metal-rich carbonaceous chondrite isheyevo. The Astrophysical Journal, 801, L22L27.CrossRefGoogle ScholarPubMed
Morris, M. A., Weidenschilling, S. J., and Desch, S. J. (2016). The effect of multiple particle sizes on cooling rates of chondrules produced in large-scale shocks in the solar nebula. Meteoritics and Planetary Science, 51, 870883.CrossRefGoogle Scholar
Nakamoto, T., Hayashi, M. R., Kita, N. T., and Tachibana, S. (2005). Chondrule-forming shock waves in the solar nebula by x-ray flares. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, 341, 883892. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Nelson, A. F., and Ruffert, M. (2005). A proposed origin for chondrule-forming shocks in the solar nebula. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. Astronomical Society of the Pacific Conference Series, 341, 903912. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Palme, H., Spettel, B., and Ikeda, Y. (1993). Origin of chondrules and matrix in carbonaceous chondrites. Meteoritics, 28, 417.Google Scholar
Pollack, J. B., Hollenbach, D., Beckwith, S., et al. (1994). Composition and radiative properties of grains in molecular clouds and accretion disks. The Astrophysical Journal, 421, 615639.CrossRefGoogle Scholar
Radomsky, P. M., and Hewins, R. H. (1990). Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta, 54, 34753490.CrossRefGoogle Scholar
Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R., and Walsh, K. J. (2014). Terrestrial planet formation at home and abroad. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 595618. Tucson, AZ: University of Arizona Press.Google Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 63, 22812298.CrossRefGoogle Scholar
Rubin, A. E., Kallemeyn, G. W., Wasson, J. T., et al. (2003). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 67, 3283.CrossRefGoogle Scholar
Russell, S. S., Hartmann, L., Cuzzi, J., et al. (2006). Timescales of the solar protoplanetary disk. In Lauretta, D. S. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 233251. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics and Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. (2006). Hf W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochimica et Cosmochimica Acta, 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275302.CrossRefGoogle Scholar
Schoelmerich, M. O., Seitz, H.-M., and Klimm, K. (2016). Evaporational loss of lithium during high temperature experiments: Implications for chondrule formation. Lunar and Planetary Science Conference XLVII, abstract #1461.Google Scholar
Smith, K. T. (2016). Spiral arms in a disk around a young star. Science, 353, 15091511.CrossRefGoogle Scholar
Stammler, S. M., and Dullemond, C. P. (2014). A critical analysis of shock models for chondrule formation. Icarus, 242, 110.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Tachibana, S., Huss, G. R., Miura, H., and Nakamoto, T. (2004). Evaporation and accompanying isotopic fractionation of sulfur from Fe-S melt during shock wave heating. Lunar and Planetary Science Conference, 35, 1549.Google Scholar
Tachibana, S., and Huss, G. R. (2005). Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Verigin, M., Slavin, J., Szabo, A., et al. (2003). Planetary bow shocks: Gasdynamic analytic approach. Journal of Geophysical Research, 108, 1323.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985.CrossRefGoogle ScholarPubMed
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochimica et Cosmochimica Acta, 160, 277305.CrossRefGoogle Scholar
Wadhwa, M., Amelin, Y., Davis, A. M., et al. (2007). From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides. In Reipurth, V. B., Jewitt, D., and Keil, K. (Eds.), Protostars and Planets V, 835848. Tucson, AZ: University of Arizona Press.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J. (1977). The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, 51, 153158.CrossRefGoogle Scholar
Weidenschilling, S. J. (1980). Dust to planetesimals: Settling and coagulation in the solar nebula. Icarus, 44, 172189.CrossRefGoogle Scholar
Weidenschilling, S. J., Marzari, F., and Hood, L. L. (1998). The Origin of Chondrules at Jovian Resonances. Science, 279, 681684.CrossRefGoogle ScholarPubMed
Wick, M. J., and Jones, R. H. (2012). Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochimica et Cosmochimica Acta, 98, 140159.CrossRefGoogle Scholar
Williams, J. P., and Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annual Review of Astronomy and Astrophysics, 49, 67117.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Black, D. C. and Mathews, M. S., Protostars and Planets II, 687702. Tucson, AZ: University of Arizona Press.Google Scholar
Yu, Y., and Hewins, R. H. (1998). Transient heating and chondrite formation: Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta, 62, 159172.CrossRefGoogle Scholar
Zanda, B., Le Guillou, C., and Hewins, R. H. (2009). The relationship between chondrules and matrix in chondrites. Meteoritics and Planetary Science Supplement, 72, 5280.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×