Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-08T04:39:57.290Z Has data issue: false hasContentIssue false

6 - Signal transduction in the regulation of hematopoiesis

from Part II - Cell biology and pathobiology

Published online by Cambridge University Press:  01 July 2010

James N. Ihle
Affiliation:
Investigator Howard Hughes Medical Institute, Member and Chair, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

The cloning of receptors for most of the known cytokines and characterization of their functions have provided essential and, to some extent, unexpected insights into the mechanisms by which cytokines mediate their effects on cells. Cytokines have three broadly defined functions. (1) Many are essential for signaling the cell to proliferate and therefore interface directly with the cellular events that control or contribute to cell cycle progression and cell cycle checkpoints. (2) Many others induce cellular signals that contribute to the suppression of apoptosis. (3) Many cytokines regulate the expression of cell lineage- and maturation stage-specific genes that contribute directly to the events associated with differentiation or to the cellular functions that characterize a differentiated state. The continual challenge in understanding the biochemical consequences of ligand binding is to understand the significance of specific signaling pathways to these functions. As will become obvious in this chapter, the consequences of the activation of a signaling pathway are rarely known in precise terms.

Cytokines function through their interaction with cellular receptors that bind the cytokines with high affinity and, generally, become aggregated as a consequence of ligand binding. Cytokine receptors belong to structurally and functionally related families of proteins that can be defined by the initial type of biochemical reactions that are induced by ligand binding. Many of the ligands that affect hematopoietic cells utilize receptors that couple ligand binding to the induction of tyrosine phosphorylation.

Type
Chapter
Information
Childhood Leukemias , pp. 125 - 149
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Howard, O. M., Ben-Baruch, A., & Oppenheim, J. J.Chemokines: progress toward identifying molecular targets for therapeutic agents. Trends Biotechnol, 1996; 14: 46–51.CrossRefGoogle ScholarPubMed
Baggiolini, M., Dewald, B., & Moser, B.Human chemokines: an update. Annu Rev Immunol, 1997; 15: 675–705.CrossRefGoogle ScholarPubMed
Strosberg, A. D.G protein-coupled R7G receptors. Cancer Surveys, 1997; 27: 65–83.Google Scholar
Taub, D. D. & Oppenheim, J. J.Chemokines, inflammation and the immune system. Ther Immunol, 1994; 1: 229–46.Google ScholarPubMed
Cameron, M. J. & Kelvin, D. J.Cytokines and chemokines – their receptors and their genes: an overview. Adv Exp Med Biol, 2003; 520: 8–32.CrossRefGoogle ScholarPubMed
Moser, B., Wolf, M., Walz, A., & Loetscher, P.Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 2004; 25: 75–84.CrossRefGoogle ScholarPubMed
Murdoch, C. & Finn, A.The role of chemokines in sepsis and septic shock. Contrib Microbiol, 2003; 10: 38–57.CrossRefGoogle ScholarPubMed
Balter, M.A. second coreceptor for HIV in early stages of infection [news]. Science, 1996; 272: 1740.CrossRefGoogle Scholar
Deng, H., Liu, R., Ellmeier, W., et al.Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996; 381: 661–6.CrossRefGoogle Scholar
Doranz, B. J., Rucker, J., Yi, Y., et al.A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996; 85: 1149–58.CrossRefGoogle ScholarPubMed
Dragic, T., Litwin, V., Allaway, G. P., et al.HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996; 381: 667–73.CrossRefGoogle ScholarPubMed
Liu, R., Paxton, W. A., Choe, S., et al.Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996; 86: 367–77.CrossRefGoogle ScholarPubMed
Samson, M., Libert, F., Doranz, B. J., et al.Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 1996; 382: 722–5.CrossRefGoogle ScholarPubMed
Cacalano, G., Lee, J., Kikly, K., et al.Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science, 1994; 265: 682–4.CrossRefGoogle Scholar
Forster, R., Mattis, A. E., Kremmer, E., et al.A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell, 1996; 87: 1037–47.CrossRefGoogle ScholarPubMed
Hancock, W. W., Lu, B., Gao, W., et al.Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med, 2000; 192: 1515–20.CrossRefGoogle ScholarPubMed
Tachibana, K., Hirota, S., Iizasa, H., et al.The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature, 1998; 393: 591–4.CrossRefGoogle ScholarPubMed
Boring, L., Gosling, J., Chensue, S. W., et al.Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest, 1997; 100: 2552–61.CrossRefGoogle ScholarPubMed
Humbles, A. A., Lu, B., Friend, D. S., et al.The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A, 2002; 99: 1479–84.CrossRefGoogle ScholarPubMed
Chvatchko, Y., Hoogewerf, A. J., Meyer, A., et al.A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J Exp Med, 2000; 191: 1755–64.CrossRefGoogle ScholarPubMed
Cook, D. N., Prosser, D. M., Forster, R., et al.CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity, 2000; 12: 495–503.CrossRefGoogle ScholarPubMed
Zhou, Y., Kurihara, T., Ryseck, R. P., et al.Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol, 1998; 160: 4018–25.Google Scholar
Offermanns, S. & Simon, M I.Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv, 1996; 27: 177–98.Google ScholarPubMed
Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., & Schlessinger, J.A role for Pyk2 and Src in linking g-protein-coupled receptors with MAP kinase activation. Nature, 1996; 383: 547–50.CrossRefGoogle ScholarPubMed
Mellado, M., Rodriguez-Frade, J. M., Manes, S., & Martinez, A.Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol, 2001; 19: 397–421.CrossRefGoogle ScholarPubMed
Rijsewijk, F., Schuermann, M., Wagenaar, E., et al.The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987; 50: 649–57.CrossRefGoogle ScholarPubMed
Nusse, R., Ooyen, A., Cox, D., Fung, Y. K., & Varmus, H.Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature, 1984; 307: 131–6.CrossRefGoogle ScholarPubMed
Nusse, R.A versatile transcriptional effector of Wingless signaling. Cell, 1997; 89: 321–3.CrossRefGoogle ScholarPubMed
Siegfried, E., Wilder, E. L., & Perrimon, N.Components of wingless signalling in Drosophila. Nature, 1994; 367: 76–80.CrossRefGoogle ScholarPubMed
Cadigan, K. M. & Nusse, R.Wingless signaling in the Drosophila eye and embryonic epidermis. Development, 1996; 122: 2801–12.Google ScholarPubMed
Huber, O., Korn, R., McLaughlin, J., et al.Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev, 1996; 59: 3–10.CrossRefGoogle ScholarPubMed
Behrens, J., Kries, J. P. von, Kuhl, M., et al.Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 1996; 382: 638–42.CrossRefGoogle ScholarPubMed
Wang, H. Y. & Malbon, C. C.Wnt-frizzled signaling to G-protein-coupled effectors. Cell Mol Life Sci, 2004; 61: 69–75.CrossRefGoogle ScholarPubMed
Wang, H. Y. & Malbon, C. C.Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science, 2003; 300: 1529–30.CrossRefGoogle ScholarPubMed
Wang, H. Y.WNT-frizzled signaling via cyclic GMP. Front Biosci, 2004; 9: 1043–7.CrossRefGoogle ScholarPubMed
He, X., Semenov, M., Tamai, K., & Zeng, X.LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development, 2004; 131: 1663–77.CrossRefGoogle Scholar
Slusarski, D. C., Corces, V. G., & Moon, R. T.Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 1997; 390: 410–13.CrossRefGoogle Scholar
Verbeek, S., Izon, D., Hofhuis, F., et al.An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature, 1995; 374: 70–74.CrossRefGoogle ScholarPubMed
Janssens, S. & Beyaert, R.Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell, 2003; 11: 293–302.CrossRefGoogle ScholarPubMed
Medzhitov, R.Toll-like receptors and innate immunity. Nat Rev Immunol, 2001; 1: 135–45.CrossRefGoogle ScholarPubMed
Yamamoto, M., Takeda, K., & Akira, S.TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol, 2004; 40: 861–8.CrossRefGoogle ScholarPubMed
Li, T., Hu, J., & Li, L.Characterization of Tollip protein upon lipopolysaccharide challenge. Mol Immunol, 2004; 41: 85–92.CrossRefGoogle ScholarPubMed
Suzuki, N., Suzuki, S., Duncan, G. S., et al.Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature, 2002; 416: 750–6.CrossRefGoogle ScholarPubMed
Massague, J.TGFbeta signaling: receptors, transducers, and Mad proteins. Cell, 1996; 85: 947–50.CrossRefGoogle ScholarPubMed
Shi, Y., Hata, A., Lo, R. S., Massague, J., & Pavletich, N. P.A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997; 388: 87–93.CrossRefGoogle ScholarPubMed
Hahn, S. A., Schutte, M., Hoque, A. T., et al.DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996; 271: 350–3.CrossRefGoogle ScholarPubMed
Lo, R. S., Chen, Y. G., Shi, Y., Pavletich, N. P., & Massague, J.The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J, 1998; 17: 996–1005.CrossRefGoogle ScholarPubMed
Heldin, C. H., Miyazono, K., & Dijke, P.TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997; 390: 465–71.CrossRefGoogle ScholarPubMed
Nakao, A., Afrakhte, M., Moren, A., et al.Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 1997; 389: 631–5.Google ScholarPubMed
Imamura, T., Takase, M., Nishihara, A., et al.Smad6 inhibits signalling by the TGF-beta superfamily. [see comments]. Nature, 1997; 389: 622–6.Google Scholar
Bazan, J. F.Emerging families of cytokines and receptors. Curr Biol, 1997; 3: 603–6.CrossRefGoogle Scholar
Locksley, R. M., Killeen, N., & Lenardo, M. J.The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001; 104: 487–501.CrossRefGoogle ScholarPubMed
Micheau, O. & Tschopp, J.Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003; 114: 181–90.CrossRefGoogle ScholarPubMed
Kabra, N. H., Kang, C., Hsing, L. C., Zhang, J., & Winoto, A.T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci U S A, 2001; 98: 6307–12.CrossRefGoogle Scholar
Varfolomeev, E. E., Schuchmann, M., Luria, V., et al.Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity, 1998; 9: 267–76.CrossRefGoogle ScholarPubMed
Stanger, B. Z., Leder, P., Lee, T-H., & Seed, B.RIP: a novel “death domain”-containing protein kinase that interacts with Fas/APO-1 (CD95) and causes cell death. Cell, 1995; 81: 513–23.CrossRefGoogle ScholarPubMed
Kelliher, M. A., Grimm, S., Ishida, Y., et al.The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity, 1998; 8: 297–303.CrossRefGoogle ScholarPubMed
Yeh, W. C., Shahinian, A., Speiser, D., et al.Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity, 1997; 7: 715–25.CrossRefGoogle ScholarPubMed
Degterev, A., Boyce, M., & Yuan, J.A decade of caspases. Oncogene, 2003; 22: 8543–67.CrossRefGoogle ScholarPubMed
Martinon, F. & Tschopp, J.Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 2004; 117: 561–74.CrossRefGoogle ScholarPubMed
Cerretti, D. P., Kozlosky, C. J., Mosley, B., et al.Molecular cloning of the interleukin-1 beta converting enzyme. Science, 1992; 256: 97–100.CrossRefGoogle ScholarPubMed
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., & Horvitz, H. R.The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell, 1993; 75: 641–52.CrossRefGoogle Scholar
Li, P., Allen, H., Banerjee, S., et al.Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell, 1995; 80: 401–11.CrossRefGoogle Scholar
Wang, S., Miura, M., Jung, Y. K., et al.Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell, 1998; 92: 501–9.CrossRefGoogle ScholarPubMed
Gu, Y., Kuida, K., Tsutsui, H., et al.Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science, 1997; 275: 206–9.CrossRefGoogle ScholarPubMed
Nakagawa, T., Zhu, H., Morishima, N., et al.Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000; 403: 98–103.CrossRefGoogle ScholarPubMed
Kuida, K., Zheng, T. S., Na, S., et al.Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 1996; 384: 368–72.CrossRefGoogle ScholarPubMed
Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., & Goeddel, D. V.TRAF6 is a signal transducer for interleukin-1. Nature, 1996; 383: 443–6.CrossRefGoogle ScholarPubMed
Xu, Y., Cheng, G., & Baltimore, D.Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity, 1996; 5: 407–15.CrossRefGoogle ScholarPubMed
Wu, H. & Arron, J. R.TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays, 2003; 25: 1096–105.CrossRefGoogle ScholarPubMed
Yeh, W. C., Itie, A., Elia, A. J., et al.Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity, 2000; 12: 633–42.CrossRefGoogle ScholarPubMed
Lee, E. G., Boone, D. L., Chai, S., et al.Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science, 2000; 289: 2350–4.CrossRefGoogle ScholarPubMed
Heldin, C. H.Protein tyrosine kinase receptors. Cancer Surv, 1996; 27: 7–24.Google ScholarPubMed
Heldin, C. H.Dimerization of cell surface receptors in signal transduction. Cell, 1995; 80: 213–23.CrossRefGoogle ScholarPubMed
Heldin, C. H. & Ostman, A.Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev, 1996; 7: 3–10.CrossRefGoogle ScholarPubMed
Weiss, F. U., Daub, H., & Ullrich, A.Novel mechanisms of RTK signal generation. Curr Opin Genet Dev, 1997; 7: 80–6.CrossRefGoogle ScholarPubMed
Lemmon, M. A. & Schlessinger, J.Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci, 1994; 19: 459–63.CrossRefGoogle ScholarPubMed
Hubbard, S. R., Wei, L., Ellis, L., & Hendrickson, W. A.Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 1994; 372: 746–54.CrossRefGoogle ScholarPubMed
Mohammadi, M., Schlessinger, J., & Hubbard, S. R.Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell, 1996; 86: 577–87.CrossRefGoogle ScholarPubMed
Pawson, T.Protein modules and signalling networks. Nature, 1995; 373: 573–80.CrossRefGoogle ScholarPubMed
Booker, G. W., Breeze, A. L., Downing, A. K., et al.Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase. Nature, 1992; 358: 684–7.CrossRefGoogle ScholarPubMed
Waksman, G., Kominos, D., Robertson, D. R., et al.Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature, 1992; 358: 646–53.CrossRefGoogle ScholarPubMed
Kavanaugh, W. M., & Williams, L. T.An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science, 1995; 266: 1862–5.CrossRefGoogle Scholar
Geer, P. & Pawson, T.The PTB domain: a new protein module implicated in signal transduction. Trends Biochem sci, 1995; 20: 277–80.CrossRefGoogle ScholarPubMed
Ellisen, L. W., Bird, J., West, D. C., et al.TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991; 66: 649–61.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, S., Matsuno, K., & Fortini, M. E.Notch signaling. Science, 1995; 268: 225–32.CrossRefGoogle ScholarPubMed
Girard, L., Hanna, Z., Beaulieu, N., et al.Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev, 1996; 10: 1930–44.CrossRefGoogle ScholarPubMed
Joutel, A., Corpechot, C., Ducros, A., et al.Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia [see comments]. Nature, 1996; 383: 707–10.CrossRefGoogle Scholar
Jarriault, S., Brou, C., Logeat, F., et al.Signalling downstream of activated mammalian Notch. Nature, 1995; 377: 355–8.CrossRefGoogle ScholarPubMed
Oka, C., Nakano, T., Wakeham, A., et al.Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development, 1995; 121: 3291–301.Google ScholarPubMed
Pear, W. S. & Radtke, F.Notch signaling in lymphopoiesis. Semin Immunol, 2003; 15: 69–79.CrossRefGoogle ScholarPubMed
Conlon, R. A., Reaume, A. G., & Rossant, J.Notch1 is required for the coordinate segmentation of somites. Development, 1995; 121: 1533–45.Google ScholarPubMed
Pompa, J. L., Wakeham, A., Correia, K. M., et al.Conservation of the Notch signalling pathway in mammalian neurogenesis. Development, 1997; 124: 1139–48.Google ScholarPubMed
Bazan, J. F.A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochem Biophys Res Commun, 1989; 164: 788–95.CrossRefGoogle ScholarPubMed
Somers, W., Ultsch, M., De Vos, A. M., & Kossiakoff, A. A.The X-ray structure of a growth hormone-prolactin receptor complex. Nature, 1994; 372: 478–81.CrossRefGoogle ScholarPubMed
Murakami, M., Narazaki, M., Hibi, M., et al.Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci U S A, 1991; 88: 11349–53.CrossRefGoogle ScholarPubMed
Pellegrini, S., John, J., Shearer, M., Kerr, I. M., & Stark, G. R.Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol Cell Biol, 1989; 9: 4605–12.CrossRefGoogle ScholarPubMed
Witthuhn, B., Quelle, F. W., Silvennoinen, O., et al.JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following EPO stimulation. Cell, 1993; 74: 227–36.CrossRefGoogle ScholarPubMed
Artgetsinger, L. S., Campbell, G. S., Yang, X., et al.Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell, 1993; 74: 237–44.CrossRefGoogle Scholar
Feng, J., Witthuhn, B. A., Matsuda, T., et al.Activation of jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol, 1997; 17: 2497–501.CrossRefGoogle ScholarPubMed
Freeden-Jeffry, U. von, Vieria, P., Lucian, L. A., et al.Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med, 1995; 181: 1519–26.CrossRefGoogle Scholar
Nosaka, T., Deursen, J. M. A., Tripp, R. A., et al.Defective lymphoid development in mice lacking Jak3. Science, 1995; 270: 800–2.CrossRefGoogle ScholarPubMed
Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., & Berg, L. J.Mice lacking Jak3 have defects in B lymphocyte maturation and T lymphocyte activation. Science, 1995; 270: 794–7.CrossRefGoogle Scholar
Asao, H., Tanaka, N., Ishii, N., et al.Interleukin 2-induced activation of JAK3: possible involvement in signal transduction of c-myc induction and cell proliferation. FEBS Letters, 1994; 351: 201–6.CrossRefGoogle ScholarPubMed
Macchi, P., Villa, A., Giliani, S., et al.Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature, 1995; 377: 65–8.CrossRefGoogle Scholar
Russell, S. M., Tayebi, N., Nakajima, H., et al.Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science, 1995; 270: 797–800.CrossRefGoogle Scholar
Bunting, K. D., Sangster, M. Y., Ihle, J. N., & Sorrentino, B. P.Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nat Med, 1998; 4: 58–64.CrossRefGoogle ScholarPubMed
Rodig, S. J., Meraz, M. A., White, J. M., et al.Targeted disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of Janus kinases in mediating cytokine induced biologic responses. Cell, 1998; 93: 373–83.CrossRefGoogle Scholar
Parganas, E., Wang, D., Stravopodis, D., et al.Jak2 is essential for signaling through a variety of cytokine receptors. Cell, 1998; 93: 385–95.CrossRefGoogle ScholarPubMed
Wu, H., Liu, X., Jaenisch, R., & Lodish, H. F.Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 1995; 83: 59–67.CrossRefGoogle ScholarPubMed
Klingmuller, U., Lorenz, U., Cantley, L. C., Neel, B. G., & Lodish, H. F.Specific recruitment of the hematopoietic protein tyrosine phosphatase SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell, 1995; 80: 729–38.CrossRefGoogle ScholarPubMed
Shultz, L. D., Schweitzer, P. A., Rajan, T. V., et al.Mutations at the murine motheaten locus are within the hematopoietic cell protein tyrosine phosphatase (Hcph) gene. Cell, 1993; 73: 1445–54.CrossRefGoogle ScholarPubMed
Tsui, H. W., Siminovitch, K. A., de Souza, L., & Tsui, F. W. L.Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Gen, 1993; 4: 124–9.CrossRefGoogle ScholarPubMed
Daeron, M.Fc receptor biology. Annu Rev Immunol, 1997; 15: 203–34.CrossRefGoogle ScholarPubMed
Davis, R. S., Dennis, G Jr., Odom, M. R., et al.Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol Rev, 2002; 190: 123–36.CrossRefGoogle ScholarPubMed
Nadler, M. J., Matthews, S. A., Turner, H., & Kinet, J. P.Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Adv Immunol, 2000; 76: 325–55.CrossRefGoogle Scholar
Ravetch, J. V. & Bolland, S.IgG Fc receptors. Annu Rev Immunol, 2001; 19: 275–90.CrossRefGoogle ScholarPubMed
Monteiro, R. C. & Winkel, J. G.IgA Fc receptors. Annu Rev Immunol, 2003; 21: 177–204.CrossRefGoogle ScholarPubMed
Zamoyska, R., Basson, A., Filby, A., et al.The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev, 2003; 191: 107–18.CrossRefGoogle Scholar
Miller, A. T. & Berg, L. J.New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Curr Opin Immunol, 2002; 14: 331–40.CrossRefGoogle ScholarPubMed
Schaeffer, E. M., Debnath, J., Yap, G., et al.Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science, 1999; 284: 638–41.CrossRefGoogle Scholar
Isakov, N.ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery. Immunol Res, 1997; 16: 85–100.CrossRefGoogle ScholarPubMed
Watson, S. P. & Gibbins, J.Collagen receptor signalling in platelets: extending the role of the ITAM. Immunol Today, 1998; 19: 260–4.CrossRefGoogle ScholarPubMed
Elder, M. E.ZAP-70 and defects of T-cell receptor signaling. Semin Hematol, 1998; 35: 310–20.Google ScholarPubMed
Chu, D. H., Morita, C. T., & Weiss, A.The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol Rev, 1998; 165: 167–80.CrossRefGoogle ScholarPubMed
Pappu, R., Cheng, A. M., Li, B., et al.Requirement for B cell linker protein (BLNK) in B cell development. Science, 1999; 286: 1949–54.CrossRefGoogle Scholar
Minegishi, Y., Rohrer, J., Coustan-Smith, E., et al.An essential role for BLNK in human B cell development. Science, 1999; 286: 1954–7.CrossRefGoogle ScholarPubMed
Clements, J. L., Yang, B., Ross-Barta, S. E., et al.Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science, 1998; 281: 416–19.CrossRefGoogle ScholarPubMed
Fruman, D. A. & Cantley, L C.Phosphoinositide 3-kinase in immunological systems. Semin Immunol, 2002; 14: 7–18.CrossRefGoogle ScholarPubMed
Darnell, J. E. Jr., Kerr, I. M., & Stark, G. R.Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994; 264: 1415–21.CrossRefGoogle ScholarPubMed
Stahl, N., Farruggella, T. J., Boulton, T. G., et al.Modular tyrosine-based motifs in cytokine receptors specify choice of stats and other substrates. Science, 1995; 267: 1349–53.CrossRefGoogle Scholar
Meraz, M. A., White, J. M., Sheehan, K. C. F., et al.Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell, 1996; 84: 431–42.CrossRefGoogle ScholarPubMed
Takeda, K., Noguchi, K., Shi, W., et al.Targeted disruption of the mouse stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci, 1997; 94: 3801–4.CrossRefGoogle ScholarPubMed
Yamamoto, K., Quelle, F. W., Thierfelder, W. E., et al.Stat4: a novel GAS binding protein expressed in early myeloid differentiation. Mol Cell Biol, 1994; 14: 4342–9.CrossRefGoogle Scholar
Jacobson, N. G., Szabo, S., Weber-Nordt, R. M., et al.Interleukin 12 activates Stat3 and Stat4 by tyrosine phosphorylation in T cells. J Exp Med, 1995; 181: 1755–62.CrossRefGoogle Scholar
Bacon, C. M., McVicar, D. W., Ortaldo, J. R., et al.Interleukin-12 induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus tyrosine kinases by interleukin-2 and interleukin-12. J Exp Med, 1995; 181: 399–404.CrossRefGoogle ScholarPubMed
Kaplan, M. H., Sun, Y.-L., Hoey, T., & Grusby, M J.Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature, 1996; 382: 174–7.CrossRefGoogle ScholarPubMed
Thierfelder, W. E., Deursen, J., Yamamoto, K., et al.Stat4 is required for IL-12 mediated responses of NK and T-cells. Nature, 1996; 382: 171–4.CrossRefGoogle Scholar
Wolf, S. F., Sieburth, D., & Sypek, J.Interleukin-12: a key modulator of immune function. Stem Cells, 1994; 12: 154–68.CrossRefGoogle ScholarPubMed
Hou, J., Schindler, U., Henzel, W. J., Wong, S. C., & McKnight, S. L.Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity, 1995; 2: 321–9.CrossRefGoogle ScholarPubMed
Quelle, F. W., Shimoda, K., Thierfelder, W., et al.Cloning of murine Stat6 and human Stat6, stat proteins that are tyrosine phosphorylated in response to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol, 1995; 15: 3336–43.CrossRefGoogle Scholar
Shimoda, K., Deursen, J., Sangster, M. Y., et al.Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature, 1996; 380: 630–3.CrossRefGoogle ScholarPubMed
Kaplan, M. H., Schindler, U., Smiley, S. T., & Grusby, M. J.Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity, 1996; 4: 313–19.CrossRefGoogle ScholarPubMed
Kopf, M., Le Gros, G., Bachmann, M., et al.Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature, 1993; 362: 245–8.CrossRefGoogle ScholarPubMed
Ihle, J. N.STATs: signal tranducers and activators of transcription. Cell, 1996; 84: 331–4.CrossRefGoogle Scholar
Liu, X., Robinson, G. W., Wagner, K. U., et al.Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev, 1997; 11: 179–86.CrossRefGoogle ScholarPubMed
Udy, G. B., Snell, R. G., Wilkins, R. J., et al.Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A, 1997; 94: 7239–44.CrossRefGoogle ScholarPubMed
Teglund, S., McKay, C., Schuetz, E., et al.Stat5a and Stat5b proteins have essential and non-essential, or redundant, roles in cytokine responses. Cell, 1998; 93: 841–50.CrossRefGoogle ScholarPubMed
Whitman, M., Kaplan, D., Roberts, T., & Cantley, L.Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular regulation. Biochem J, 1987; 247: 165–74.CrossRefGoogle ScholarPubMed
Chang, H. W., Aoki, M., Fruman, D., et al.Transformation of chicken cells by the gene encoding the catalytic subunit of Pl 3-kinase. Science, 1997; 276: 1848–50.CrossRefGoogle Scholar
Divecha, N. & Irvine, R. F.Phospholipid signaling. Cell, 1997; 80: 269–78.CrossRefGoogle Scholar
Vanhaesebroeck, B., Leevers, S. J., Panayotou, G., & Waterfield, M. D.Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci, 1997; 22: 267–72.CrossRefGoogle ScholarPubMed
Vanhaesebroeck, B., Stein, R. C., & Waterfield, M D.The study of phosphoinositide 3-kinase function. Cancer Surv, 1996; 27: 249–70.Google Scholar
Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D., & Downward, J.Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J, 1996; 15: 2442–51.Google ScholarPubMed
Katzav, S., Martin-Zanca, D., & Barbacid, M.vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J, 1989; 8: 2283–90.Google ScholarPubMed
Gulbins, E., Coggeshall, K., Baier, G., et al.Tyrosine kinase-stimulated guanine nucleotide exchange activity of vav in T cell activation. Science, 1993; 260: 822–5.CrossRefGoogle ScholarPubMed
Shigematsu, H., Iwasaki, H., Otsuka, T., et al.Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity. J Biol Chem, 1997; 272: 14 334–40.CrossRefGoogle ScholarPubMed
Fischer, K.-D., Zmuidzinas, A., Gardner, S., et al.Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CD8+ thymocytes. Nature, 1995; 374: 474–7.CrossRefGoogle ScholarPubMed
Tarakhovsky, A., Turner, M., Schall, S., et al.Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature, 1995; 374: 467–70.CrossRefGoogle Scholar
Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H., & Swat, W.Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature, 1995; 374: 470–3.CrossRefGoogle Scholar
Myers, M. G. Jr., Xiao, J. S., & White, M. F.The IRS-1 signaling system. Trends Biochem Sci, 1994; 19: 289–93.CrossRefGoogle ScholarPubMed
Yenush, L. & White, M. F.The IRS-signalling system during insulin and cytokine action. Bioessays, 1997; 19: 491–500.CrossRefGoogle ScholarPubMed
Keegan, A. D., Nelms, K., White, M., et al.An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell, 1994; 76: 811–20.CrossRefGoogle ScholarPubMed
Araki, E., Lipes, M. A., Patti, M. E., et al.Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature, 1994; 372: 186–90.CrossRefGoogle ScholarPubMed
Tamemoto, H., Kadowaki, T., Tobe, K., et al.Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature, 1994; 372: 182–6.CrossRefGoogle ScholarPubMed
Withers, D. J., Gutierrez, J. S., Towery, H., et al.Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 1998; 391: 900–4.CrossRefGoogle ScholarPubMed
Bruning, J. C., Winnay, J., Bonner-Weir, S., et al.Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell, 1997; 88: 561–72.CrossRefGoogle ScholarPubMed
Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K., Morse, H. C III. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci U S A, 1989; 86: 1168–72.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×