Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T06:47:02.706Z Has data issue: false hasContentIssue false

21 - Myelodysplastic syndrome

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Henrik Hasle
Affiliation:
Associate Professor, Department of Pediatrics, Skejby Hospital, Aarhus University, Aarhus, Denmark
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Myelodysplastic syndrome (MDS) is a clonal myeloid malignancy characterized by the triad of growth advantage of clonal cells, disturbed differentiation and increased apoptosis. The malignant cells have retained some capacity for differentiation, and have the propensity to undergo apoptosis in the bone marrow; hence, in contrast to acute leukemia, there is a lack of blast cell domination of bone marrow. MDS is much rarer in children than in adults, and most of the literature on this disease is based upon studies in elderly patients; however, there are significant differences between MDS in children and adults (Table 21.1), including the morphologic features and cytogenetic findings at diagnosis. Many children have associated abnormalities (e.g. pre-existing bone marrow failure or congenital abnormalities). The therapeutic aim in children with MDS is primarily a cure, whereas this possibility is often not realistic in adults. The rarity of MDS in children and the lack of a widely accepted classification have contributed to the paucity of reports on this malignancy in the pediatric literature, although in recent years increasing attention has been paid to childhood MDS patients.

Classification of childhood MDS - historical background

The classification of childhood MDS has been inconsistent and confusing. MDS was not included in the official classification of childhood malignancies until the revised version published in 2005. The rarity and heterogeneous nature of the disease have further contributed to the difficulties in its classification.

A plethora of names have been used over the last decades to designate MDS, reflecting the conceptual and diagnostic ambiguity surrounding this disorder.

Type
Chapter
Information
Childhood Leukemias , pp. 548 - 570
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Passmore, S. J., Hann, I. M., Stiller, C. A., et al.Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood, 1995; 85: 1742–50.Google Scholar
Hasle, H., Kerndrup, G., & Jacobsen, B. B.Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia, 1995; 9: 1569–72.Google ScholarPubMed
Bader-Meunier, B., Mielot, F., Tchernia, G., et al.Myelodysplastic syndrome in childhood: report of 49 patients from a French multicenter study. Br J Haematol, 1996; 92: 344–50.CrossRefGoogle Scholar
Groupe Francais de Cytogénétique Hématologique. Forty-four cases of childhood myelodysplasia with cytogenetics, documented by the Groupe Francais de Cytogénétique Hématologique. Leukemia, 1997; 11: 1478–85.CrossRef
Luna-Fineman, S., Shannon, K. M., Atwater, S. K., et al.Myelodysplastic and myeloproliferative disorders of child hood: a study of 167 patients. Blood, 1999; 93: 459–66.Google Scholar
Hasle, H., Wadsworth, L. D., Massing, B. G., McBride, M., & Schultz, K. R.A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol, 1999; 106: 1027– 32.CrossRefGoogle ScholarPubMed
Lopes, L. F. & Lorand-Metze, I.Childhood myelodysplastic syndromes in a Brazilian population. Pediatr Hematol Oncol, 1999; 16: 347–53.CrossRefGoogle Scholar
Sasaki, H., Manabe, A., Kojima, S., et al.Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia, 2001; 15: 1713–20.CrossRefGoogle ScholarPubMed
Kardos, G., Baumann, I., Passmore, S. J., et al.Refractory anemia in childhood: a retrospective analysis of 67 cases with particular reference to monosomy 7. Blood, 2003; 102: 1997–2003.CrossRefGoogle Scholar
Passmore, S. J., Chessells, J. M., Kempski, H., et al.Pediatric MDS and JMML in the UK: a population-based study of incidence and survival. Br J Haematol, 2003; 121: 758–67.CrossRefGoogle Scholar
Steliarova-Foucher, E., Stiller, C., Lacour, B., & Kaatsch, P.International Classification of Childhood Cancer, third edition. Cancer, 2005; 103: 1457–67.CrossRefGoogle ScholarPubMed
Court, D. & Edward, D. G.Monocytic leukaemia in childhood. Arch Dis Child, 1939; 14: 231–44.CrossRefGoogle ScholarPubMed
Pearson, H. A. & Diamond, L. K.Chronic monocytic leukemia in childhood. J Pediatr, 1958; 53: 259–70.CrossRefGoogle ScholarPubMed
Shuster, S., Jones, J. H., & Kilpatrick, G. S.Leukaemia and foetal haemoglobin: a case study. Br Med J, 1960; 2: 1556–8.CrossRefGoogle ScholarPubMed
Humbert, J. R., Hathaway, W. E., Robinson, A., Peakman, D. C., & Githens, J. H.Pre-leukemia in children with a missing bone marrow C chromosome and a myeloproliferative disorder. Br J Haematol, 1971; 21: 705–16.Google Scholar
Kleihauer, E.The preleukemic syndromes (hematopoietic dysplasia) in childhood. Eur J Pediatr, 1980; 133: 5–10.CrossRefGoogle Scholar
Bernard, J. & Schaison, G.Transitory bone marrow failure. A series of 13 preleukemic cases in children. Am J Pediatr Hematol Oncol, 1980; 2: 141–4.Google Scholar
Wegelius, R.Bone marrow dysfunctions preceding acute leukemia in children: a clinical study. Leuk Res, 1992; 16: 71–6.CrossRefGoogle ScholarPubMed
Hasle, H., Heim, S., Schroeder, H., et al.Transient pancytopenia preceding acute lymphoblastic leukemia (pre-ALL). Leukemia, 1995; 9: 605–8.Google Scholar
Sieff, C. A., Chessells, J. M., Harvey, B. A., Pickthall, V. J., & Lawler, S. D.Monosomy 7 in childhood: a myeloproliferative disorder. Br J Haematol, 1981; 49: 235–49.CrossRefGoogle ScholarPubMed
Weiss, K., Stass, S., Williams, D., et al.Childhood monosomy 7 syndrome: clinical and in vitro studies. Leukemia, 1987; 1: 97–104.Google ScholarPubMed
Evans, J. P., Czepulkowski, B., Gibbons, B., Swansbury, G. J., & Chessells, J. M.Childhood monosomy 7 revisited. Br J Haematol, 1988; 69: 41–5.CrossRefGoogle ScholarPubMed
Hann, I. M.Myelodysplastic syndromes. Arch Dis Child, 1992; 67: 962–6.CrossRefGoogle ScholarPubMed
Baranger, L., Baruchel, A., Leverger, G., Schaison, G., & Berger, R.Monosomy-7 in childhood hemopoietic disorders. Leukemia, 1990; 4: 345–9.Google ScholarPubMed
Hasle, H., Aricò, M., Basso, G., et al.Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. Leukemia, 1999; 13: 376–85.CrossRefGoogle ScholarPubMed
Woods, W. G., Barnard, D. R., Alonzo, T. A., et al.Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol, 2002; 20: 434–40.Google ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposals for the classification of the myelodysplastic syndromes. Br J Haematol, 1982; 51: 189–99.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 620–5.CrossRefGoogle ScholarPubMed
Cantù-Rajnoldi, A., Porcelli, P., Cattoretti, G., et al.Myelodysplastic syndromes in children: observation on five cases. Eur Paediatr Haematol Oncol, 1984; 1: 71–5.CrossRefGoogle Scholar
Wering, E. R., Kamps, W. A., Vossen, J. M., List Nuver, C. J., & Theunissen, P. M.Myelodysplastic syndromes in childhood: three case reports. Br J Haematol, 1985; 60: 137–42.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds., World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).Google Scholar
Emanuel, P. D.Myelodysplasia and myeloproliferative disorders in childhood: an update. Br J Haematol, 1999; 105: 852–63.CrossRefGoogle ScholarPubMed
Hasle, H., Niemeyer, C. M., Chessells, J. M., et al.A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia, 2003; 17: 277–82.CrossRefGoogle ScholarPubMed
Mandel, K., Dror, Y., Poon, A., & Freedman, M. H.A practical, comprehensive classification for pediatric myelodysplastic syndromes: the CCC system. J Pediatr Hematol Oncol, 2002; 24: 596–605.CrossRefGoogle ScholarPubMed
Miyazato, A., Ueno, S., Ohmine, K., et al.Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood, 2001; 98: 422–7.CrossRefGoogle ScholarPubMed
Maarek, O., Jonveaux, P., Le Coniat, M., Derre, J., & Berger, R.Fanconi anemia and bone marrow clonal chromosome abnormalities. Leukemia, 1996; 10: 1700–4.Google ScholarPubMed
Blank, J. & Lange, B.Preleukemia in children. J Pediatr, 1981; 98: 565–8.CrossRefGoogle ScholarPubMed
Hasle, H. & Passmore, J. Epidemiology of MDS and myeloproliferative disorders in children. In: Lopes, L. F. & Hasle, H, eds. Myelodysplastic and Myeloproliferative Disorders in Children. (Sao Paulo: Tecmedd e Lemar, 2003).Google Scholar
Lie, S. O., Berglund, G., Gustafsson, G., et al.High-dose Ara-C as a single-agent consolidation therapy in childhood acute myelogenous leukemia. Hamatol Bluttransfus, 1990; 33: 215–21.Google ScholarPubMed
Woods, W. G., Kobrinsky, N., Buckley, J., et al.Intensively timed induction therapy followed by autologous or allogeneic bone marrow transplantation for children with acute myeloid leukemia or myelodysplastic syndrome: a Childrens Cancer Group pilot study. J Clin Oncol, 1993; 11: 1448–57.CrossRefGoogle ScholarPubMed
Creutzig, U., Cantù-Rajnoldi, A., Ritter, J., et al.Myelodysplastic syndromes in childhood. Report of 21 patients from Italy and West Germany. Am J Pediatr Hematol Oncol, 1987; 9: 324–30.CrossRefGoogle ScholarPubMed
Ravindranath, Y., Abella, E., Krischer, J. P., et al.Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience in Pediatric Oncology Group AML Study 8498. Blood, 1992; 80: 2210–4.Google ScholarPubMed
Wells, R. J., Woods, W. G., Buckley, J. D., et al.Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Children's Cancer Group study. J Clin Oncol, 1994; 12: 2367–77.CrossRefGoogle Scholar
Brandwein, J. M., Horsman, D. E., Eaves, A. C., et al.Childhood myelodysplasia: suggested classification as myelodysplastic syndromes based on laboratory and clinical findings. Am J Pediatr Hematol Oncol, 1990; 12: 63–70.CrossRefGoogle ScholarPubMed
Tuncer, M. A., Pagliuca, A., Hicsönmez, G., et al.Primary myelodysplastic syndrome in children: clinical experience in 33 cases. Br J Haematol, 1992; 82: 347–53.CrossRefGoogle ScholarPubMed
Hasle, H., Clausen, N., Pedersen, B., & Bendix-Hansen, K.Myelodysplastic syndrome in a child with constitutional trisomy 8 mosaicism and normal phenotype. Cancer Genet Cytogenet, 1995; 79: 79–81.CrossRefGoogle Scholar
Maserati, E., Aprili, F., Vinante, F., et al.Trisomy 8 in myelodysplasia and acute leukemia is constitutional in 15–20% of cases. Genes Chromosomes Cancer, 2002; 33: 93–7.CrossRefGoogle ScholarPubMed
Hasle, H.Turner syndrome and myelodysplastic syndrome. No reason to alert. J Pediatr Hematol Oncol, 1997; 19: 179.Google ScholarPubMed
Butturini, A., Gale, R. P., Verlander, P. C., et al.Hematologic abnormalities in Fanconi anemia: an international Fanconi anemia registry study. Blood, 1994; 84: 1650–5.Google ScholarPubMed
Auerbach, A. D. & Allen, R. G.Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet, 1991; 51: 1–12.CrossRefGoogle ScholarPubMed
Alter, B. P., Caruso, J. P., Drachtman, R. A., et al.Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet Cytogenet, 2000; 117: 125–31.CrossRefGoogle ScholarPubMed
Freedman, M. H., Bonilla, M. A., Fier, C., et al.Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood, 2000; 96: 429–36.Google ScholarPubMed
Tidow, N., Pilz, C., Teichmann, B., et al.Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Blood, 1997; 89: 2369–75.Google ScholarPubMed
Zeidler, C., Welte, K., Barak, Y., et al.Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood, 2000; 95: 1195–8.Google ScholarPubMed
Smith, O. P.Shwachman–Diamond syndrome. Semin Hematol, 2002; 39: 95–102.CrossRefGoogle ScholarPubMed
Cunningham, J., Sales, M., Pearce, A., et al.Does isochromosome 7q mandate bone marrow transplant in children with Shwachman–Diamond syndrome ?Br J Haematol, 2002; 119: 1062–9.CrossRefGoogle ScholarPubMed
Dijken, P. J. & Verwijs, W.Diamond-Blackfan anemia and malignancy. A case report and a review of the literature. Cancer, 1995; 76: 517–20.3.0.CO;2-8>CrossRefGoogle Scholar
Dokal, I.Dyskeratosis congenita in all its forms. Br J Haematol, 2000; 110: 768–79.CrossRefGoogle ScholarPubMed
Socie, G., Henry, Amar M., Bacigalupo, A., et al.Malignant tumors occurring after treatment of aplastic anemia. European Bone Marrow Transplantation–Severe Aplastic Anaemia Working Party. N Engl J Med, 1993; 329: 1152–7.CrossRefGoogle ScholarPubMed
Ohara, A., Kojima, S., Hamajima, N., et al.Myelodysplastic syndrome and acute myelogenous leukemia as a late clonal complication in children with acquired aplastic anemia. Blood, 1997; 90: 1009–13.Google ScholarPubMed
Führer, M., Rampf, U., Burdach, S., et al.Immunosuppressive therapy and bone marrow transplantation for aplastic anemia in children: results of the study SAA 94[abstract]. Blood, 1998; 92: 156a.Google Scholar
Führer, M., Burdach, S., Ebell, W., et al.Relapse and clonal disease in children with aplastic anemia (AA) after immunosuppressive therapy (IST): the SAA 94 experience. German/Austrian Pediatric Aplastic Anemia Working Group. Klin Pädiatr, 1998; 210: 173–9.CrossRefGoogle ScholarPubMed
Ohara, A., Kojima, S., Okamura, J., et al.Evolution of myelodysplastic syndrome and acute myelogenous leukaemia in children with hepatitis-associated aplastic anaemia. Br J Haematol, 2002; 116: 151–4.CrossRefGoogle ScholarPubMed
Locasciulli, A., Arcese, W., Locatelli, F., Di Bona, E., & Bacigalupo, A.Treatment of aplastic anaemia with granulocyte-colony stimulating factor and risk of malignancy. Lancet, 2001; 357: 43–4.CrossRefGoogle ScholarPubMed
Kojima, S., Hibi, S., Kosaka, Y., et al.Immunosuppressive therapy using antithymocyte globulin, cyclosporine, and danazol with or without human granulocyte colony-stimulating factor in children with acquired aplastic anemia. Blood, 2000; 96: 2049–54.Google ScholarPubMed
Kojima, S., Ohara, A., Tsuchida, M., et al.Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood, 2002; 100: 786–90.CrossRefGoogle ScholarPubMed
Carroll, W. L., Morgan, R., & Glader, B. E.Childhood bone marrow monosomy 7 syndrome: a familial disorder ?J Pediatr, 1985; 107: 578–80.CrossRefGoogle ScholarPubMed
Shannon, K. M., Turhan, A. G., Chang, S. S., et al.Familial bone marrow monosomy 7. Evidence that the predisposing locus is not on the long arm of chromosome 7. J Clin Invest, 1989; 4: 984–9.CrossRefGoogle Scholar
Gilchrist, D. M., Friedman, J. M., Rogers, P. C., & Creighton, S. P.Myelodysplasia and leukemia syndrome with monosomy 7: a genetic perspective. Am J Med Genet, 1990; 35: 437–41.CrossRefGoogle ScholarPubMed
Luna-Fineman, S., Shannon, K. M., & Lange, B. J.Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 1995; 85: 1985–99.Google ScholarPubMed
Hasle, H. & Olsen, J. H.Cancer in relatives of children with myelodysplastic syndrome, acute and chronic myeloid leukaemia. Br J Haematol, 1997; 97: 127–31.CrossRefGoogle ScholarPubMed
Mijovic, A., Antunovic, P., Pagliuca, A., & Mufti, G. J.Familial myelodysplastic syndromes: a key to understanding leukaemogenesis ? [abstract]Leuk Res, 1997; 21(Suppl. 1): S6.CrossRefGoogle Scholar
Gao, Q., Horwitz, M., Roulston, D., et al.Susceptibility gene for familial acute myeloid leukemia associated with loss of 5q and/or 7q is not localized on the commonly deleted portion of 5q. Genes Chromosomes Cancer, 2000; 28: 164–72.3.0.CO;2-2>CrossRefGoogle Scholar
Hasle, H., Olsen, J. H., Hansen, J., Friedrich, U., & Tommerup, N.Occurrence of cancer in a cohort of 183 persons with constitutional chromosome 7 abnormalities. Cancer Genet Cytogenet, 1998; 105: 39–42.CrossRefGoogle Scholar
Minelli, A., Maserati, E., Giudici, G., et al.Familial partial monosomy 7 and myelodysplasia. different parental origin of the monosomy 7 suggests action of a mutator gene. Cancer Genet Cytogenet, 2001; 124: 147–51.CrossRefGoogle ScholarPubMed
Pui, C. H., Hancock, M. L., Raimondi, S. C., et al.Myeloid neoplasia in children treated for solid tumours. Lancet, 1990; 336: 417–21.CrossRefGoogle ScholarPubMed
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al.Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.CrossRefGoogle ScholarPubMed
Rubin, C. M., Arthur, D. C., Woods, W. G., et al.Therapy-related myelodysplastic syndrome and acute myeloid leukemia in children: correlation between chromosomal abnormalities and prior therapy. Blood, 1991; 78: 2982–8.Google ScholarPubMed
Hayani, A., Mahoney, D. H. J., & Taylor, L. D.Therapy-related myelodysplastic syndrome in children with medulloblastoma following MOPP chemotherapy. J Neurooncol, 1992; 14: 57–62.CrossRefGoogle ScholarPubMed
Levine, E. G. & Bloomfield, C. D.Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure. Semin Oncol, 1992; 19: 47–84.Google ScholarPubMed
Pedersen-Bjergaard, J. & Rowley, J. D.The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation. Blood, 1994; 83: 2780–6.Google ScholarPubMed
Pedersen-Bjergaard, J., Christiansen, D. H., Andersen, M. K., & Skovby, F.Causality of myelodysplasia and acute myeloid leukemia and their genetic abnormalities. Leukemia, 2002; 16: 2177–84.CrossRefGoogle ScholarPubMed
Barnard, D. R., Lange, B., Alonzo, T. A., et al.Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood, 2002; 100: 427–34.CrossRefGoogle ScholarPubMed
Thomsen, J. B., Schroeder, H., Kristinsson, J., et al.Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer, 1999; 86: 1080–6.3.0.CO;2-5>CrossRefGoogle Scholar
Davies, S. M.Therapy-related leukemia: is the risk life-long and can we identify patients at greatest risk ?J Pediatr Hematol Oncol, 2000; 22: 302–5.CrossRefGoogle ScholarPubMed
Sasaki, H., Manabe, A., Kojima, S., et al.Myelodysplastic syndromes in childhood: a retrospective study in Japan[abstract]. Leukemia, 2000; 14: 968.Google Scholar
Rodriguez-Galindo, C., Poquette, C. A., Marina, N. M., et al.Hematologic abnormalities and acute myeloid leukemia in children and adolescents administered intensified chemotherapy for the Ewing sarcoma family of tumors. J Pediatr Hematol Oncol, 2000; 22: 321–9.CrossRefGoogle ScholarPubMed
Tefferi, A., Thibodeau, S. N., & Solberg, L. A.Clonal studies in the myelodysplastic syndrome using X-linked restriction fragment length polymorphisms. Blood, 1990; 75: 1770–3.Google ScholarPubMed
Lom, K., Hagemeijer, A., Smit, E. M. E., et al.Cytogenetic clonality analysis in myelodysplastic syndrome: monosomy 7 can be demonstrated in the myeloid and in the lymphoid lineage. Leukemia, 1995; 9: 1818–21.Google ScholarPubMed
Busque, L. & Gilliland, D. G.X-inactivation analysis in the 1990s: promise and potential problems. Leukemia, 1998; 12: 128–35.CrossRefGoogle ScholarPubMed
Head, D. R.Revised classification of acute myeloid leukemia. Leukemia, 1996; 10: 1826–31.Google ScholarPubMed
Loeb, L. A.A mutator phenotype in cancer. Cancer Res, 2001; 61: 3230–9.Google Scholar
Neubauer, A., Shannon, K., & Liu, E.Mutations of the ras proto-oncogenes in childhood monosomy 7. Blood, 1991; 77: 594–8.Google ScholarPubMed
Sheng, X. M., Kawamura, M., Ohnishi, H., et al.Mutations of the RAS genes in childhood acute myeloid leukemia, myelodysplastic syndrome and juvenile chronic myelocytic leukemia. Leuk Res, 1997; 21: 697–701.CrossRefGoogle ScholarPubMed
Tamaki, H., Ogawa, H., Ohyashiki, K., et al.The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia, 1999; 13: 393–9.CrossRefGoogle ScholarPubMed
Ruutu, P., Ruutu, T., Repo, H., et al.Defective neutrophil migration in monosomy-7. Blood, 1981; 58: 739–45.Google ScholarPubMed
Niemeyer, C. M., Aricò, M., Basso, G., et al.Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood, 1997; 89: 3534–43.Google ScholarPubMed
Hasle, H., Kerndrup, G., Yssing, M., et al.Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia, 1996; 10: 1269–73.Google ScholarPubMed
Hicsönmez, G., Cetin, M., Yenicesu, I., et al.Evaluation of children with myelodysplastic syndrome: importance of extramedullary disease as a presenting symptom. Leuk Lymphoma, 2001; 42: 665–74.CrossRefGoogle ScholarPubMed
Barnard, D. R., Kalousek, D. K., Wiersma, S. R., et al.Morphologic, immunologic, and cytogenetic classification of acute myeloid leukemia and myelodysplastic syndrome in childhood: a report from the Childrens Cancer Group. Leukemia, 1996; 10: 5–12.Google ScholarPubMed
Cantù-Rajnoldi, A., Fenu, S., Kerndrup, G., et al.Evaluation of dysplastic features in myelodysplastic syndromes: experience from the morphology group of the European Working Group of MDS in Childhood (EWOG-MDS). Ann Hematol, 2005; 84: 429–33.CrossRefGoogle Scholar
Rogge, T. & Niemeyer, C. M.Myelodysplastic syndromes in childhood. Onkologie, 2000; 23: 18–24.Google Scholar
Rosati, S., Anastasi, J., & Vardiman, J.Recurring diagnostic problems in the pathology of the myelodysplastic syndromes. Semin Hematol, 1996; 33: 111–26.Google ScholarPubMed
Hasle, H.Myelodysplastic syndromes in childhood. Classification, epidemiology, and treatment. Leuk Lymphoma, 1994; 13: 11–26.CrossRefGoogle Scholar
Harbott, J., Haas, O. A., Kerndrup, G., et al.Cytogenetic evaluation of children with MDS and JMML. Results of the European working group of childhood MDS (EWOG-MDS)[abstract]. Leukemia, 2000; 14: 961.Google Scholar
Grimwade, D., Walker, H., Oliver, F., et al.The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 1998; 92: 2322–33.Google ScholarPubMed
Martinez-Climent, J. A. & García-Conde, J.Chromosome rearrangements in childhood acute myeloid leukemias and myelodysplastic syndromes. J Pediatr Hematol Oncol, 1999; 21: 91–102.CrossRefGoogle ScholarPubMed
Jakovleva, K., Ogard, I., Arvidsson, I., et al.Masked monosomy 7 in myelodysplastic syndromes is uncommon and of undetermined clinical significance. Leuk Res, 2001; 25: 197–203.CrossRefGoogle ScholarPubMed
Ketterling, R. P., Wyatt, W. A., VanWier, S. A., et al.Primary myelodysplastic syndrome with normal cytogenetics: utility of ‘FISH panel testing’ and M-FISH. Leuk Res, 2002; 26: 235–40.CrossRefGoogle ScholarPubMed
Woods, W. G., Neudorf, S., Gold, S., et al.A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood, 2001; 97: 56–62.CrossRefGoogle ScholarPubMed
Greenberg, P., Cox, C., Le Beau, M. M., et al.International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 1997; 89: 2079–88.Google ScholarPubMed
Nevill, T. J., Fung, H. C., Shepherd, J. D., et al.Cytogenetic abnormalities in primary myelodysplastic syndrome are highly predictive of outcome after allogeneic bone marrow transplantation. Blood, 1998; 92: 1910–7.Google ScholarPubMed
Chan, G. C. G., Wang, W. C., Raimondi, S. C., et al.Myelodysplastic syndrome in children: differentiation from acute myeloid leukemia with a low blast count. Leukemia, 1997; 11: 206–11.CrossRefGoogle ScholarPubMed
Xue, Y., Yu, F., Zhou, Z., et al.Translocation (8;21) in oligoblastic leukemia: is this a true myelodysplastic syndrome ?Leuk Res, 1994; 18: 761–5.CrossRefGoogle ScholarPubMed
Taj, A. S., Ross, F. M., Vickers, M., et al.t(8; 21) myelodysplasia, an early presentation of M2 AML. Br J Haematol, 1995; 89: 890–2.CrossRefGoogle Scholar
Latger-Cannard, V., Buisine, J., Fenneteau, O., et al.Dysgranulopoiesis, low blast count and t(8; 21): an unusual presentation of t(8; 21) AML according to the WHO classification: a pediatric experience. Leuk Res, 2001; 25: 1023–4.CrossRefGoogle Scholar
Stetler-Stevenson, M., Arthur, D. C., Jabbour, N., et al.Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood, 2001; 98: 979–87.CrossRefGoogle ScholarPubMed
Maynadie, M., Picard, F., Husson, B., et al.Immunophenotypic clustering of myelodysplastic syndromes. Blood, 2002; 100: 2349–56.CrossRefGoogle ScholarPubMed
Hasle, H., Jacobsen, B. B., & Pedersen, N. T.Myelodysplastic syndromes in childhood: a population based study of nine cases. Br J Haematol, 1992; 81: 495–8.CrossRefGoogle ScholarPubMed
Nair, R., Athale, U. A., Iyer, R. S., et al.Childhood myelodysplastic syndromes: clinical features, cytogenetics and prognosis. Indian J Pediatr, 1992; 59: 443–8.CrossRefGoogle ScholarPubMed
Mansoor, A. M., Bharadwaj, T. P., Sethuraman, S., et al.Analysis of karyotype, SCE, and point mutation of RAS oncogene in Indian MDS patients. Cancer Genet Cytogenet, 1993; 65: 12–20.CrossRefGoogle ScholarPubMed
Führer, M., Rampf, U., & Bender-Götze, C.Mean corpuscular volume (MCV) in patients with aplastic anemia does this parameter select patients with clonal disease ? A retrospective analysis of data of the SAA 944 study[abstract]. Leukemia, 2000; 14: 961.Google Scholar
Fohlmeister, I., Fischer, R., Mödder, B., Rister, M., & Schaefer, H. E.Aplastic anemia and the hypocellular myelodysplastic syndrome: histomorphological, diagnostic, and prognostic features. J Clin Pathol, 1985; 38: 1218–24.CrossRefGoogle ScholarPubMed
Elghetany, M. T., Hudnall, S. D., & Gardner, F. H.Peripheral blood picture in primary hypocellular refractory anemia and idiopathic acquired aplastic anemia: an additional tool for differential diagnosis. Haematologica, 1997; 82: 21–4.Google ScholarPubMed
Baumann, I., Führer, M., Bender-Götze, C., Rogge, T., & Niemeyer, C. M.Histopathological features of hypoplastic myelodysplastic syndrome and comparison with severe aplastic anemia in childhood[abstract]. Leuk Res, 1999; 23(Suppl. 1): S41.Google Scholar
Appelbaum, F. R., Barrall, J., Storb, R., et al.Clonal cytogenetic abnormalities in patients with otherwise typical aplastic anemia. Exp Hematol, 1987; 15: 1134–9.Google ScholarPubMed
Mikhailova, N., Sessarego, M., Fugazza, G., et al.Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica, 1996; 81: 418–22.Google ScholarPubMed
Shinohara, K., Yujiri, T., Kamei, S., et al.Absence of point mutation of N-ras oncogene in bone marrow cells with aplastic anemia. Int J Cell Cloning, 1992; 10: 94–8.CrossRefGoogle ScholarPubMed
Elghetany, M. T., Vyas, S., & Yuoh, G.Significance of p53 overexpression in bone marrow biopsies from patients with bone marrow failure: aplastic anemia, hypocellular refractory anemia, and hypercellular refractory anemia. Ann Hematol, 1998; 77: 261–4.CrossRefGoogle ScholarPubMed
Hasle, H., Kerndrup, G., Jacobsen, B. B., et al.Chronic parvovirus infection mimicking myelodysplastic syndrome in a child with subclinical immunodeficiency. Am J Pediatr Hematol Oncol, 1994; 16: 329–33.Google Scholar
Yarali, N., Duru, F., Sipahi, T., Kara, A., & Tezic, T.Parvovirus B19 infection reminiscent of myelodysplastic syndrome in three children with chronic hemolytic anemia. Pediatr Hematol Oncol, 2000; 17: 475–82.CrossRefGoogle ScholarPubMed
Sandhaus, L. M. & Scudder, R.Hematologic and bone marrow abnormalities in pediatric patients with human immunodeficiency virus (HIV) infection. Pediatr Pathol, 1989; 9: 277–88.CrossRefGoogle ScholarPubMed
Mueller, B. U., Tannenbaum, S., & Pizzo, P. A.Bone marrow aspirates and biopsies in children with human immunodeficiency virus infection. J Pediatr Hematol Oncol, 1996; 18: 266–71.CrossRefGoogle ScholarPubMed
Yarali, N., Fisgin, T., Duru, F., & Kara, A.Myelodysplastic features in visceral leishmaniasis. Am J Hematol, 2002; 71: 191–5.CrossRefGoogle ScholarPubMed
Wollman, M. R., Penchansky, L., & Shekhter Levin, S.Transient 7q– in association with megaloblastic anemia due to dietary folate and vitamin B12 deficiency. J Pediatr Hematol Oncol, 1996; 18: 162–5.CrossRefGoogle ScholarPubMed
Brichard, B., Vermylen, C., Scheiff, J. M., Ninane, J., & Cornu, G.Haematological disturbances during long-term valproate therapy. Eur J Pediatr, 1994; 153: 378–80.CrossRefGoogle ScholarPubMed
Yetgin, S., Ozen, S., Saatci, U., et al.Myelodysplastic features in juvenile rheumatoid arthritis. Am J Hematol, 1997; 54: 166–9.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Hinson, D. D., Rogers, Z. R., Hoffman, G. F., et al.Hematological abnormalities and cholestatic liver disease in two patients with mevalonate kinase deficiency. Am J Med Genet, 1998; 78: 408–12.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Clatch, R. J., Krigman, H. R., Peters, M. G., & Zutter, M. M.Dysplastic haemopoiesis following orthotopic liver transplantation: comparison with similar changes in HIV infection and primary myelodysplasia. Br J Haematol, 1994; 88: 685–92.CrossRefGoogle ScholarPubMed
Hirose, M., Taguchi, Y., Makimoto, A., et al.New variant of congenital dyserythropoietic anemia with trilineage myelodysplasia. Acta Haematol, 1995; 94: 102–4.CrossRefGoogle ScholarPubMed
Bader-Meunier, B., Rieux-Laucat, F., Croisille, L., et al.Dyserythropoiesis associated with a fas-deficient condition in childhood. Br J Haematol, 2000; 108: 300–4.CrossRefGoogle ScholarPubMed
Bader-Meunier, B., Rötig, A., Mielot, F., et al.Refractory anaemia and mitochondrial cytopathy in childhood. Br J Haematol, 1994; 87: 381–5.CrossRefGoogle ScholarPubMed
Haas, O. A. & Gadner, H.Pathogenesis, biology, and management of myelodysplastic syndromes in children. Semin Hematol, 1996; 33: 225–35.Google ScholarPubMed
Albitar, M., Manshouri, T., Shen, Y., et al.Myelodysplastic syndrome is not merely “preleukemia”. Blood, 2002; 100: 791–8.CrossRefGoogle Scholar
Webb, D. K. H., Passmore, S. J., Hann, I. M., et al.Results of treatment of children with refractory anaemia with excess blasts (RAEB) and RAEB in transformation (RAEBt) in Great Britain 1990–99. Br J Haematol, 2002; 117: 33–9.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Duffner, U., Bender-Götze, C., et al.AML-type intensive chemotherapy prior to stem cell transplantation (SCT) does not improve survival in children and adolescents with primary myelodysplastic syndromes (MDS)[abstract]. Blood, 2000; 96: 521a.Google Scholar
Vardiman, J. W., Harris, N. L., & Brunning, R. D.The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002; 100: 2292–302.CrossRefGoogle ScholarPubMed
Carroll, A., Civin, C., Schneider, N., et al.The t(1; 22)(p13; q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group study. Blood, 1991; 78: 748–52.Google Scholar
Lion, T., Haas, O. A., Harbott, J., et al.The translocation t(1; 22)(p13; q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood, 1992; 79: 3325–30.Google Scholar
Dastugue, N., Lafage-Pochitaloff, M., Pages, M. P., et al.Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2002; 100: 618–26.CrossRefGoogle Scholar
Anderson, J. E., Appelbaum, F. R., Schoch, G., et al.Allogeneic marrow transplantation for refractory anemia: a comparison of two preparative regimens and analysis of prognostic factors. Blood, 1996; 87: 51–8.Google ScholarPubMed
Anderson, J. F., Gooley, T. A., Schoch, G., et al.Stem cell transplantation for secondary acute myeloid leukemia: evaluation of transplantation as initial therapy or following induction chemotherapy. Blood, 1997; 89: 2578–85.Google ScholarPubMed
Hasle, H., Baumann, I., Bergsträsser, E., et al.The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia, 2004; 18: 2008–14.CrossRefGoogle Scholar
Stollmann, B., Fonatsch, C., & Havers, W.Persistent Epstein–Barr virus infection associated with monosomy 7 or chromosome 3 abnormality in childhood myeloproliferative disorders. Br J Haematol, 1985; 60: 183–96.CrossRefGoogle ScholarPubMed
Scheurlen, W., Borkhardt, A., Ritterbach, J., & Huppertz, H. I.Spontaneous hematological remission in a boy with myelodysplastic syndrome and monosomy 7. Leukemia, 1994; 8: 1435–8.Google Scholar
Benaim, E., Hvizdala, E. E., Papenhausen, P., & Moscinski, L. C.Spontaneous remission in monosomy 7 myelodysplastic syndrome. Br J Haematol, 1995; 89: 947–8.CrossRefGoogle ScholarPubMed
Mantadakis, E., Shannon, K. M., Singer, D. A., et al.Transient monosomy 7. A case series in children and review of the literature. Cancer, 1999; 85: 2655–61.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
De Simone, A., Cantu, Rajnoldi A., Sainati, L., et al.Spontaneous remission from RAEB in a child. Leukemia, 2001; 15: 856–7.CrossRefGoogle Scholar
Bader-Meunier, B., Tchernia, G., Mielot, F., et al.Occurrence of myeloproliferative disorders in patients with Noonan syndrome. J Pediatr, 1997; 130: 885–9.CrossRefGoogle Scholar
Saunthararajah, Y., Nakamura, R., Nam, J. M., et al.HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood, 2002; 100: 1570–4.Google ScholarPubMed
Steensma, D. P., Dispenzieri, A., More, S. B., Schroeder, G., & Tefferi, A.Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome. Blood, 2003; 101: 2156–8.CrossRefGoogle ScholarPubMed
Peters, A. M. J., Baumann, I., Strahm, B., et al.Immunosuppressive therapy for children with refractory anemia[abstract]. Bone Marrow Transplant, 2003; 31(Suppl. 1): S183.Google Scholar
Hicsönmez, G., Tuncer, A. M., Sayli, T., et al.High-dose methylprednisolone, low-dose cytosine arabinoside, and mitoxantrone in children with myelodysplastic syndromes. Hematol Pathol, 1995; 9: 185–93.Google ScholarPubMed
Creutzig, U., Bender-Götze, C., Ritter, J., et al.The role of intensive AML-specific therapy in treatment of children with RAEB and RAEB-T. Leukemia, 1998; 12: 652–9.CrossRefGoogle ScholarPubMed
de Witte, T., Suciu, S., Verhoef, G., et al.Intensive chemotherapy followed by allogeneic or autologous stem cell transplantation for patients with myelodysplastic syndromes (MDSs) and acute myeloid leukemia following MDS. Blood, 2001; 98: 2326–31.CrossRefGoogle ScholarPubMed
Longmore, G., Guinan, E. C., Weinstein, H. J., et al.Bone marrow transplantation for myelodysplasia and secondary acute nonlymphoblastic leukemia. J Clin Oncol, 1990; 8: 1707–14.CrossRefGoogle ScholarPubMed
Anderson, J. E., Appelbaum, F. R., Fisher, L. D., et al.Allogeneic bone marrow transplantation for 93 patients with myelodysplastic syndrome. Blood, 1993; 82: 677–81.Google ScholarPubMed
Anderson, J. E., Anasetti, C., Appelbaum, F. R., et al.Unrelated donor marrow transplantation for myelodysplasia (MDS) and MDS-related acute myeloid leukaemia. Br J Haematol, 1996; 93: 59–67.CrossRefGoogle ScholarPubMed
Sutton, L., Chastang, C., Ribaud, P., et al.Factors influencing outcome in de novo myelodysplastic syndromes treated by allogeneic bone marrow transplantation: a long-term study of 71 patients Societe Francaise de Greffe de Moelle. Blood, 1996; 88: 358–65.Google ScholarPubMed
Castro-Malaspina, H., Harris, R. E., Gajewski, J., et al.Unrelated donor marrow transplantation for myelodysplastic syndromes: outcome analysis in 510 transplants facilitated by the National Marrow Donor Program. Blood, 2002; 99: 1943–51.CrossRefGoogle ScholarPubMed
Guinan, E. C., Tarbell, N. J., Tantravahi, R., & Weinstein, H. J.Bone marrow transplantation for children with myelodysplastic syndromes. Blood, 1989; 73: 619–22.Google ScholarPubMed
Uderzo, C., Locasciulli, A., Cantù-Rajnoldi, A., et al.Allogeneic bone marrow transplantation for myelodysplastic syndromes of childhood: report of three children with refractory anemia with excess of blasts in transformation and review of the literature. Med Pediatr Oncol, 1993; 21: 43–8.CrossRefGoogle ScholarPubMed
Locatelli, F., Pession, A., Bonetti, F., et al.Busulfan, cyclophosphamide and melphalan as conditioning regimen for bone marrow transplantation in children with myelodysplastic syndromes. Leukemia, 1994; 8: 844–9.Google ScholarPubMed
Yusuf, U., Frangoul, H. A., Gooley, T. A., et al.Allogeneic bone marrow transplantation in children with myelodysplastic syndrome or juvenile myelomonocytic leukemia: the Seattle experience. Bone Marrow Transplant, 2004; 33: 805–14CrossRefGoogle ScholarPubMed
Stary, J., Locatelli, F., & Niemeyer, C. M.Stem cell transplantation for aplastic anemia and myelodysplastic syndrome. Bone Marrow Transplant, 2005; 35 (Suppl. 1): S13–16.CrossRefGoogle ScholarPubMed
Rubie, H., Attal, M., Demur, C., et al.Intensified conditioning regimen with busulfan followed by allogeneic BMT in children with myelodysplastic syndromes. Bone Marrow Transplant, 1994; 13: 759–62.Google ScholarPubMed
Leahey, A., Friedman, D. L., & Bunin, N. J.Bone marrow transplantation in pediatric patients with therapy-related myelodysplasia and leukemia. Bone Marrow Transplant, 1999; 23: 21–5.CrossRefGoogle ScholarPubMed
Davies, S. M., Wagner, J. E., Defor, T., et al.Unrelated donor bone marrow transplantation for children and adolescents with aplastic anaemia or myelodysplasia. Br J Haematol, 1997; 96: 749–56.CrossRefGoogle ScholarPubMed
Hongeng, S., Krance, R. A., Bowman, L. C., et al.Outcomes of transplantation with matched-sibling and unrelated-donor bone marrow in children with leukaemia. Lancet, 1997; 350: 767–71.CrossRefGoogle ScholarPubMed
Deeg, H. J., Storer, B., Slattery, J. T., et al.Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood, 2002; 100: 1201–7.CrossRefGoogle ScholarPubMed
de Witte, T., Hermans, J., Vossen, J., et al.Haematopoietic stem cell transplantation for patients with myelodysplastic syndromes and secondary acute myeloid leukaemias: a report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol, 2000; 110: 620–30.CrossRefGoogle Scholar
Locatelli, F., Zecca, M., Duffner, U., et al.Busulfan, cyclophosphamide and melphalan as pretransplant conditioning regimen for children with MDS and JMML. Interim analysis of the EWOG-MDS/EBMT prospective study[abstract]. Leukemia, 2000; 14: 971.Google Scholar
Sierra, J., Perez, W. S., Rozman, C., et al.Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia. Blood, 2002; 100: 1997–2004.Google ScholarPubMed
Couban, S., Simpson, D. R., Barnett, M. J., et al.A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood, 2002; 100: 1525–31.CrossRefGoogle ScholarPubMed
Anderson, J. E., Appelbaum, F. R., Schoch, G., et al.Allogeneic marrow transplantation for myelodysplastic syndrome with advanced disease morphology: a phase II study of busulfan, cyclophosphamide, and total-body irradiation and analysis of prognostic factors. J Clin Oncol, 1996; 14: 220–6.CrossRefGoogle ScholarPubMed
Martino, R., Caballero, M. D., Simon, J. A., et al.Evidence for a graft-versus-leukemia effect after allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning in acute myelogenous leukemia and myelodysplastic syndromes. Blood, 2002; 100: 2243–5.CrossRefGoogle ScholarPubMed
Strahm, B., Greil, J., Kremens, B., et al.A new conditioning regimen for patients with refractory anemia and congenital disorders[abstract]. Bone Marrow Transplant, 2003; 31(Suppl. 1): S26.Google Scholar
Nagatoshi, Y., Okamura, J., Ikuno, Y., Akamatsu, M., & Tasaka, H.Therapeutic trial of intensified conditioning regimen with high-dose cytosine arabinoside, cyclophosphamide and either total body irradiation or busulfan followed by allogeneic bone marrow transplantation for myelodysplastic syndrome in children. Int J Hematol, 1997; 65: 269–75.CrossRefGoogle ScholarPubMed
Copelan, E. A., Penza, S. L., Elder, P. J., et al.Analysis of prognostic factors for allogeneic marrow transplantation following busulfan and cyclophosphamide in myelodysplastic syndrome and after leukemic transformation. Bone Marrow Transplant, 2000; 25: 1219–22.CrossRefGoogle ScholarPubMed
Peters, C., Matthes-Martin, S., Fritsch, G., et al.Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment. Leukemia, 1999; 13: 2070–8.CrossRefGoogle ScholarPubMed
Okumura, H., Takamatsu, H., & Yoshida, T.Donor leucocyte transfusions for relapse in myelodyplastic syndrome after allogeneic bone marrow transplantation. Br J Haematol, 1996; 93: 386–8.CrossRefGoogle ScholarPubMed
Beck, J. F., Klingebiel, T., Kreyenberg, H., et al.Relapse of childhood ALL, AML and MDS after allogeneic stem cell transplantation can be prevented by donor lymphocyte infusion in a critical stage of increasing mixed chimerism. Klin Padiatr, 2002; 214: 201–5.CrossRefGoogle Scholar
Pui, C. H., Relling, M. V., Rivera, G. K., et al.Epipodo phyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia, 1995; 9: 1990–6.Google Scholar
Tsurusawa, M., Manabe, A., Hayashi, Y., et al.Therapy-related myelodysplastic syndrome in childhood: a retrospective study of 36 patients in Japan. Leuk Res, 2005; 29: 625–32.CrossRefGoogle ScholarPubMed
Ballen, K. K., Gilliland, D. G., Guinan, E. C., et al.Bone marrow transplantation for therapy-related myelodysplasia: comparison with primary myelodysplasia. Bone Marrow Transplant, 1997; 20: 737–43.CrossRefGoogle ScholarPubMed
Yakoub-Agha, I., de La Salmoniere, P., Ribaud, P., et al.Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients – report of the French society of bone marrow transplantation. J Clin Oncol, 2000; 18: 963–71.CrossRefGoogle ScholarPubMed
Hale, G. A., Heslop, H. E., Bowman, L. C., et al.Bone marrow transplantation for therapy-induced acute myeloid leukemia in children with previous lymphoid malignancies. Bone Marrow Transplant, 1999; 24: 735–9.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Kontny, H. H., Strahm, B., et al.Stem cell transplantation for children with secondary MDS: report from a multicenter study of the European Working Group of MDS in childhood (EWOG-MDS)[abstract]. Bone Marrow Transplant, 2002; 29(Suppl. 2): S3.Google Scholar
Faber, J., Lauener, R., Wick, F., et al.Shwachman-Diamond syndrome: early bone marrow transplantation in a high risk patient and new clues to pathogenesis. Eur J Pediatr, 1999; 158: 995–1000.CrossRefGoogle Scholar
Hasle, H., Clemmensen, I. H., & Mikkelsen, M.Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet, 2000; 355: 165–9.CrossRefGoogle ScholarPubMed
Hasle, H.Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol, 2001; 2: 429–36.CrossRefGoogle ScholarPubMed
Zipursky, A., Brown, E., Christensen, H., Sutherland, R., & Doyle, J.Leukemia and/or myeloproliferative syndrome in neonates with Down syndrome. Semin Perinatol, 1997; 21: 97–101.CrossRefGoogle ScholarPubMed
Massey, G., Zipursky, A., Doyle, J. J., et al.A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): a Pediatric Oncology Group (POG) study[abstract]. Blood, 2002; 100: 87a.Google Scholar
Slayton, W. B., Spangrude, G. J., Chen, Z., Greene, W. F., & Virshup, D.Lineage-specific trisomy 21 in a neonate with resolving transient myeloproliferative syndrome. J Pediatr Hematol Oncol, 2002; 24: 224–6.CrossRefGoogle Scholar
Wu, S. Q., Loh, K. T., Chen, X. R., Joo, W. J., & Mascarenhas, L.Transient myeloproliferative disorder in a phenotypically normal infant with i(21q) mosaicism. Cancer Genet Cytogenet, 2002; 136: 138–40.CrossRefGoogle Scholar
Hayashi, Y., Eguchi, M., Sugita, K., et al.Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down's syndrome. Blood, 1988; 72: 15–23.Google ScholarPubMed
Lange, B.The management of neoplastic disorders of haematopoiesis in children with Down syndrome. Br J Haematol, 2000; 110: 512–24.CrossRefGoogle Scholar
Miller, R. W., & Shurin, S. B.Neonatal myeloproliferative disorder in Down syndrome: transient or preleukemic[abstract] ?Proc ASPHO, 1994; 3: 24.Google Scholar
Lange, B. J., Kobrinsky, N., Barnard, D. R., et al.Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's cancer group studies 2861 and 2891. Blood, 1998; 91: 608–15.Google ScholarPubMed
Matzke, E., Winkler, K., Grosch, Worner I., et al.Beitrag zur juvenilen chronischen myeloischen Leukämie (jCML) Fallbeschreibung und Verlaufsbeobachtungen bei 9 Patienten. Klin Pädiatr, 1980; 192: 157–68.CrossRefGoogle Scholar
Crombet, O. & Svarch, E.Down syndrome and juvenile myelomonocytic leukemia. Pediatr Hematol Oncol, 1999; 16: 181–2.Google ScholarPubMed
Zipursky, A., Thorner, P., De Harven, E., Christensen, H., & Doyle, J.Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res, 1994; 18: 163–71.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Vormoor, J., et al.Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM Study Group. Leukemia, 1996; 10: 1677–86.Google ScholarPubMed
Gamis, A. S., Alonzo, T. E., Lange, B., Woods, W. G., & Smith, F. O.Acute myelogenous leukemia (AML) in Downs Syndrome (DS) patients: outcome, toxicities, and prognostic factors from the CCG 2891 trial[abstract]. Blood, 2001; 98: 720a.Google Scholar
Sato, A., Imaizumi, M., Koizumi, Y., et al.Acute myelogenous leukaemia with t(8; 21) translocation of normal cell origin in mosaic Down's syndrome with isochromosome 21q. Br J Haematol, 1997; 96: 614–16.CrossRefGoogle Scholar
Litz, C. E., Davies, S., Brunning, R. D., et al.Acute leukemia and the transient myeloproliferative disorder associated with Down syndrome: morphologic, immunophenotypic and cytogenetic manifestations. Leukemia, 1995; 9: 1432–9.Google ScholarPubMed
Ferster, A., Verhest, A., Vamos, E., De Maertelaere, E., & Otten, J.Leukemia in a trisomy 21 mosaic: specific involvement of the trisomic cells. Cancer Genet Cytogenet, 1986; 20: 109–13.CrossRefGoogle Scholar
Simon, J. H., Tebbi, C. K., Freeman, A. I., et al.Acute megakaryoblastic leukemia associated with mosaic Down's syndrome. Cancer, 1987; 60: 2515–20.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Okuda, T., Cai, Z., Yang, S., et al.Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 1998; 91: 3134–43.Google ScholarPubMed
Song, W. J., Sullivan, M. G., Legare, R. D., et al.Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 1999; 23: 166–75.CrossRefGoogle ScholarPubMed
Taketani, T., Taki, T., Takita, J., et al.Mutation of the AML1/RUNX1 gene in a transient myeloproliferative disorder patient with Down syndrome. Leukemia, 2002; 16: 1866–7.CrossRefGoogle Scholar
Wechsler, J., Greene, M., McDevitt, M. A., et al.Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.CrossRefGoogle ScholarPubMed
Ahmed, M., Sternberg, A., Hall, G., et al.Natural history of GATA1 mutations in Down syndrome. Blood, 2004; 103: 2480–9.CrossRefGoogle ScholarPubMed
Rainis, L., Bercovich, D., Strehl, S., et al.Mutations in the exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood, 2003; 102: 981–6.CrossRefGoogle ScholarPubMed
Zipursky, A., Wang, H., Brown, E. J., & Squire, J.Interphase cytogenetic analysis of in vivo differentiation in the myelodysplasia of Down syndrome. Blood, 1994; 84: 2278–82.Google ScholarPubMed
Holt, S. E., Brown, E. J., & Zipursky, A.Telomerase and the benign and malignant megakaryoblastic leukemias of Down syndrome. J Pediatr Hematol Oncol, 2002; 24: 14–17.CrossRefGoogle ScholarPubMed
Kojima, S., Sako, M., Kato, K., et al.An effective chemotherapeutic regimen for acute myeloid leukemia and myelodysplastic syndrome in children with Down's syndrome. Leukemia, 2000; 14: 786–91.CrossRefGoogle ScholarPubMed
Zeller, B., Gustafsson, G., Forestier, E., et al.Acute leukaemia in children with Down syndrome: a population-based Nordic study. Br J Haematol, 2005; 128: 797–804.CrossRefGoogle ScholarPubMed
Teigler-Schlegel, A., Baumann, I., Creutzig, U., Niemeyer, C., & Harbott, J.Acquired chromosome aberrations in children with Down syndrome and myelodysplastic syndrome or acute myeloid leukemia. Leukemia, 2000; 14: 966.Google Scholar
Trejo, R. M., Aguilera, R. P., Nieto, S., & Kofman, S.A t(1;22) (p13;q13) in four children with acute megakaryoblastic leukemia (M7), two with Down syndrome. Cancer Genet Cytogenet, 2000; 120: 160–2.CrossRefGoogle Scholar
Bunin, N., Nowell, P. C., Belasco, J., et al.Chromosome 7 abnormalities in children with Down syndrome and preleukemia. Cancer Genet Cytogenet, 1991; 54: 119–26.CrossRefGoogle ScholarPubMed
Kounami, S., Aoyagi, N., Tsuno, H., et al.Myelodysplastic syndrome after regression of transient abnormal myelopoiesis in a Down syndrome infant: different clonal origin ?Cancer Genet Cytogenet, 1998; 104: 115–18.CrossRefGoogle Scholar
Duflos-Delaplace, D., Laï, J. J., Nelken, B., et al.Transient leukemoid disorder in a newborn with Down syndrome followed 19 months later by AML: demonstration of the same structural change in both instances with clonal evolution. Cancer Genet Cytogenet, 1999; 131: 166–71.CrossRefGoogle Scholar
Lie, S. O., Jonmundsson, G., Mellander, L., et al.A population-based study of 272 children with acute myeloid leukaemia treated on two consecutive protocols with different intensity: best outcome in girls, infants, and children with Down's syndrome. Nordic Society of Paediatric Haematology and Oncology (NOPHO). Br J Haematol, 1996; 94: 82–8.CrossRefGoogle ScholarPubMed
Sl⊘rdahl, S. H., Smeland, E. B., Holte, H., et al.Leukemic blasts with markers of four cell lineages in Down's syndrome (“Megakaryoblastic leukemia”). Med Pediatr Oncol, 1993; 21: 254–8.CrossRefGoogle Scholar
Taub, J. W., Huang, X., Matherly, L. H., et al.Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood, 1999; 94: 1393–400.Google ScholarPubMed
Ge, Y., Jensen, T., James, S. J., et al.High frequency of the 844ins68 cystathionine-beta-synthase gene variant in Down syndrome children with acute myeloid leukemia. Leukemia, 2002; 16: 2339–41.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Myelodysplastic syndrome
    • By Henrik Hasle, Associate Professor, Department of Pediatrics, Skejby Hospital, Aarhus University, Aarhus, Denmark
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Myelodysplastic syndrome
    • By Henrik Hasle, Associate Professor, Department of Pediatrics, Skejby Hospital, Aarhus University, Aarhus, Denmark
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Myelodysplastic syndrome
    • By Henrik Hasle, Associate Professor, Department of Pediatrics, Skejby Hospital, Aarhus University, Aarhus, Denmark
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.022
Available formats
×