Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T04:39:22.661Z Has data issue: false hasContentIssue false

5 - Hematopoietic growth factors

from Part II - Cell biology and pathobiology

Published online by Cambridge University Press:  01 July 2010

James N. Ihle
Affiliation:
Investigator, Howard Hughes Medical Institute, Member and Chair, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Hematopoiesis is regulated through the interaction of one or more of approximately 60 hematopoietic growth factors with their cogent receptors. Over the past several years, virtually all of the biologically defined hematopoietic growth factor activities have been cloned and characterized. In addition, virtually all of the receptors for these growth factors have been cloned and extensively characterized with regard to the signal transduction pathways they activate. The availability of such information has led to a number of important generalizations that provide important insights into the evolution and biology of these growth factors. This chapter focuses on these principles and provides references to reviews that cover individual cytokines in considerably more detail than is possible here. Unfortunately, due to the isolation of hematopoietic cytokines in an environment of scant information relating to their origin and functional relationships, the cytokine nomenclature has presented the most arduous task in dealing with the field. In today's world, it has become clear that groups of cytokines are related structurally, presumably reflecting their evolutionary relationships. Indeed, cytokines are related with regard to the families of receptors that they utilize and, in turn, have many functionally similar properties (Fig. 5.1). For example, the vast majority of hematopoietic cytokines (examples include interleukin-2 and erythropoietin-3) are structurally characterized by a four α-helical bundle structure and functionally related by the utilization of receptors of the cytokine receptor superfamily.

Type
Chapter
Information
Childhood Leukemias , pp. 106 - 124
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heard, J. M., Roussel, M. F., Rettenmier, C. W., & Sherr, C. J.Multilineage hematopoietic disorders induced by transplantation of bone marrow cells expressing the v-fms oncogene. Cell, 1987; 51: 663–73.CrossRefGoogle ScholarPubMed
Socolovsky, M., Dusanter-Fourt, I., & Lodish, H. F.The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J Biol Chem, 1997; 272: 14009–12.CrossRefGoogle ScholarPubMed
Williams, D. A., Lemischka, I. R., Nathans, D. G., & Mulligan, R. C.Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature, 1984; 310: 476–80.CrossRefGoogle ScholarPubMed
Spangrude, G. J., Heimfeld, S., & Weissman, I. L.Purification and characterization of mouse hematopoietic stem cells. Science, 1988; 241: 58–62.CrossRefGoogle ScholarPubMed
Galli, S. J., Zsebo, K. M. & Geissler, E. N.The kit ligand, stem cell factor. Adv Immunol, 1994; 55: 1–96.Google ScholarPubMed
Broudy, V. C.Stem cell factor and hematopoiesis. Blood, 1997; 90: 1345–64.Google ScholarPubMed
Shalaby, F., Ho, J., Stanford, W. L., et al.A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 1997; 89: 981–90.CrossRefGoogle ScholarPubMed
Kaartinen, V., Voncken, J. W., Shuler, C., et al.Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 1995; 11: 415–21.CrossRefGoogle ScholarPubMed
Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., & Shibuya, M.Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A, 1998; 95: 9349–54.CrossRefGoogle ScholarPubMed
Mackarehtschian, K., Hardin, J. D., Moore, K. A., et al.Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity, 1995; 3: 147–61.CrossRefGoogle ScholarPubMed
Stirewalt, D. L. & Radich, J. P.The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003; 3: 650–65.CrossRefGoogle ScholarPubMed
Levis, M. & Small, D.Small molecule FLT3 tyrosine kinase inhibitors. Curr Pharm Des, 2004; 10: 1183–93.CrossRefGoogle ScholarPubMed
Heinrich, M. C.Targeting FLT3 kinase in acute myelogenous leukemia: progress, perils, and prospects. Mini Rev Med Chem, 2004; 4: 255–71.CrossRefGoogle ScholarPubMed
Voutsadakis, I. A.Flt3 in acute myelogenous leukemia: biology, prognosis, and therapeutic implications. Med Oncol, 2003; 20: 311–24.CrossRefGoogle ScholarPubMed
Ihle, J. N., Keller, J., Henderson, L., Klein, F., & Palaszynski, E. W.Procedures for the purification of interleukin-3 to homogeneity. J Immunol, 1982; 129: 2431–6.Google ScholarPubMed
Ihle, J. N. Interleukin 3: biochemistry and mechanism of action. In , M. Sporn & , A. Roberts, eds., Peptide Growth Factors and Their Receptors (New York: Springer, 1990), pp. 541–75.Google Scholar
Nishinakamura, R., Nakayama, N., Hirabayashi, Y., et al.Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity, 1995; 2: 211–22.CrossRefGoogle ScholarPubMed
Nishinakamura, R., Miyajima, A., Mee, P. J., Tybulewicz, V. L. J., & Murray, R.Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood, 1996; 88: 2458–64.Google ScholarPubMed
Eder, M., Geissler, G. & Ganser, A.IL-3 in the clinic. Stem Cells, 1997; 15: 327–33.CrossRefGoogle ScholarPubMed
Metcalf, D.The Hemopoietic Colony Stimulating Factors (Amsterdam: Elsevier, 1984).Google Scholar
Stanley, E., Lieschke, G. J., Grail, D., et al.Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A, 1994; 91: 5592–6.CrossRefGoogle ScholarPubMed
Takatsu, K., Tominaga, A., Harada, N., et al.T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol Rev, 1988; 102: 107–35.CrossRefGoogle ScholarPubMed
Krantz, S. B.Erythropoietin. Blood, 1991; 77: 419–34.Google ScholarPubMed
Zon, L. I.Developmental biology of hematopoiesis. Blood, 1995; 86: 2876–91.Google ScholarPubMed
Longmore, G. D., Pharr, P. N., & Lodish, H. F.A constitutively activated erythropoietin receptor stimulates proliferation and contributes to transformation of multipotent, committed nonerythroid and erythroid progenitor cells. Mol Cell Biol, 1994; 14: 2266–77.CrossRefGoogle ScholarPubMed
Wu, H., Liu, X., Jaenisch, R., & Lodish, H. F.Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 1995; 83: 59–67.CrossRefGoogle ScholarPubMed
Buemi, M., Cavallaro, E., Floccari, F., et al.The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol, 2003; 62: 228–36.CrossRefGoogle ScholarPubMed
de Sauvage, F. J., Hass, P. E., Spencer, S. D., et al.Stimulation of megakaryocytopoiesis and thrombopoiesis by the cMpl ligand [see comments]. Nature, 1994; 369: 533–8.CrossRefGoogle Scholar
Kaushansky, K., Lok, S., Holly, R. D., et al.Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature, 1994; 369: 568–71.CrossRefGoogle ScholarPubMed
Bartley, T. D., Bogenberger, J., Hunt, P., et al.Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor mpl. Cell, 1994; 77: 1117–24.CrossRefGoogle ScholarPubMed
Kaushansky, K.Thrombopoietin: understanding and manipulating platelet production. Annu Rev Med, 1997; 48: 1–11.CrossRefGoogle ScholarPubMed
Kaushansky, K.Thrombopoietin: in vitro predictions, in vivo realities. Am J Hematol, 1996; 53: 188–91.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Kaushansky, K.Thrombopoietin: the primary regulator of platelet production [see comments]. Blood, 1995; 86: 419–31.Google Scholar
Gurney, A. L., Carver-Moore, K., de Sauvage, F. J., & Moore, M. W.Thrombocytopenia in c-mpl-deficient mice. Science, 1994; 265: 1445–7.CrossRefGoogle ScholarPubMed
Carver-Moore, K., Broxmeyer, H. E., Luoh, S. M., et al.Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood, 1996; 88: 803–8.Google ScholarPubMed
Fielder, P. J., Gurney, A. L., Stefanich, E., et al.Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood, 1996; 87: 2154–61.Google ScholarPubMed
Stoffel, R., Wiestner, A., & Skoda, R. C.Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood, 1996; 87: 567–73.Google ScholarPubMed
McCarty, J. M., Sprugel, K. H., Fox, N. E., Sabath, D. E., & Kaushansky, K.Murine thrombopoietin mRNA levels are modulated by platelet count. Blood, 1995; 86: 3668–75.Google ScholarPubMed
Demetri, G. D. & Griffin, J. D.Granulocyte colony-stimulating factor and its receptor. Blood, 1991; 78: 2791–808.Google ScholarPubMed
Lieschke, G. J., Grail, D., Hodgson, G., et al.Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood, 1994; 84: 1737–46.Google ScholarPubMed
Liu, F., Wu, H. Y., Wesselschmidt, R., Kornaga, T., & Link, D. C.Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity, 1996; 5: 491–501.CrossRefGoogle ScholarPubMed
Lowenberg, B., Dale, D. C. & Sheridan, W. P.Clinical use of hematopoietic growth factors. Rev Invest Clin, 1994; Suppl.: 33–40.Google ScholarPubMed
Kawasaki, E. S., Ladner, M. B., Wang, A. M., et al.Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science, 1985; 230: 291–6.CrossRefGoogle Scholar
Sherr, C. J.Colony-stimulating factor-1 receptor. Blood, 1990; 75: 1–12.Google ScholarPubMed
Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W. J., et al.Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse [published erratum appears in Proc Natl Acad Sci U S A, 1991; 88: 5937]. Proc Natl Acad Sci U S A, 1990; 87: 4828–32.CrossRefGoogle Scholar
Yoshida, H., Hayashi, S., Kunisada, T., et al.The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature, 1990; 345: 442–4.CrossRefGoogle ScholarPubMed
Freeden-Jeffry, U. von, Vieria, P., Lucian, L. A., et al.Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med, 1995; 181: 1519–26.CrossRefGoogle Scholar
Murray, R., Suda, T., Wrighton, N., Lee, F., & Zlotnik, A.IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. Int Immunol, 1989; 1: 526–31.CrossRefGoogle ScholarPubMed
Smith, K. A.Interleukin-2: inception, impact, and implications. Science, 1988; 240: 1169–76.CrossRefGoogle ScholarPubMed
Schorle, H., Holtschke, T., Hunig, T., Schimpl, A., & Horak, I.Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature, 1991; 352: 621–4.CrossRefGoogle ScholarPubMed
Lee, F., Yokota, T., Otsuka, T., et al.Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci U S A, 1986; 83: 2061–5.CrossRefGoogle ScholarPubMed
Kuhn, R., Rajewsky, K., & Muller, W.Generation and analysis of interleukin-4 deficient mice. Science, 1991; 254: 707–10.CrossRefGoogle ScholarPubMed
Kopf, M., Le Gros, G., Bachmann, M., et al.Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature, 1993; 362: 245–8.CrossRefGoogle ScholarPubMed
Gordon, S.Alternative activation of macrophages. Nat Rev Immunol, 2003; 3: 23–35.CrossRefGoogle ScholarPubMed
Renauld, J.-C., Houssiau, F., Louahed, J., et al.Interleukin 9. Adv Immunol, 1993; 54: 79–97.CrossRefGoogle ScholarPubMed
Renauld, J.-C., Lugt, N. M.Vink, A., et al.Thymic lymphomas in interleukin 9 transgenic mice. Oncogene, 1994; 9: 1327–32.Google ScholarPubMed
Gruss, H.-J., Brach, M., Drexler, H.-G., Bross, K., & Herrmann, F.Interleukin 9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res, 1992; 52: 1026–31.Google ScholarPubMed
Merz, H., Houssiau, F., Orscheschek, K., et al.IL-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood, 1991; 78: 1311–17.Google ScholarPubMed
McMillan, S. J., Bishop, B., Townsend, M. J., McKenzie, A. N., & Lloyd, C. M.The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J Exp Med, 2002; 195: 51–7.CrossRefGoogle Scholar
Grabstein, K. H., Eisenman, J., Shanebeck, K., et al.Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 1994; 264: 965–8.CrossRefGoogle Scholar
Cosman, D., Kumaki, S., Ahdieh, M.et al.Interleukin 15 and its receptor. Ciba Found Symp, 1995; 195: 221–9, discussion 229–33.Google ScholarPubMed
Giri, J. G., Anderson, D. M., Kumaki, S., et al.IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol, 1995; 57: 763–6.CrossRefGoogle ScholarPubMed
Tagaya, Y., Bamford, R. N., DeFilippis, A. P., & Waldmann, T. A.IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity, 1996; 4: 329–36.CrossRefGoogle ScholarPubMed
Giri, J. G., Ahdieh, M., Eisenman, J., et al.Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J, 1994; 13: 2822.Google ScholarPubMed
Ma, A., Boone, D. L., & Lodolce, J. P.The pleiotropic functions of interleukin 15: not so interleukin-2-like after all. J Exp Med, 2000; 191: 753–6.CrossRefGoogle Scholar
Cooper, M. A., Bush, J. E., Fehniger, T. A., et al.In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood, 2002; 100: 3633–8.CrossRefGoogle ScholarPubMed
Becker, T. C., Wherry, E. J., Boone, D., et al.Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med, 2002; 195: 1541–8.CrossRefGoogle ScholarPubMed
Habib, T., Nelson, A., & Kaushansky, K.IL-21: a novel IL-2-family lymphokine that modulates B, T, and natural killer cell responses. J Allergy Clin Immunol, 2003; 112: 1033–45.CrossRefGoogle Scholar
Sivakumar, P. V., Foster, D. C., & Clegg, C. H.Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology, 2004; 112: 177–82.CrossRefGoogle ScholarPubMed
Ozaki, K., Spolski, R., Feng, C. G., et al.A critical role for IL-21 in regulating immunoglobulin production. Science, 2002; 298: 1630–4.CrossRefGoogle ScholarPubMed
Brady, J., Hayakawa, Y., Smyth, M. J., & Nutt, S. L.IL-21 induces the functional maturation of murine NK cells. J Immunol, 2004; 172: 2048–58.CrossRefGoogle ScholarPubMed
Leonard, W. J.TSLP: finally in the limelight. Nat Immunol, 2002; 3: 605–7.CrossRefGoogle ScholarPubMed
Vosshenrich, C. A., Cumano, A., Muller, W., Di Santo, J. P. & Vieira, P.Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nat Immunol, 2003; 4: 773–9.CrossRefGoogle ScholarPubMed
Carpino, N., Thierfelder, W. E., Chang, M. S., et al.Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development. Mol Cell Biol, 2004; 24: 2584–92.CrossRefGoogle ScholarPubMed
Schijns, V. E., Haagmans, B. L., Wierda, C. M., et al.Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol, 1998; 160: 3958–64.Google ScholarPubMed
Chan, S. H., Kobayashi, M., Santoli, D., Perussia, B., & Trinchieri, G.Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). J. Immunology, 1992; 148: 92–8.Google Scholar
Thierfelder, W. E., Deursen, J., Yamamoto, K., et al.Stat4 is required for IL-12 mediated responses of NK and T-cells. Nature, 1996; 382: 171–4.CrossRefGoogle Scholar
Heinrich, P. C., Behrmann, I., Haan, S., et al.Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J, 2003; 374: 1–20.CrossRefGoogle ScholarPubMed
Zhang, Y., Proenca, R., Maffei, M., et al.Positional cloning of the mouse obese gene and its human homologue [published erratum appears in Nature, 1995; 374: 479]. Nature, 1994; 372: 425–32.CrossRefGoogle Scholar
Kishimoto, T.The biology of interleukin-6. Blood, 1989; 74: 1–10.Google ScholarPubMed
Kopf, M., Baumann, H., Freer, G., et al.Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature, 1994; 368: 339–42.CrossRefGoogle ScholarPubMed
Bernad, A., Kopf, M., Kulbacki, R., et al.Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity, 1994; 1: 725–31.CrossRefGoogle ScholarPubMed
Trikha, M., Corringham, R., , Klein B., , Rossi J. F.Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res, 2003; 9: 4653–65.Google ScholarPubMed
Ito, H.Anti-interleukin-6 therapy for Crohn's disease. Curr Pharm Des, 2003; 9: 295–305.CrossRefGoogle ScholarPubMed
Yang, Y. C.Interleukin-11 (IL-11) and its receptor: biology and potential clinical applications in thrombocytopenic states. Cancer Treat Res, 1995; 80: 321–40.CrossRefGoogle ScholarPubMed
Nandurkar, H. H., Robb, L., Tarlinton, D., et al.Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood, 1997; 90: 2148–59.Google ScholarPubMed
Tanaka, M., Hirabayashi, Y., Sekiguchi, T.et al.Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood, 2003; 102: 3154–62.CrossRefGoogle ScholarPubMed
Pestka, S., Langer, J. A., Zoon, K. C., & Samuel, C. E.Interferons and their actions. Ann Rev Biochem, 1987; 56: 727–77.CrossRefGoogle ScholarPubMed
Hwang, S. Y., Hertzog, P. J., Holland, K. A., et al.A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses [published erratum appears in Proc Natl Acad Sci U S A, 1996; 93: 4519]. Proc Natl Acad Sci U S A, 1995; 92: 11284–88.CrossRefGoogle Scholar
Muller, U., Steinhoff, U., Reis, L. F., et al.Functional role of type I and type II interferons in antiviral defense. Science, 1994; 264: 1918–21.CrossRefGoogle ScholarPubMed
Ealick, S. E., Cook, W. J., Vijay-Kumar, S., et al.Three-dimensional structure of recombinant human interferon-gamma. Science, 1991; 252: 698–702.CrossRefGoogle ScholarPubMed
Farrar, M. A. & Schreiber, R. D.The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 1993; 11: 571–611.CrossRefGoogle ScholarPubMed
Dalton, D. K., Pitts-Meek, S., Keshav, S.et al.Multiple defects of immune cell function in mice with disrupted interferon-gamma genes [see comments]. Science, 1993; 259: 1739–42.CrossRefGoogle Scholar
Moore, K. W., O'Garra, A., de Waal, M. R., Vieira, P., & Mosmann, T. R.Interleukin-10. Annu Rev Immunol, 1993; 11: 165–90.CrossRefGoogle ScholarPubMed
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., & Muller, W.Interleukin-10-deficient mice develop chronic enterocolitis. Cell, 1993; 75: 263–74.CrossRefGoogle ScholarPubMed
Conti, P., Kempuraj, D., Frydas, S., et al.IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26. Immunol Lett, 2003; 88: 171–4.CrossRefGoogle ScholarPubMed
Kotenko, S. V.The family of IL-10-related cytokines and their receptors: related, but to what extent ?Cytokine Growth Factor Rev, 2002; 13: 223–40.CrossRefGoogle ScholarPubMed
Moser, B., Wolf, M., Walz, A., & Loetscher, P.Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 2004; 25: 75–84.CrossRefGoogle ScholarPubMed
Laing, K. J. & Secombes, C. J.Chemokines. Dev Comp Immunol, 2004; 28: 443–60.CrossRefGoogle ScholarPubMed
Nagasawa, T., Hirota, S., Tachibana, K., et al.Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 1996; 382: 635–8.CrossRefGoogle ScholarPubMed
Cook, D. N.The role of MIP-1 alpha in inflammation and hematopoiesis. J Leukoc Biol, 1996; 59: 61–6.CrossRefGoogle ScholarPubMed
Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D., & Leder, P.Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med, 1997; 185: 785–90.CrossRefGoogle ScholarPubMed
Gao, J. L., Wynn, T. A., Chang, Y., et al.Impaired host defense, hematopoiesis, granulomatous inflammation and type 1–type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med, 1997; 185: 1959–68.CrossRefGoogle ScholarPubMed
Kurihara, T., Warr, G., Loy, J., & Bravo, R.Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med, 1997; 186: 1757–62.CrossRefGoogle ScholarPubMed
Horuk, R., Chitnis, C. E., Darbonne, W. C., et al.A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science, 1993; 261: 1182–4.CrossRefGoogle ScholarPubMed
Tournamille, C., Colin, Y., Cartron, J. P., & Kim, C.. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet, 1995; 10: 224–8.CrossRefGoogle ScholarPubMed
De Caestecker, M.The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev, 2004; 15: 1–11.CrossRefGoogle ScholarPubMed
Shull, M. M., Ormsby, I., Kier, A. B., et al.Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 1992; 359: 693–9.CrossRefGoogle ScholarPubMed
Kim, S. J. & Letterio, J.Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia, 2003; 17: 1731–7.CrossRefGoogle ScholarPubMed
Sanford, L. P., Ormsby, I., Gittenberger-de Groot, A. C., et al.TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development, 1997; 124: 2659–70.Google ScholarPubMed
Proetzel, G., Pawlowski, S. A., Wiles, M. V., et al.Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 1995; 11: 409–14.CrossRefGoogle ScholarPubMed
Chang, H., Lau, A. L., & Matzuk, M. M.Studying TGF-beta superfamily signaling by knockouts and knockins. Mol Cell Endocrinol, 2001; 180: 39–46.CrossRefGoogle ScholarPubMed
Radtke, F., Wilson, A., Mancini, S. J., & MacDonald, H. R.Notch regulation of lymphocyte development and function. Nat Immunol, 2004; 5: 247–53.CrossRefGoogle ScholarPubMed
Maillard, I., Adler, S. H., & Pear, W. S.Notch and the immune system. Immunity, 2003; 19: 781–91.CrossRefGoogle ScholarPubMed
Saito, T., Chiba, S., Ichikawa, M., et al.Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity, 2003; 18: 675–85.CrossRefGoogle ScholarPubMed
Hozumi, K., Negishi, N., Suzuki, D., et al.Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol, 2004; 5: 638–44.CrossRefGoogle Scholar
Gaur, U. & Aggarwal, B. B.Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol, 2003; 66: 1403–8.CrossRefGoogle ScholarPubMed
Nagata, S. & Golstein, P.The fas death factor. Science, 1995; 267: 1449–56.CrossRefGoogle ScholarPubMed
Fisher, G. H., Rosenberg, F. J., Straus, S. E., et al.Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell, 1995; 81: 935–46.CrossRefGoogle Scholar
Rieux-Laucat, F., Deist, F., Hivroz, C., et al.Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science, 1995; 268: 1347–9.CrossRefGoogle ScholarPubMed
Grewai, I. S., Xu, J., & Flavell, R. A.Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature, 1995; 378: 617–20.CrossRefGoogle Scholar
Noelle, R. J.CD40 and its ligand in host defense. Immunity, 1996; 4: 415–19.CrossRefGoogle ScholarPubMed
Essen, D., Kikutani, H., & Gray, D.CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature, 1995; 378: 620–3.CrossRefGoogle ScholarPubMed
Pfeffer, K., Matsuyama, T., Kundig, T. M., et al.Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succum to L. monocytogenes infection. Cell, 1993; 73: 457–67.CrossRefGoogle Scholar
Rothe, J., Lesslauer, W., Lotscher, H., et al.Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature, 1993; 364: 798–802.CrossRefGoogle ScholarPubMed
Togni, P., Goellner, J., Ruddle, N. H., et al.Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin [see comments]. Science, 1994; 264: 703–7.CrossRefGoogle Scholar
Dinarello, C. A.Interleukin-1 and interleukin-1 antagonism. Blood, 1991; 77: 1627–52.Google ScholarPubMed
Dinarello, C. A.Biologic basis for interleukin-1 in disease. Blood, 1996; 87: 2095–147.Google Scholar
Li, P., Allen, H., Banerjee, S., et al.Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell, 1995; 80: 401–11.CrossRefGoogle Scholar
Zheng, H., Fletcher, D., Kozak, W., et al.Resistance to fever induction and impaired acute-phase response in interleukin-1 beta-deficient mice. Immunity, 1995; 3: 9–19.CrossRefGoogle ScholarPubMed
Horai, R., Asano, M., Sudo, K., et al.Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion. J Exp Med, 1998; 187: 1463–75.CrossRefGoogle ScholarPubMed
Stoll, S., Muller, G., Kurimoto, M., et al.Production of IL-18 (IFN-gamma-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol, 1997; 159: 298–302.Google ScholarPubMed
Okamura, H., Tsutsui, M., Komatsu, T., et al.Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 1995; 378: 88–91.CrossRefGoogle ScholarPubMed
Takeda, K., Tsutsui, H., Yoshimoto, T., et al.Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity, 1998; 8: 383–90.CrossRefGoogle ScholarPubMed
Peritt, D., Aste-Amezaga, M., Gerosa, F., Paganin, C., & Trinchieri, G.Interleukin-10 induction by IL-12: a possible modulatory mechanism ?Ann N Y Acad Sci, 1996; 795: 387–9.CrossRefGoogle ScholarPubMed
Yao, Z., Painter, S. L., Fanslow, W. C., et al.Human IL-17: a novel cytokine derived from T cells. J Immunol, 1995; 155: 5483–6.Google ScholarPubMed
Yao, Z., Fanslow, W. C., Seldin, M. F., et al.Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 1995; 3: 811–21.CrossRefGoogle ScholarPubMed
Zhou, P., Goldstein, S., Devadas, K., Tewari, D., & Notkins, A. L.Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nat Med 1997; 3: 659–64.CrossRefGoogle ScholarPubMed
Maciaszek, J. W., Parada, N. A., Cruikshank, W. W., et al.IL-16 represses HIV-1 promoter activity. J Immunol, 1997; 158: 5–8.Google ScholarPubMed
Baier, M., Bannert, N., Werner, A., Lang, K., & Kurth, R.Molecular cloning, sequence, expression, and processing of the interleukin 16 precursor. Proc Natl Acad Sci U S A, 1997; 94: 5273–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hematopoietic growth factors
    • By James N. Ihle, Investigator, Howard Hughes Medical Institute, Member and Chair, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hematopoietic growth factors
    • By James N. Ihle, Investigator, Howard Hughes Medical Institute, Member and Chair, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hematopoietic growth factors
    • By James N. Ihle, Investigator, Howard Hughes Medical Institute, Member and Chair, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.006
Available formats
×