Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T11:29:33.653Z Has data issue: false hasContentIssue false

14 - Pharmacokinetic, pharmacodynamic, and pharmacogenetic considerations

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Shinji Kishi
Affiliation:
Faculty of Medical Sciences First Department of Internal Medicine, University of Fukui, Fukui, Japan
William E. Evans
Affiliation:
Director, St. Jude Children's Research Hospital, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
Mary V. Relling
Affiliation:
Member and Chair, Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Childhood leukemias are among the most drug-responsive of human malignancies. More than 70% of children with acute lymphoblastic leukemia (ALL) can now be cured, largely by systemic chemotherapy. Because of their drug responsiveness, childhood leukemias are a good model for evaluating the pharmacodynamics of anticancer drugs.

Pharmacokinetics is the study of the absorption, distribution, metabolism, and excretion of drugs. Pharmacodynamics describes the relationship between pharmacokinetics and pharmacologic effect, either adverse or desired. Substantial interindividual variability exists in the pharmacokinetics and in the pharmacodynamics of many antileukemic agents in children, and these data will not be reviewed herein. Pharmacogenetics is the study of the inherited basis for interindividual differences in response to medications. Thus, individualizing therapy on the basis of germline genetic status may be one means of minimizing interindividual variability in response to antileukemic agents.

Interpatient variability characterizes the disposition of many drugs. In the case of drugs with a wide therapeutic index (e.g. penicillins), such variability is unlikely to affect either clinical efficacy or toxicity. In the vast majority of patients, the drugs can be given in high enough doses to assure plasma concentrations that are very likely to produce the desired therapeutic response with little risk of toxicity. With antileukemic drugs, however, there is much less margin for error, due to their very narrow therapeutic index. Many investigations have established the relationship between administered dosage and plasma (or tissue) concentrations of drugs and metabolites, and in some cases between those concentrations or host genetic polymorphism and pharmacologic effect.

Type
Chapter
Information
Childhood Leukemias , pp. 391 - 413
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, C. H. & Evans, W. E.Acute lymphoblastic leukemia. N Engl J Med, 1998; 339: 605–15.CrossRefGoogle ScholarPubMed
McLeod, H. L., Relling, M. V., Crom, W. R., et al.Disposition of antineoplastic agents in the very young child. Br J Cancer, 1992; 66: S23–29.Google Scholar
Evans, W. E. & Relling, M. V.Clinical pharmacodynamics of antineoplastic agents in humans. Clin Pharmacokinet, 1989; 16: 327–36.CrossRefGoogle Scholar
Crom, W. R., Glynn-Barnhart, A. M., Rodman, J. H., et al.Pharmacokinetics of anticancer drugs in children. Clin Pharmacokinet, 1987; 12: 168–213.CrossRefGoogle ScholarPubMed
Jolivet, J., Schilsky, R. L., Bailey, B. D., et al.Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J Clin Invest, 1982; 70: 351–60.CrossRefGoogle ScholarPubMed
Fabre, I., Fabre, G., & Goldman, I. D.Polyglutamylation, an important element in methotrexate cytotoxicity and selectivity in tumor versus murine granulocytic progenitor cells in vitro. Cancer Res, 1984; 44: 3190–5.Google ScholarPubMed
Chabner, B. A., Allegra, C. J., Curt, G. A., et al.Polyglutamation of methotrexate. Is methotrexate a prodrug ?J Clin Invest, 1985; 76: 907–12.CrossRefGoogle ScholarPubMed
Gorlick, R., Goker, E., Trippett, T., et al.Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med, 1996; 335: 1041–8.CrossRefGoogle ScholarPubMed
Whitehead, V. M., Rosenblatt, D. S., Vuchich, M. J., et al.Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts at diagnosis of childhood acute lymphoblastic leukemia: a pilot prognostic factor analysis. Blood, 1990; 76: 44–9.Google ScholarPubMed
Synold, T. W., Relling, M. V., Boyett, J. M., et al.Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest, 1994; 94: 1996–2001.CrossRefGoogle ScholarPubMed
Allegra, C. J., Hoang, K., Yeh, G. C., et al.Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. J Biol Chem, 1987; 262: 13 520–6.Google ScholarPubMed
Fry, D. W., Yalowich, J. C., & Goldman, I. D.Rapid formation of poly-gamma-glutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cell in vitro. J Biol Chem, 1982; 257: 1890–6.Google ScholarPubMed
Williams, F. M. & Flintoff, W. F.Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J Biol Chem, 1995; 270: 2987–92.CrossRefGoogle ScholarPubMed
Moscow, J. A., Gong, M., He, R., et al.Isolation of a gene enco ding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res, 1995; 55: 3790–4.Google Scholar
Wong, S. C., Proefke, S. A., Bhushan, A., et al.Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem, 1995; 270: 17 468–75.CrossRefGoogle ScholarPubMed
Pizzorno, G., Mini, E., Coronnello, M., et al.Impaired polyglutamylation of methotrexate as a cause of resistance in CCRF-CEM cells after short-term, high-dose treatment with this drug. Cancer Res, 1988; 48: 2149–55.Google ScholarPubMed
McCloskey, D. E., McGuire, J. J., Russell, C. A., et al.Decreased folylpolyglutamate synthetase activity as a mechanism of methotrexate resistance in CCRF-CEM human leukemia sublines. J Biol Chem, 1991; 266: 6181–7.Google ScholarPubMed
Li, W. W., Waltham, M., Tong, W., et al.Increased activity of gamma-glutamyl hydrolase in human sarcoma cell lines: a novel mechanism of intrinsic resistance to methotrexate (MTX). Adv Exp Med Biol, 1993; 338: 635–8.CrossRefGoogle Scholar
Rhee, M. S., Wang, Y., Nair, M. G., et al.Acquisition of resistance to antifolates caused by enhanced gamma-glutamyl hydrolase activity. Cancer Res, 1993; 53: 2227–30.Google ScholarPubMed
Barredo, J. C., Synold, T. W., Laver, J., et al.Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood, 1994; 84: 564–9.Google ScholarPubMed
Galpin, A. J., Schuetz, J. D., Masson, E., et al.Differences in folylpolyglutamate synthetase and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic lymphoblasts: mechanisms for lineage differences in methotrexate polyglutamylation and cytotoxicity. Mol Pharmacol, 1997; 52: 155–63.CrossRefGoogle ScholarPubMed
Lenz, H. J., Danenberg, K., Schnieders, B., et al.Quantitative analysis of folylpolyglutamate synthetase gene expression in tumor tissues by the polymerase chain reaction: marked variation of expression among leukemia patients. Oncol Res, 1994; 6: 329–35.Google ScholarPubMed
Rots, M. G., Pieters, R., Peters, G. J., et al.Role of folylpoly glutamate synthetase and folylpolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia. Blood, 1999; 93: 1677–83.Google Scholar
Panetta, J. C., Yanishevski, Y., Pui, C. H., et al.A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia. Cancer Chemother Pharmacol, 2002; 50: 419–28.CrossRefGoogle ScholarPubMed
Waltham, M. C., Li, W. W., Gritsman, H., et al.Gamma-glutamyl hydrolase from human sarcoma HT-1080 cells: characterization and inhibition by glutamine antagonists. Mol Pharmacol, 1997; 51: 825–32.CrossRefGoogle ScholarPubMed
Cole, P. D., Kamen, B. A., Gorlick, R., et al.Effects of overexpression of gamma-glutamyl hydrolase on methotrexate metabolism and resistance. Cancer Res, 2001; 61: 4599–604.Google ScholarPubMed
Panetta, J. C., Wall, A., Pui, C. H., et al.Methotrexate intracellular disposition in acute lymphoblastic leukemia: a mathematical model of gamma-glutamyl hydrolase activity. Clin Cancer Res, 2002; 8: 2423–9.Google ScholarPubMed
Whitehead, V. M., Vuchich, M. J., Lauer, S. J., et al.Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1992; 80: 1316–23.Google ScholarPubMed
Goker, E., Lin, J. T., Trippett, T., et al.Decreased polyglutamylation of methotrexate in acute lymphoblastic leukemia blasts in adults compared to children with this disease. Leukemia, 1993; 7: 1000–4.Google ScholarPubMed
Masson, E., Relling, M. V., Synold, T. W., et al.Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-dose methotrexate. J Clin Invest, 1996; 97: 73–80.CrossRefGoogle ScholarPubMed
Dervieux, T., Brenner, T. L., Hon, Y. Y., et al.De novo purine synthesis inhibition and antileukemic effects of mercaptopurine alone or in combination with methotrexate in vivo. Blood, 2002; 100: 1240–7.CrossRefGoogle ScholarPubMed
Kamen, B. A. & Winick, N. J.High dose methotrexate therapy: insecure rationale ?Biochem Pharmacol, 1988; 37: 2713–15.CrossRefGoogle ScholarPubMed
Mahoney, D. H. Jr., Shuster, J., Nitschke, R., et al.Intermediate-dose intravenous methotrexate with intravenous mercapto purine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology group phase III trial. J Clin Oncol, 1998; 16: 246–54.CrossRefGoogle Scholar
Evans, W. E., Crom, W. R., Abromowitch, M., et al.Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med, 1986; 314: 471–7.CrossRefGoogle ScholarPubMed
Evans, W. E., Schell, M. J., & Pui, C.-H.MTX clearance is more important for intermediate-risk ALL [letter; comment]. J Clin Oncol, 1990; 8: 1115–16.CrossRefGoogle Scholar
Camitta, B., Mahoney, D., Leventhal, B., et al.Intensive intravenous methotrexate and mercaptopurine treatment of higher-risk non-T, non-B acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1994; 12: 1383–9.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Gelber, R. D., Tarbell, N. J., et al.Low-dose versus high-dose methotrexate during remission induction in childhood acute lymphoblastic leukemia (protocol 81-01 update). Blood, 1991; 78: 2514–19.Google Scholar
Schmiegelow, K., Schroder, H., Gustafsson, G., et al.Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. Nordic Society for Pediatric Hematology and Oncology. J Clin Oncol, 1995; 13: 345–51.CrossRefGoogle ScholarPubMed
Pearson, A. D. J., Amineddine, H. A., Yule, M., et al.The influence of serum methotrexate concentrations and drug dosage on outcome in childhood acute lymphoblastic leukaemia. Br J Cancer, 1991; 64: 169–73.CrossRefGoogle ScholarPubMed
Evans, W. E., Relling, M. V., Rodman, J. H., et al.Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med, 1998; 338: 499–505.CrossRefGoogle ScholarPubMed
Crom, W. R. & Evans, W. E. Methotrexate. In , W. E. Evans, , J. J. Schentag, & , W. J. Jusko, eds., Applied Pharmacokinetics, 3rd edn. (Vancouver, Canada: Applied Therapeutics, Inc, 1992).Google Scholar
Relling, M. V., Fairclough, D., Ayers, D., et al.Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol, 1994; 12: 1667–72.CrossRefGoogle ScholarPubMed
Stoller, R. G., Hande, K. R., Jacobs, S. A., et al.Use of plasma pharmacokinetics to predict and prevent methotrexate toxi city. N Engl J Med, 1977; 297: 630–4.CrossRefGoogle Scholar
Jolivet, J., Cowan, K. H., Curt, G. A., et al.The pharmacology and clinical use of methotrexate. N Engl J Med, 1983; 309: 1094–104.CrossRefGoogle ScholarPubMed
Wall, A. M., Gajjar, A., Link, A., et al.Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia. Leukemia, 2000; 14: 221–5.CrossRefGoogle ScholarPubMed
Garre, M. L., Relling, M. V., Kalwinsky, D., et al.Pharmacokinetics and toxicity of methotrexate in children with Down syndrome and acute lymphocytic leukemia. J Pediatr, 1987; 111: 606–12.CrossRefGoogle ScholarPubMed
Peeters, M. & Poon, A.Down syndrome and leukemia: unusual clinical aspects and unexpected methotrexate sensitivity. Eur J Pediatr, 1987; 146: 416–22.CrossRefGoogle ScholarPubMed
Ueland, P. M., Refsum, H., & Christensen, B.Methotrexate sensitivity in Down's syndrome: a hypothesis. Cancer Chemother Pharmacol, 1990; 25: 384–6.CrossRefGoogle ScholarPubMed
Peeters, M. A., Megarbane, A., Cattaneo, F., et al.Differences in purine metabolism in patients with Down's syndrome. J Intellect Disabil Res, 1993; 37: 491–505.CrossRefGoogle ScholarPubMed
Chadefaux, B., Rethore, M. O., Raoul, O., et al.Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun, 1985; 128: 40–4.CrossRefGoogle ScholarPubMed
Lejeune, J., Peeters, M., Rethore, M. O., et al.Homocysteine and the methotrexate toxicity in trisomy 21[letter]. Cancer Chemother Pharmacol, 1991; 27: 331–2.CrossRefGoogle Scholar
Horie, N., Aiba, H., Oguro, K., et al.Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct, 1995; 20: 191–7.CrossRefGoogle ScholarPubMed
Villafranca, E., Okruzhnov, Y., Dominguez, M. A., et al.Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol, 2001; 19: 1779–86.CrossRefGoogle ScholarPubMed
Marsh, S., McKay, J. A., Cassidy, J., et al.Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Oncol, 2001; 19: 383–6.Google ScholarPubMed
Pullarkat, S. T., Stoehlmacher, J., Ghaderi, V., et al.Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J, 2001; 1: 65–70.CrossRefGoogle ScholarPubMed
Rocha, C., Cheng, C., Liu, W., et al.Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood, 2005; 105: 4752–8.CrossRefGoogle ScholarPubMed
Krajinovic, M., Costea, I., & Chiasson, S.Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet, 2002; 359: 1033–4.CrossRefGoogle ScholarPubMed
Ulrich, C. M., Yasui, Y., Storb, R., et al.Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood, 2001; 98: 231–4.CrossRefGoogle ScholarPubMed
Chango, A., Emery-Fillon, N., de Courcy, G. P., et al.A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab, 2000; 70: 310–5.CrossRefGoogle ScholarPubMed
Laverdiere, C., Chiasson, S., Costea, I., et al.Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood, 2002; 100: 3832–4.CrossRefGoogle ScholarPubMed
Stet, E. H., De Abreu, R. A., Bokkerink, J. P., et al.Reversal of methylmercaptopurine ribonucleoside cytotoxicity by purine ribonucleosides and adenine. Biochem Pharmacol, 1995; 49: 49–56.CrossRefGoogle ScholarPubMed
Krynetski, E. Y., Krynetskaia, N. F., Yanishevski, Y., et al.Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S- methyltransferase. Mol Pharmacol, 1995; 47: 1141–7.Google ScholarPubMed
Krynetski, E. Y., Tai, H. L., Yates, C. R., et al.Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics, 1996; 6: 279–90.CrossRefGoogle ScholarPubMed
Deininger, M., Szumlanski, C. L., Otterness, D. M., et al.Purine substrates for human thiopurine methyltransferase. Biochem Pharmacol, 1994; 48: 2135–8.CrossRefGoogle ScholarPubMed
Tay, B. S., Lilley, R., McMurray, A. W., et al.Inhibition of phosphoribosyl pyrophosphate amidotransferase for Ehrlich ascites tumor cells by thiopurine nucleotides. Biochem Pharmacol, 1969; 18: 936–8.CrossRefGoogle ScholarPubMed
Dervieux, T., Blanco, J. G., Krynetski, E. Y., et al.Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res, 2001; 61: 5810–16.Google ScholarPubMed
Weinshilboum, R. M. & Sladek, S. L.Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet, 1980; 32: 651–62.Google ScholarPubMed
Jones, I. M., Moore, D. H., Thomas, C. B., et al.Factors affecting HPRT mutant frequency in T-lymphocytes of smokers and nonsmokers. Cancer Epidemiol Biomarkers Prev, 1993; 2: 249–60.Google ScholarPubMed
Bredeson, C. N., Barnett, M. J., Horsman, D. E., et al.Therapy-related acute myelogenous leukemia associated with 11q23 chromosomal abnormalities and topoisomerase II inhibitors: report of four additional cases and brief commentary. Leuk Lymphoma, 1993; 11: 141–5.CrossRefGoogle ScholarPubMed
Tinel, M., Berson, A., Pessayre, D., et al.Pharmacogenetics of human erythrocyte thiopurine methyltransferase activity in a French population. Br J Clin Pharmacol, 1991; 32: 729–34.Google Scholar
Klemetsdal, B., Tollefsen, E., Loennechen, T., et al.Interethnic difference in thiopurine methyltransferase activity. Clin Pharmacol Ther, 1992; 51: 24–31.CrossRefGoogle ScholarPubMed
Szumlanski, C. L., Honchel, R., Scott, M. C., et al.Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics, 1992; 2: 148–59.CrossRefGoogle ScholarPubMed
Loon, J. A. & Weinshilboum, R. M.Human lymphocyte thiopurine methyltransferase pharmacogenetics: effect of phenotype on 6-mercaptopurine-induced inhibition of mitogen stimulation. J Pharmacol Exp Ther, 1987; 242: 21–6.Google ScholarPubMed
McLeod, H. L., Relling, M. V., Liu, Q., et al.Polymorphic thio purine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood, 1995; 85: 1897–902.Google Scholar
Szumlanski, C., Otterness, D., Her, C., et al.Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol, 1996; 15: 17–30.CrossRefGoogle ScholarPubMed
Krynetski, E. Y., Schuetz, J. D., Galpin, A. J., et al.A single point mutation leading to loss of catalytic activity in human thio purine S-methyltransferase. Proc Natl Acad Sci U S A, 1995; 92: 949–53.CrossRefGoogle Scholar
Lee, D., Szumlanski, C., Houtman, J., et al.Thiopurine methyltransferase pharmacogenetics. Cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab Dispos, 1995; 23: 398–405.Google Scholar
Tai, H. L., Krynetski, E. Y., Yates, C. R., et al.Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet, 1996; 58: 694–702.Google ScholarPubMed
Yates, C. R., Krynetski, E. Y., Loennechen, T., et al.Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med, 1997; 126: 608–14.CrossRefGoogle ScholarPubMed
Lennard, L., Loon, J. A., & Weinshilboum, R. M.Pharmacogenetics of acute azathioprine toxicity: relationship to thio purine methyltransferase genetic polymorphism. Clin Pharmacol Ther, 1989; 46: 149–54.CrossRefGoogle Scholar
Lennard, L., Loon, J. A., Lilleyman, J. S., et al.Thio purine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther, 1987; 41: 18–25.CrossRefGoogle Scholar
Escousse, A., Rifle, G., Sgro, C., et al.Azathioprine toxicity, 6-mercaptopurine accumulation and the “poor” 6-thiopurine methylator phenotype [letter]. Eur J Clin Pharmacol, 1995; 48: 309–10.Google Scholar
Schutz, E., Gummert, J., Mohr, F., et al.Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet, 1993; 341: 436.CrossRefGoogle ScholarPubMed
Lennard, L., Rees, C. A., Lilleyman, J. S., et al.Childhood leukaemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. Br J Clin Pharmacol, 1983; 16: 359–63.CrossRefGoogle ScholarPubMed
Evans, W. E., Horner, M., Chu, Y. Q., et al.Altered mercapto purine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr, 1991; 119: 985–9.CrossRefGoogle Scholar
Lennard, L., Gibson, B. E., Nicole, T., et al.Congenital thio purine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch Dis Child, 1993; 69: 577–9.CrossRefGoogle Scholar
Relling, M. V., Hancock, M. L., Rivera, G. K., et al.Mercapto purine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst, 1999; 91: 2001–8.CrossRefGoogle Scholar
Evans, W. E., Hon, Y. Y., Bomgaars, L., et al.Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol, 2001; 19: 2293–301.CrossRefGoogle ScholarPubMed
Thomsen, J., Schroder, H., Kristinsson, J., et al.Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells. Cancer, 1999; 86: 1080–6.3.0.CO;2-5>CrossRefGoogle Scholar
Relling, M. V., Rubnitz, J. E., Rivera, G. K., et al.High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet, 1999; 354: 34–9.CrossRefGoogle ScholarPubMed
Relling, M. V., Yanishevski, Y., Nemec, J., et al.Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia, 1998; 12: 346–52.CrossRefGoogle ScholarPubMed
Lennard, L., Thomas, S., Harrington, C. I., et al.Skin cancer in renal transplant recipients is associated with increased concentrations of 6-thioguanine nucleotide in red blood cells. Br J Dermatol, 1985; 113: 723–9.CrossRefGoogle ScholarPubMed
Krynetskaia, N. F., Cai, X., Nitiss, J. L., et al.Thioguanine substitution alters DNA cleavage mediated by topoisomerase II. FASEB J, 2000; 14: 2339–44.CrossRefGoogle ScholarPubMed
Stanulla, M., Schaeffeler, E., Flohr, T., et al.Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA, 2005; 293: 1485–9.CrossRefGoogle ScholarPubMed
Lennard, L., Lilleyman, J. S., Loon, J., et al.Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet, 1990; 336: 225–9.CrossRefGoogle ScholarPubMed
Relling, M. V., Hancock, M. L., Boyett, J. M., et al.Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood, 1999; 93: 2817–23.Google ScholarPubMed
Davies, H. A., Lennard, L., & Lilleyman, J. S.Variable mercaptopurine metabolism in children with leukaemia: a problem of non-compliance ?Br Med J, 1993; 306: 1239–40.CrossRefGoogle ScholarPubMed
Band, P. R., Holland, J. F., Bernard, J., et al.Treatment of central nervous system leukemia with intrathecal cytosine arabinoside. Cancer, 1973; 32: 744–8.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Momparler, R. L.Kinetic and template studies with 1-β-D-arabinofuranosylcytosine-5′-triphosphate and mammalian deoxyribonucleic and polymerase. Mol Pharmacol, 1972; 8: 362–70.Google Scholar
Kufe, D. W., Major, P. P., Egan, E. M., et al.Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem, 1980; 255: 8997–900.Google ScholarPubMed
Major, P. P., Sargent, L., Egan, E. M., et al.Correlation of thymidine-enhanced incorporation of ara-C in deoxyribonucleic acid with increased cell kill. Biochem Pharmacol, 1981; 30: 2221–4.CrossRefGoogle ScholarPubMed
Major, P. P., Egan, E. M., Beardsley, G. P., et al.Lethality of human myeloblasts correlates with the incorporation of arabinofuranosylcytosine into DNA. Proc Natl Acad Sci U S A, 1981; 78: 3235–9.CrossRefGoogle ScholarPubMed
Kessel, D., Hall, T. C., & Wodinsky, I.Transport and phosphorylation as factors in the antitumor action of cytosine arabinoside. Science, 1967; 156: 1240–1.CrossRefGoogle ScholarPubMed
Wiley, J. S., Jones, S. P., Sawyer, W. H., et al.Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest, 1982; 69: 479–89.CrossRefGoogle ScholarPubMed
Heinemann, V., Estey, E., Keating, M. J., et al.Patient-specific dose rate for continuous infusion high-dose cytarabine in relapsed acute myelogenous leukemia. J Clin Oncol, 1989; 7: 622–8.CrossRefGoogle ScholarPubMed
Plunkett, W., Liliemark, J. O., Adams, T. M., et al.Saturation 1-β-D-arabinofuranosylcytosine 5′-triphosphate accumulation in leukemic cells during high-dose 1-β-D- arabinofuranosylcytosine therapy. Cancer Res, 1987; 47: 3005–11.Google ScholarPubMed
Muus, P., Drenthe-Schonk, A., Haanen, C., et al.In-vitro studies on phosphorylation and dephosphorylation of cytosine arabinoside in human leukemic cells. Leuk Res, 1987; 11: 319–25.Google ScholarPubMed
White, J. C., Rathmell, J. P., Capizzi, R. L.Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemic cells. J Clin Invest, 1987; 79: 380–7.CrossRefGoogle Scholar
Plunkett, W., Iacoboni, S., Estey, E., et al.Pharmacologically directed ara-C therapy for refractory leukemia. Semin Oncol, 1985; 12: 20–30.Google ScholarPubMed
Rustum, Y. M. & Preisler, H. D.Correlation between leukemic cell retention of 1-β-D- arabinofuranosylcytosine 5′-triphosphate and response to therapy. Cancer Res, 1979; 39: 42–9.Google ScholarPubMed
Bekassy, A. N., Liliemark, J., Garwicz, S., et al.Pharmacokinetics of cytosine arabinoside in cerebrospinal fluid and of its metabolite in leukemic cells. Med Pediatr Oncol, 1990; 18: 136–42.CrossRefGoogle ScholarPubMed
Avramis, V. L., Biener, R., Krailo, M., et al.Biochemical pharmacology of high dose 1-β-D-arabinofuranosylcytosine in childhood acute leukemia. Cancer Res, 1987; 47: 6786–92.Google ScholarPubMed
Boos, J., Hohenlochter, B., Schulze-Westhoff, P., et al.Intracellular retention of cytosine arabinoside triphosphate in blast cells from children with acute myelogenous and lymphoblastic leukemia. Med Pediatr Oncol, 1996; 26: 397–404.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Plunkett, W., Iacoboni, S., & Keating, M.Cellular pharmacology and optimal therapeutic concentrations of 1-β-D-arabinofuranosylcytosine 5′-triphosphate in leukemic blasts during treatment of refractory leukemia with high-dose 1-β-D-arabinofuranosylcytosine. Scand J Haematol, 1986; 34: 51–9.Google Scholar
Estey, E. H., Keating, M. J., McCredie, K. B., et al.Cellular ara-CTP pharmacokinetics response and karyotype in newly diagnosed acute myelogenous leukemia. Leukemia, 1990; 4: 95–9.Google ScholarPubMed
Bishop, J. F., Matthews, J. P., Young, G. A., et al.A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood, 1996; 87: 1710–17.Google ScholarPubMed
Mayer, R. J., Davis, R. B., Schiffer, C. A., et al.Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med, 1994; 331: 896–903.CrossRefGoogle ScholarPubMed
Kakihara, T., Fukuda, T., Tanaka, A., et al.Expression of deoxycytidine kinase (dCK) gene in leukemic cells in childhood: decreased expression of dCK gene in relapsed leukemia. Leuk Lymphoma, 1998; 31: 405–9.CrossRefGoogle ScholarPubMed
Stammler, G., Zintl, F., Sauerbrey, A., et al.Deoxycytidine kinase mRNA expression in childhood acute lymphoblastic leukemia. Anticancer Drugs, 1997; 8: 517–21.CrossRefGoogle ScholarPubMed
Colly, L. P., Peters, W. G., Richel, D., et al.Deoxycytidine kinase and deoxycytidine deaminase values correspond closely to clinical response to cytosine arabinoside remission induction therapy in patients with acute myelogenous leukemia. Semin Oncol, 1987; 14: 257–61.Google ScholarPubMed
Veuger, M. J., Heemskerk, M. H., Honders, M. W., et al.Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood, 2002; 99: 1373–80.CrossRefGoogle ScholarPubMed
Veuger, M. J., Honders, M. W., Landegent, J. E., et al.High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood, 2000; 96: 1517–24.Google ScholarPubMed
Galmarini, C. M., Graham, K., Thomas, X., et al.Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood, 2001; 98: 1922–6.CrossRefGoogle Scholar
Jahns-Streubel, G., Reuter, C., auf der Landwehr, U., et al.Activity of thymidine kinase and of polymerase alpha as well as activity and gene expression of deoxycytidine deaminase in leukemic blasts are correlated with clinical response in the setting of granulocyte-macrophage colony-stimulating factor-based priming before and during TAD-9 induction therapy in acute myeloid leukemia. Blood, 1997; 90: 1968–76.Google Scholar
Yue, L., Saikawa, Y., Ota, K., et al.A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics, 2003; 13: 29–38.CrossRefGoogle ScholarPubMed
Ho, D. H. W. & Frei, E. III.Clinical pharmacology of 1-β-D-arabinofuranosyl cytosine. Clin Pharmacol, 1971; 12: 944–54.Google ScholarPubMed
Pui, C. H., Mahmoud, H. H., Rivera, G. K., et al.Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia. Blood, 1998; 92: 411–15.Google ScholarPubMed
Rosner, F. & Lee, S.Down syndrome and acute leukemia: myeloblastic or lymphoblastic; report of forty-three cases and review of literature. Am J Med, 1972; 53: 203–18.CrossRefGoogle ScholarPubMed
Robison, L.Down syndrome and leukemia. Leukemia, 1992; 6: 5–7.Google ScholarPubMed
Taub, J. W., Matherly, L. H., Stout, M. L., et al.Enhanced metabolism of 1-beta-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood, 1996; 87: 3395–403.Google ScholarPubMed
Kojima, S., Kato, K., Matsuyama, T., et al.Favorable treatment outcome in children with acute myeloid leukemia and Down syndrome [letter; comment]. Blood, 1993; 81: 3164.Google Scholar
Ravindranath, Y., Abella, E., Krischer, J. P., et al.Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498 [see comments]. Blood, 1992; 80: 2210–14.Google ScholarPubMed
Taub, J. W., Huang, X., Matherly, L. H., et al.Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood, 1999; 94: 1393–400.Google ScholarPubMed
Tsai, M. Y., Bignell, M., Schwichtenberg, K., et al.High prevalence of a mutation in the cystathionine beta-synthase gene. Am J Hum Genet, 1996; 59: 1262–7.Google ScholarPubMed
Ge, Y., Jensen, T., James, S. J., et al.High frequency of the 844ins68 cystathionine-beta-synthase gene variant in Down syndrome children with acute myeloid leukemia. Leukemia, 2002; 16: 2339–41.CrossRefGoogle ScholarPubMed
Gandhi, V., Estey, E., Keating, M. J., et al.Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelo genous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood, 1996; 87: 256–64.Google Scholar
Kornblau, S. M., Gandhi, V., Andreeff, H. M., et al.Clinical and laboratory studies of 2-chlorodeoxyadenosine ± cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia, 1996; 10: 1563–9.Google ScholarPubMed
Crews, K. R., Gandhi, V., Srivastava, D. K., et al.Interim comparison of a continuous infusion versus a short daily infusion of cytarabine given in combination with cladribine for pediatric acute myeloid leukemia. J Clin Oncol, 2002; 20: 4217–24.CrossRefGoogle Scholar
Sirotnak, F. M., Chello, P. L., Dorick, D. M., et al.Specificity of systems mediating transport of adenosine, 9-β-D-arabinofuranosyl-2- fluoroadenine, and other purine nucleo side analogues in L1210 cells. Cancer Res, 1983; 43: 104–9.Google Scholar
Gandhi, V. & Plunkett, W.Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res, 1988; 48: 329–34.Google ScholarPubMed
Gandhi, V., Estey, E., Keating, M. J., et al.Fludarabine potentiates metabolism of cytarabine in patients with acute myelo genous leukemia during therapy. J Clin Oncol, 1993; 11: 116–24.CrossRefGoogle Scholar
Gandhi, V., Nowak, B., Keating, M. B., et al.Modulation of arabinosylcytosine metabolism by arabinosyl-2-fluoroadenine in lymphocytes from patients with chronic lymphocytic leukemia: implications for combination therapy. Blood, 1989; 74: 2070–5.Google ScholarPubMed
Gandhi, V., Robertson, L. E., Keating, M. J., et al.Combination of fludarabine and arabinosylcytosine for treatment of chronic lymphocytic leukemia: clinical efficacy and modulation of arabinosylcytosine pharmacology. Cancer Chemother Pharmacol, 1994; 34: 30–6.CrossRefGoogle ScholarPubMed
Kemena, A., Gandhi, V., Shewach, D. S., et al.Inhibition of fludarabine metabolism by arabinosylcytosine during therapy. Cancer Chemother Pharmacol, 1992; 31: 193–9.CrossRefGoogle ScholarPubMed
Estey, E., Plunkett, W., Gandhi, V., et al.Fludarabine and arabinosylcytosine therapy of refractory and relapsed acute myelo genous leukemia. Leuk Lymph, 1993; 9: 343–50.CrossRefGoogle Scholar
Avramis, V. I., Wiersma, S., Krailo, M. D., et al.Pharmacokinetic and pharmacodynamic studies of fludarabine and cytosine arabinoside administered as loading boluses followed by continuous infusions after a phase I/II study in pediatric patients with relapsed leukemias. The Children's Cancer Group. Clin Cancer Res, 1998; 4: 45–52.Google ScholarPubMed
Dinndorf, P. A., Avramis, V. I., Wiersma, S., et al.Phase I/II study of idarubicin given with continuous infusion fludarabine followed by continuous infusion cytarabine in children with acute leukemia: a report from the Children's Cancer Group. J Clin Oncol, 1997; 15: 2780–5.CrossRefGoogle ScholarPubMed
Leahey, A., Kelly, K., Rorke, L. B., et al.A phase I/II study of idarubicin (Ida) with continuous infusion fludarabine (F-ara-A) and cytarabine (ara-C) for refractory or recurrent pediatric acute myeloid leukemia (AML). J Pediatr Hematol Oncol, 1997; 19: 304–8.CrossRefGoogle Scholar
Fleischhack, G., Hasan, C., Graf, N., et al.IDA-FLAG (idarubicin, fludarabine, cytarabine, G-CSF), an effective remission-induction therapy for poor-prognosis AML of childhood prior to allogeneic or autologous bone marrow transplantation: experiences of a phase II trial. Br J Haematol, 1998; 102: 647–55.CrossRefGoogle ScholarPubMed
Terasaki, T., Iga, T., Sugiyama, Y., et al.Experimental evidence of characteristic tissue distribution of adriamycin. Tissue DNA concentration as a determinant. J Pharm Pharmacol, 1982; 34: 597–600.CrossRefGoogle ScholarPubMed
Bachur, N. R. & Craddock, J. C.Daunomycin metabolism in rat tissue slides. J Pharmacol Exp Ther, 1971; 175: 331–7.Google Scholar
Huffman, D. H., Benjamin, R. S., & Bachur, N. R.Daunorubucin metabolism in acute nonlymphocytic leukemia. Clin Pharmacol Ther, 1972; 13: 895–905.CrossRefGoogle Scholar
Gill, P., Favre, R., Durand, A., et al.Time dependency of adriamycin and adriamycinol kinetics. Cancer Chemother Pharmacol, 1983; 10: 120–4.CrossRefGoogle Scholar
Dessypris, E. N., Brenner, D. E., & Hande, K. R.Toxicity of doxorubicin metabolites to human marrow erythroid and myeloid progenitors in vitro. Cancer Treat Rep, 1986; 70: 487–90.Google ScholarPubMed
Schott, B. & Robert, J.Comparative activity of anthracycline 13-dihydrometabolites against rat glioblastoma cells in culture [abstract]. Biochem Pharmacol, 1989; 38: 4069–74.CrossRefGoogle Scholar
Olson, R. D., Mushlin, P. S., Brenner, D. E., et al.Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci U S A, 1988; 85: 3585–9.CrossRefGoogle ScholarPubMed
Hempel, G., Flege, S., Wurthwein, G., et al.Peak plasma concentrations of doxorubicin in children with acute lymphoblastic leukemia or non-Hodgkin lymphoma. Cancer Chemother Pharmacol, 2002; 49: 133–41.CrossRefGoogle ScholarPubMed
Galettis, P., Boutagy, J., & Ma, D. D. F.Daunorubicin pharmacokinetics and the correlation with P-glycoprotein and response in patients with acute leukaemia. Br J Cancer, 1994; 70: 324–9.CrossRefGoogle ScholarPubMed
Preisler, H. D., Gessner, T., Azarnia, N., et al.Relationship between plasma adriamycin levels and the outcome of remission induction therapy for acute nonlymphocytic leukemia. Cancer Chemother Pharmacol, 1984; 12: 125–30.CrossRefGoogle ScholarPubMed
Kokenberg, E., Sonneveld, P., Sizoo, W., et al.Cellular pharmacokinetics of daunorubicin: relationships with the response to treatment in patients with acute myeloid leukemia. J Clin Oncol, 1988; 6: 802–12.CrossRefGoogle ScholarPubMed
Marie, J. P., Faussat-Suberville, A. M., Zhou, D., et al.Daunorubicin uptake by leukemic cells: correlations with treatment outcome and mdr1 expression. Leukemia, 1993; 7: 825–31.Google ScholarPubMed
Steinberg, J. S., Cohen, A. J., Wasserman, A. G., et al.Acute arrhythmogenicity of doxorubicin administration. Cancer, 1987; 60: 1213–18.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Lenaz, L. & Page, J. A.Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev, 1976; 3: 111–20.CrossRefGoogle ScholarPubMed
Ferrans, V. J.Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep, 1978; 62: 955–61.Google ScholarPubMed
Hoff, D. D. Von, Rozencweig, M., Layard, M., et al.Daunomycin-induced cardiotoxicity in children and adults. An overview of 110 cases. Am J Med, 1977; 62: 200–8.CrossRefGoogle Scholar
Bristow, M. R., Billingham, M. E., Mason, J. W., et al.Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep, 1978; 62: 873–9.Google ScholarPubMed
Friedman, M. A., Bozdech, M. J., Billingham, M. E., et al.Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. J Am Med Assoc, 1978; 40: 1603–6.CrossRefGoogle Scholar
Haq, M. M., Legha, S. S., Choksi, J., et al.Doxorubicin-induced congestive heart failure in adults. Cancer, 1985; 56: 1361–5.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Schwartz, R. G., McKenzie, W. B., Alexander, J., et al.Congestive heart failure and left ventricular dysfunction complicating doxorubicn therapy. Am J Med, 1987; 82: 1109–18.CrossRefGoogle ScholarPubMed
Steinherz, L. J., Steinherz, P. G., Tan, C. T. C., et al.Cardiac toxicity 4 to 20 years after completing anthracycline therapy. J Am Med Assoc, 1991; 266: 1672–7.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Colan, S. D., Gelber, R. D., et al.Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med, 1991; 324: 808–15.CrossRefGoogle ScholarPubMed
Yeung, S. T., Yoong, C., Spink, J., et al.Functional myocardial impairment in children treated with anthracyclines for cancer. Lancet, 1991; 337: 816–18.CrossRefGoogle ScholarPubMed
Larsen, R. L., Jakacki, R. I., Vetter, V. L., et al.Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am J Cardiol, 1992; 70: 73–7.CrossRefGoogle ScholarPubMed
Minow, R. A., Benjamin, R. S., & Gottlieb, J. A.Adriamycin (NSC-123127) cardiomyopathy – an overview with determination of risk factors. Cancer Chemother Rep, 1975; 6: 195–201.Google Scholar
Mosijczuk, A. D., Ruymann, F. B., Mease, A. D., et al.Anthracycline cardiomyopathy in children – report of two cases. Cancer, 1979; 44: 1582–7.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Pratt, C. B., Ransom, J. L., & Evans, W. E.Age-related adriamycin cardiotoxicity in children. Cancer Treat Rep, 1978; 62: 1381–5.Google ScholarPubMed
Lipshultz, S. E., Giantris, A. L., Lipsitz, S. R., et al.Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol, 2002; 20: 1677–82.CrossRefGoogle Scholar
Daghestani, A. N., Arlin, Z. A., Leyland-Jones, B., et al.Phase I and II clinical and pharmacological study of 4-demethoxydaunorubicin (idarubicin) in adult patients with acute leukemia. Cancer Res, 1985; 45: 1408–12.Google ScholarPubMed
Gill, P. S., Espina, B. M., Muggia, F., et al.Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol, 1995; 13: 996–1003.CrossRefGoogle ScholarPubMed
Uziely, B., Jeffers, S., Isacson, R., et al.Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol, 1995; 13: 1777–85.CrossRefGoogle ScholarPubMed
Wolff, A. C., Ettinger, D. S., Neuberg, D., et al.Phase II study of ifosfamide, carboplatin, and oral etoposide chemotherapy for extensive-disease small-cell lung cancer: an Eastern Cooperative Oncology Group pilot study. J Clin Oncol, 1995; 13: 1615–22.CrossRefGoogle Scholar
Ochs, J., Rodman, J., Abromowitch, M., et al.A phase II study of combined methotrexate and teniposide infusions prior to reinduction therapy in relapsed childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1991; 9: 139–44.CrossRefGoogle ScholarPubMed
Rivera, G. K., Hudson, M. M., Liu, Q., et al.Effectiveness of intensified rotational combination chemotherapy for late hematologic relapse of childhood acute lymphoblastic leukemia. Blood, 1996; 88: 831–7.Google ScholarPubMed
Lowis, S. P. & Newell, D. R.Etoposide for the treatment of paediatric tumours: what is the best way to give it ?Eur J Cancer, 1996; 32A: 2291–7.CrossRefGoogle Scholar
Clark, P. I. & Slevin, M. L.The clinical pharmacology of etoposide and teniposide. Clin Pharmacokinet, 1987; 12: 223–52.CrossRefGoogle ScholarPubMed
Relling, M. V., Nemec, J., Schuetz, E. G., et al.O-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol, 1994; 45: 352–8.Google ScholarPubMed
Relling, M. V., Evans, R., Dass, C., et al.Human cytochrome P450 metabolism of teniposide and etoposide. J Pharmacol Exp Ther, 1992; 261: 491–6.Google ScholarPubMed
Liliemark, E. K., Liliemark, J., Pettersson, B., et al.In vivo accumulation of etoposide in peripheral leukemic cells in patients treated for acute myeloblastic leukemia; relation to plasma concentrations and protein binding. Leuk Lymphoma, 1993; 10: 323–8.CrossRefGoogle ScholarPubMed
Relling, M. V., Mahmoud, H. H., Pui, C.-H., et al.Etoposide achieves potentially cytotoxic concentrations in CSF of children with acute lymphoblastic leukemia. J Clin Oncol, 1996; 14: 399–404.CrossRefGoogle ScholarPubMed
Gaast, A., Sonneveld, P., Mans, D. R. A., et al.Intrathecal administration of etoposide in the treatment of malignant meningitis: feasibility and pharmacokinetic data. Cancer Chemother Pharmacol, 1992; 29: 335–7.CrossRefGoogle ScholarPubMed
Ratain, M. J., Mick, R., Schilsky, R. L., et al.Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol, 1991; 9: 1480–6.CrossRefGoogle ScholarPubMed
Karlsson, M. O., Port, R. E., Ratain, M. J., et al.A population model for the leukopenic effect of etoposide. Clin Pharmacol Ther, 1995; 57: 325–34.CrossRefGoogle ScholarPubMed
Clark, P. I., Slevin, M. L., Joel, S. P., et al.A randomized trial of two etoposide schedules in small-cell lung cancer: the influence of pharmacokinetics on efficacy and toxicity. J Clin Oncol, 1994; 12: 1427–35.CrossRefGoogle ScholarPubMed
Relling, M. V., McLeod, H., Bowman, L., et al.Etoposide pharmacokinetics and pharmacodynamics after acute and chronic exposure to cisplatin. Clin Pharmacol Ther, 1994; 56: 503–11.CrossRefGoogle ScholarPubMed
Stewart, C. F., Arbuck, S. G., Fleming, R. A., et al.Relation of systemic exposure to unbound etoposide and hematologic toxicity. Clin Pharmacol Ther, 1991; 50: 385–93.CrossRefGoogle ScholarPubMed
Ratain, M. J., Schilsky, R. L., Choi, K. E., et al.Adaptive control of etoposide administration: impact of interpatient pharmacodynamic variability. Clin Pharmacol Ther, 1989; 45: 226–33.CrossRefGoogle ScholarPubMed
Sonnichsen, D. S., Ribeiro, R. C., Luo, X., et al.Pharmacokinetics and pharmacodynamics of 21 day continuous oral etoposide in pediatric solid tumor patients. Clin Pharmacol Ther, 1995; 58: 99–107.CrossRefGoogle Scholar
Evans, W. E., Rodman, J. H., Relling, M. V., et al.Differences in teniposide disposition and pharmacodynamics in patients with newly diagnosed versus relapsed acute lymphocytic leukemia. J Pharmacol Exp Ther, 1992; 260: 71–7.Google Scholar
Clark, P. I.Clinical pharmacology and schedule dependency of the podophyllotoxin derivatives. Semin Oncol, 1992; 19: 20–7.Google ScholarPubMed
Rodman, J. H., Murry, D. J., Madden, T., et al.Altered etoposide pharmacokinetics and time to engraftment in pediatric patients undergoing autologous bone marrow transplantation. J Clin Oncol, 1994; 12: 2390–7.CrossRefGoogle ScholarPubMed
Edick, M. J., Gajjar, A., Mahmoud, H., et al.Pharmacokinetics and pharmacodynamics of oral etoposide in children with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol, 2003; 21: 1340–6.CrossRefGoogle ScholarPubMed
McLeod, H. L., Baker, D. K. Jr., Pui, C.-H., et al.Somnolence, hypotension, and metabolic acidosis following high-dose teniposide treatment in children with leukemia. Cancer Chemother Pharmacol, 1991; 29: 150–4.CrossRefGoogle ScholarPubMed
Rodman, J. H., Abromowitch, M., Sinkule, J. A., et al.Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a Phase I trial. J Clin Oncol, 1987; 5: 1007–14.CrossRefGoogle Scholar
Davies, S. M., Robison, L. L., Buckley, J. D., et al.Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol, 2001; 19: 1279–87.CrossRefGoogle ScholarPubMed
Adamson, P. C., Bailey, J., Pluda, J., et al.Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule. J Clin Oncol, 1995; 13: 1238–41.CrossRefGoogle ScholarPubMed
Adamson, P. C., Boylan, J. F., Balis, F. M., et al.Time course of induction of metabolism of all-trans-retinoic acid and the up-regulation of cellular retinoic acid-binding protein. Cancer Res, 1993; 53: 472–6.Google ScholarPubMed
Muindi, J. F. & Young, C. W.Lipid hydroperoxides greatly increase the rate of oxidative catabolism of all-trans-retinoic acid by human cell culture microsomes genetically enriched in specified cytochrome P-450 isoforms. Can Res, 1993; 53: 1226–9.Google ScholarPubMed
Takitani, K., Tamai, H., Morinobu, T., et al.Pharmacokinetics of all-trans retinoic acid in pediatric patients with leukemia. Jpn J Cancer Res, 1995; 86: 400–5.CrossRefGoogle ScholarPubMed
Adamson, P. C., Reaman, G., Finklestein, J. Z., et al.Phase I trial and pharmacokinetic study of all-trans-retinoic acid administered on an intermittent schedule in combination with interferon-alpha2a in pediatric patients with refractory cancer. J Clin Oncol, 1997; 15: 3330–7.CrossRefGoogle ScholarPubMed
Agadir, A., Cornic, M., Lefebvre, P., et al.All-trans retinoic acid pharmacokinetics and bioavailability in acute promyelocytic leukemia: intracellular concentrations and biologic response relationship. J Clin Oncol, 1995; 13: 2517–23.CrossRefGoogle ScholarPubMed
Conley, B. A., Egorin, M. J., Sridhara, R., et al.Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmacokinetics and pharmacodynamics. Cancer Chemother Pharmacol, 1997; 39: 291–9.CrossRefGoogle ScholarPubMed
Jones, B., Holland, J. F., Glidewell, O., et al.Optimal use of L-asparaginase (NSC-109229) in acute lymphocytic leukemia. Med Pediatr Oncol, 1977; 3: 387–400.CrossRefGoogle Scholar
Capizzi, R. L., Bertino, J. R., Skeel, R. T., et al.L-asparaginase: clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med, 1971; 74: 893–901.CrossRefGoogle ScholarPubMed
Ohnuma, T., Holland, J. F., Freeman, A., et al.Biochemical and pharmacological studies with asparaginase in man. Cancer Res, 1970; 30: 2297–305.Google ScholarPubMed
Schwartz, M. K., Lash, E. D., Oettgen, H. F., et al.L-Asparaginase activity in plasma and other biological fluids. Cancer, 1970; 25: 244–52.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ho, D. H., Thetford, B., Carter, C. J., et al.Clinical pharmacologic studies of L-asparaginase. Clin Pharmacol Ther, 1970; 11: 408–17.CrossRefGoogle ScholarPubMed
Asselin, B. L., Whitin, J. C., Coppola, D. J., et al.Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol, 1993; 11: 1780–6.CrossRefGoogle ScholarPubMed
Avramis, V. I., Sencer, S., Periclou, A. P., et al.A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood, 2002; 99: 1986–94.CrossRefGoogle ScholarPubMed
Silverman, L. B., Gelber, R. D., Dalton, V. K., et al.Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood, 2001; 97: 1211–18.CrossRefGoogle ScholarPubMed
Cheung, N.-K. V., Chau, I. Y., Coccia, P. F.Antibody response to Escherichia coli L-asparaginase. Am J Pediatr Hematol Oncol, 1986; 8: 99–104.Google ScholarPubMed
Killander, D., Dohlwitz, A., Engstedt, L., et al.Hypersensitive reactions and antibody formation during L-asparaginase treatment of children and adults with acute leukemia. Cancer, 1976; 37: 220–8.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Woo, M. H., Hak, L. J., Storm, M. C., et al.Anti-asparaginase antibodies following E. coli asparaginase therapy in pediatric acute lymphoblastic leukemia. Leukemia, 1998; 12: 1527–33.CrossRefGoogle ScholarPubMed
Abshire, T. C., Pollock, B. H., Billett, A. L., et al.Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood, 2000; 96: 1709–15.Google ScholarPubMed
Gentili, D., Zucchetti, M., Conter, V., et al.Determination of L-asparagine in biological samples in the presence of L-asparaginase. J Chromatogr Biomed Appl, 1994; 657: 47–52.CrossRefGoogle ScholarPubMed
Woo, M. H., Hak, L. J., Storm, M. C., et al.Hypersensitivity or development of antibodies to asparaginase does not impact treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol, 2000; 18: 1525–32.CrossRefGoogle Scholar
Hak, L. J., Relling, M. V., Cheng, C., et al.Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia, 2004; 18: 1072–7.CrossRefGoogle ScholarPubMed
Woo, M. H., Hak, L. J., Storm, M. C., et al.Cerebrospinal fluid asparagine concentrations after Escherichia coli asparaginase in children with acute lymphoblastic leukemia. J Clin Oncol, 1999; 17: 1568–73.CrossRefGoogle ScholarPubMed
Ahlke, E., Nowak-Gottl, U., Schulze-Westhoff, P., et al.Dose reduction of asparaginase under pharmacokinetic and pharmacodynamic control during induction therapy in children with acute lymphoblastic leukemia. Br J Haematol, 1997; 96: 675–81.CrossRefGoogle Scholar
Schwartz, S. A., Morgenstern, B., & Capizzi, R. L.Schedule-dependent synergy and antagonism between high-dose 1-β-D-arabinofuranosylcytosine and asparaginase in the L5178Y murine leukemia. Cancer Res, 1982; 42: 2191–7.Google ScholarPubMed
Jolivet, J., Cole, D. E., Holcenberg, J. S., et al.Prevention of methotrexate cytotoxicity by asparaginase inhibition of methotrexate polyglutamate formation. Cancer Res, 1985; 45: 217–20.Google ScholarPubMed
French, M., Manel, A. M., Magaud, J. P., et al.Adult acute lymphoblastic leukaemia: is cell proliferation related to other clinical and biological features ?Br J Haematol, 1987; 65: 419–23.CrossRefGoogle Scholar
Sur, P., Fernandes, D. J., Kute, T. E., et al.L-asparaginase-induced modulation of methotrexate polyglutamylation in murine leukemia L5178Y1. Cancer Res, 1987; 47: 1313–18.Google Scholar
Amylon, M. D., Shuster, J., Pullen, J., et al.Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia, 1999; 13: 335–42.CrossRefGoogle Scholar
Pui, C. H., Relling, M. V., Behm, F. G., et al.L-asparaginase may potentiate the leukemogenic effect of the epipodophyllotoxins. Leukemia, 1995; 9: 1680–4.Google ScholarPubMed
Veerman, A. J. P., Hahlen, K., Kamps, W. A., et al.High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia: results of protocol ALL Ⅵ from the Dutch Childhood Leukemia Study Group. J Clin Oncol, 1996; 14: 911–18.CrossRefGoogle ScholarPubMed
Schwartz, C. L., Thompson, E. B., Gelber, R. D., et al.Improved response with higher corticosteroid dose in children with acute lymphoblastic leukemia. J Clin Oncol, 2001; 19: 1040–6.CrossRefGoogle ScholarPubMed
Ito, C., Evans, W. E., McNinch, L., et al.Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. J Clin Oncol, 1996; 14: 2370–6.CrossRefGoogle ScholarPubMed
Kaspers, G. J. L., Veerman, A. J. P., Pop-Snijders, C., et al.Comparison of the antileukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 1996; 27: 114–21.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Gaynon, P. S., Trigg, M. E., Heerema, N. A., et al.Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia, 2000; 14: 2223–33.CrossRefGoogle ScholarPubMed
Gaynon, P. S., Bostrom, B. C., Hutchinson, R. J., et al.Duration of hospitalization as a measure of cost on Children's Cancer Group acute lymphoblastic leukemia studies. J Clin Oncol, 2001; 19: 1916–25.CrossRefGoogle ScholarPubMed
Jones, B., Freeman, A. I., Shuster, J. J., et al.Lower incidence of meningeal leukemia when prednisone is replaced by dexa methasone in the treatment of acute lymphocytic leukemia. Med Pediatr Oncol, 1991; 19: 269–75.CrossRefGoogle Scholar
Meikle, A. W. & Tyler, F. H.Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med, 1977; 63: 200–7.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Silverman, L. B., Schorin, M. A., et al.Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer, 2000; 88: 1964–9.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Lausten, G. S., Egfjord, M., & Olgaard, K.Metabolism of prednisone in kidney transplanted patients with necrosis of the femoral head. Pharmacol Toxicol, 1993; 72: 78–83.CrossRefGoogle ScholarPubMed
Mattano, L. A. Jr., Sather, H. N., Trigg, M. E., et al.Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol, 2000; 18: 3262–72.CrossRefGoogle ScholarPubMed
Hurley, D. M., Accili, D., Stratakis, C. A., et al.Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest, 1991; 87: 680–6.CrossRefGoogle ScholarPubMed
Weaver, J. U., Hitman, G. A., Kopelman, P. G.An association between a Bc1I restriction fragment length polymorphism of the glucocorticoid receptor locus and hyperinsulinaemia in obese women. J Mol Endocrinol, 1992; 9: 295–300.CrossRefGoogle ScholarPubMed
Rossum, E. F., Koper, J. W., Huizenga, N. A., et al.A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes, 2002; 51: 3128–34.CrossRefGoogle ScholarPubMed
DeRijk, R. H., Schaaf, M., & de Kloet, E. R.Glucocorticoid receptor variants: clinical implications. J Steroid Biochem Mol Biol, 2002; 81: 103–22.CrossRefGoogle ScholarPubMed
Tissing, W. J., Meijerink, J. P., Noer, M. L., & Pieters, R.Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia, 2003; 17: 17–25.CrossRefGoogle ScholarPubMed
Kishi, S., Yang, W., Morand, S., et al.Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood, 2004; 103: 67–72.CrossRefGoogle ScholarPubMed
Anderer, G., Schrappe, M., Brechlin, A. M., et al.Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics, 2000; 10: 715–26.CrossRefGoogle ScholarPubMed
Desai, Z. R., Berg, H. W., Bridges, J. M., et al.Can severe vincristine neurotoxicity be prevented ?Cancer Chemother Pharmacol, 1982; 8: 211–14.CrossRefGoogle ScholarPubMed
de Graaf, S. S., Bloemhof, H., Vendrig, D. E., et al.Vincristine disposition in children with acute lymphoblastic leukemia. Med Pediatr Oncol, 1995; 24: 235–40.CrossRefGoogle ScholarPubMed
Gidding, C. E., Meeuwsen-de Boer, G. J., Koopmans, P., et al.Vincristine pharmacokinetics after repetitive dosing in children. Cancer Chemother Pharmacol, 1999; 44: 203–9.CrossRefGoogle ScholarPubMed
Groninger, E., Meeuwsen-De Boar, T., Koopmans, P., et al.Pharmacokinetics of vincristine monotherapy in childhood acute lymphoblastic leukemia. Pediatr Res, 2002; 52: 113–18.CrossRefGoogle ScholarPubMed
Villikka, K., Kivisto, K. T., Maenpaa, H., et al.Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther, 1999; 66: 589–93.Google ScholarPubMed
Kamaluddin, M., McNally, P., Breatnach, F., et al.Potentiation of vincristine toxicity by itraconazole in children with lymphoid malignancies. Acta Paediatr, 2001; 90: 1204–7.CrossRefGoogle ScholarPubMed
Lamba, J. K., Lin, Y. S., Thummel, K., et al.Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics, 2002; 12: 121–32.CrossRefGoogle ScholarPubMed
Kuehl, P., Zhang, J., Lin, Y., et al.Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet, 2001; 27: 383–91.CrossRefGoogle ScholarPubMed
Hoffmeyer, S., Burk, O., Richter, O. von, et al.Functional polymorphisms of the human multidrug-resistance gene: mul tiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A, 2000; 97: 3473–8.CrossRefGoogle Scholar
Jackson, D. V., Castle, M. C., & Bender, R. A.Biliary excretion of vincristine. Clin Pharmacol Ther, 1978; 24: 101–7.CrossRefGoogle ScholarPubMed
Crom, W. R., de Graaf, S. S., Synold, T., et al.Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J Pediatr, 1994; 125: 642–9.CrossRefGoogle ScholarPubMed
Woods, W. G., O'Leary, M., & Nesbit, M. E.Life-threatening neuropathy and hepatotoxicity in infants during induction therapy for acute lymphoblastic leukemia. J Pediatr, 1981; 98: 642–5.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Hitchcock-Bryan, S., Sallan, S. E.Comparative analysis of treatment programs for childhood acute lymphoblastic leukemia. Semin Oncol, 1985; 12: 122–30.Google ScholarPubMed
Pinkel, D., Hernandez, K., Borella, L., et al.Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer, 1971; 37: 247–56.3.0.CO;2-C>CrossRefGoogle Scholar
Reiter, A., Schrappe, M., Wolf-Dieter, L., et al.Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood, 1994; 84: 3122–33.Google ScholarPubMed
Kamen, B. A., Frenkel, E., & Colvin, O. M.Ifosfamide: should the honeymoon be over ?J Clin Oncol, 1995; 13: 307–9.CrossRefGoogle ScholarPubMed
Yule, S. M., Price, L., Pearson, A. D., et al.Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res, 1997; 3: 1985–92.Google ScholarPubMed
Ayash, L. J., Wright, J. E., Tretyakov, O., et al.Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol, 1992; 10: 995–1000.CrossRefGoogle ScholarPubMed
Huang, Z., Roy, P., & Waxman, D. J.Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol, 2000; 59: 961–72.CrossRefGoogle ScholarPubMed
Lang, T., Klein, K., Fischer, J., et al.Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics, 2001; 11: 399–415.CrossRefGoogle ScholarPubMed
Sweeney, C., McClure, G. Y., Fares, M. Y., et al.Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res, 2000; 60: 5621–4.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×