Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T06:04:49.228Z Has data issue: false hasContentIssue false

2 - Diagnosis and classification

from Part I - History and general issues

Published online by Cambridge University Press:  01 July 2010

Mihaela Onciu
Affiliation:
Assistant Member Department of Pathology
Ching-Hon Pui
Affiliation:
Director Hematology and Special Hematology Laboratories
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Precise diagnosis and classification are essential to the successful treatment and biologic study of the childhood leukemias. In broadest terms, the leukemias are classified as acute versus chronic and as lymphoid versus myeloid. The terms acute and chronic originally referred to the relative durations of survival of patients with these diseases when effective therapy was not available. With improvements in treatment, they have taken on new meanings. Acute currently refers to leukemia characterized by rapid tumor cell proliferation and a predominance of blast cells, while chronic leukemia encompasses a variety of myeloproliferative and lymphoproliferative disorders in which the predominant tumor cells show variable degrees of differentiation beyond the blast stage. The vast majority of childhood leukemia cases are acute, unlike those in adults. The most common subtype, acute lymphoblastic (also termed lymphocytic or lymphoid) leukemia (ALL) accounts for 75% to 80% of all childhood cases, while acute myeloid (also termed myelocytic, myelogenous, or nonlymphoblastic) leukemia (AML) comprises approximately 20%. By contrast, chronic myeloid leukemia (CML) represents only approximately 2% of childhood leukemias and chronic lymphocytic leukemia (CLL) is reported only rarely in children. Finally, myelodysplastic syndrome (MDS) designates a heterogeneous group of clonal diseases related to a subset of AML. MDS is characterized by peripheral blood cytopenias, normocellular or hypercellular but nonproductive bone marrow (inefficient hematopoiesis), and dysmorphic maturation of hematopoietic precursors. It may evolve into frank AML or result in death due to cytopenic complications.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miller, R. W., Young, J. L. Jr., & Novakovic, B.Childhood cancer. Cancer, 1995; 75: 395–405.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Hasle, H., Niemeyer, C. M., Chessells, J. M., et al.A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia, 2003; 17: 277–2.CrossRefGoogle ScholarPubMed
Casey, T. P.Chronic lymphocytic leukaemia in a child presenting at the age of two years and eight months. Australas Ann Med, 1968; 17: 70–4.CrossRefGoogle Scholar
Sardemann, H.Chronic lymphocytic leukemia in an infant. Acta Paediatr Scand, 1972; 61, 213–6.CrossRefGoogle ScholarPubMed
Sonnier, J. A., Buchanan, G. R., Howard-Peebles, P. N., Rutledge, J., & Smith, R. G.Chromosomal translocation involving the immunoglobulin kappa-chain and heavy-chain loci in a child with chronic lymphocytic leukemia. N Engl J Med, 1983; 309: 590–4.CrossRefGoogle Scholar
Yoffe, G., Howard-Peebles, P. N., Smith, R. G., Tucker, P. W., & Buchanan, G. R.Childhood chronic lymphocytic leukemia with (2;14) translocation. J Pediatr, 1990; 116: 114–7.CrossRefGoogle ScholarPubMed
Gajjar, A., Ribeiro, R., Hancock, M. L., et al.Persistence of circulating blasts after 1 week of multiagent chemotherapy confers a poor prognosis in childhood acute lymphoblastic leukemia. Blood, 1995; 86: 1292–5.Google ScholarPubMed
Ellis, L. D., Johnson, B. J., & Westerman, M. P.Needle biopsy of bone and marrow: an experience with 1,445 biopsies. Arch Intern Med, 1964; 114: 213–21.CrossRefGoogle ScholarPubMed
Jamshidi, K. & Swaim, W. R.Bone marrow biopsy with unaltered architecture: a new biopsy device. J Lab Clin Med, 1971; 77: 335–42.Google ScholarPubMed
Goldenberg, A. S. & Tiesinga, J. J.Clinical experience with a new specimen capturing bone marrow biopsy needle. Am J Hematol, 2001; 68: 189–93.CrossRefGoogle ScholarPubMed
Aboul-Nasr, R., Estey, E. H., Kantarjian, H. M., et al.Comparison of touch imprints with aspirate smears for evaluating bone marrow specimens. Am J Clin Pathol, 1999; 111: 753–8.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-operative Group. Br J Haematol, 1976; 33: 451–8.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 620–5.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumours. Tumours of Haematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).Google Scholar
Vardiman, J. W., Harris, N. L., & Brunning, R. D.The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002; 100: 2292–302.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.The morphological classification of acute lymphoblastic leukaemia: concordance among observers and clinical correlations. Br J Haematol, 1981; 47: 553–61.CrossRefGoogle ScholarPubMed
Lilleyman, J. S., Hann, I. M., Stevens, R. F., Richards, S. M., & Eden, O. B.Blast cell vacuoles in childhood lymphoblastic leukaemia. Br J Haematol, 1988; 70: 183–6.CrossRefGoogle ScholarPubMed
Lilleyman, J. S., Hann, I. M., Stevens, R. F., et al.Cytomorphology of childhood lymphoblastic leukaemia: a prospective study of 2000 patients. United Kingdom Medical Research Council's Working Party on Childhood Leukaemia. Br J Haematol, 1992; 81: 52–7.CrossRefGoogle ScholarPubMed
Potter, V. P., Sorell, M., Baglivo, J. A., Sather, H., & Miller, D. R.Prognostic significance of vacuoles in L1 lymphoblasts in childhood acute lymphoblastic leukaemia: a report from Children's Cancer Study Group. Br J Haematol, 1984; 56: 215–22.CrossRefGoogle ScholarPubMed
Cantu-Rajnoldi, A., Invernizzi, R., Biondi, A., et al.Biological and clinical features of acute lymphoblastic leukaemia with cytoplasmic granules or inclusions: description of eight cases. Br J Haematol, 1989; 73: 309–14.CrossRefGoogle ScholarPubMed
Cerezo, L., Shuster, J. J., Pullen, D. J., et al.Laboratory correlates and prognostic significance of granular acute lymphoblastic leukemia in children. A Pediatric Oncology Group study. Am J Clin Pathol, 1991; 95: 526–31.CrossRefGoogle ScholarPubMed
Darbyshire, P. J. & Lilleyman, J. S.Granular acute lymphoblastic leukaemia of childhood: a morphological phenomenon. J Clin Pathol, 1987; 40: 251–3.CrossRefGoogle ScholarPubMed
Stein, P., Peiper, S., Butler, D., et al.Granular acute lymphoblastic leukemia. Am J Clin Pathol, 1983; 79: 426–30.CrossRefGoogle ScholarPubMed
Miller, D. R., Steinherz, P. G., Feuer, D., Sather, H., & Hammond, D.Unfavorable prognostic significance of hand mirror cells in childhood acute lymphoblastic leukemia. A report from the childrens Cancer Study Group. Am J Dis Child, 1983; 137: 346–50.CrossRefGoogle ScholarPubMed
Schumacher, H. R., Champion, J. E., Thomas, W. J., Pitts, L. L., & Stass, S. A.Acute lymphoblastic leukemia – hand mirror variant. An analysis of a large group of patients. Am J Hematol, 1979; 7: 11–17.CrossRefGoogle ScholarPubMed
Sjogren, U. & Garwicz, S.Prognostic significance of amoeboid movement configuration in lymphoid cells from children with acute lymphoblastic leukaemia. Scand J Haematol, 1980; 24: 335–9.CrossRefGoogle ScholarPubMed
Hayhoe, F. G., Quaglino, D., & Flemans, R. J.Consecutive use of Romanowsky and periodic-acid-Schiff techniques in the study of blood and bone marrow cells. Br J Haematol, 1960; 6: 23–5.CrossRefGoogle Scholar
Kowal-Vern, A., Cotelingam, J., & Schumacher, H. R.The prognostic significance of proerythroblasts in acute erythroleukemia. Am J Clin Pathol, 1992; 98: 34–40.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 460–2.CrossRefGoogle Scholar
Huang, M. J., Li, C. Y., Nichols, W. L., Young, J. H., & Katzmann, J. A.Acute leukemia with megakaryocytic differentiation: a study of 12 cases identified immunocytochemically. Blood, 1984; 64: 427–39.Google ScholarPubMed
Penchansky, L., Taylor, S. R., & Krause, J. R.Three infants with acute megakaryoblastic leukemia simulating metastatic tumor. Cancer, 1989; 64: 1366–71.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Pui, C. H., Rivera, G., Mirro, J., et al.Acute megakaryoblastic leukemia. Blast cell aggregates simulating metastatic tumor. Arch Pathol Lab Med, 1985; 109: 1033–5.Google ScholarPubMed
Head, D. R., Cerezo, L., Savage, R. A., et al.Institutional performance in application of the FAB classification of acute leukemia. The Southwest Oncology Group experience. Cancer, 1985; 55: 1979–86.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Hanker, J. S., Ambrose, W. W., James, C. J., et al.Facilitated light microscopic cytochemical diagnosis of acute myelogenous leukemia. Cancer Res, 1979; 39: 1635–9.Google ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol, 1991; 78: 325–9.CrossRefGoogle Scholar
Venditti, A., Del Poeta, G., Stasi, R., et al.Minimally differentiated acute myeloid leukaemia (AML-M0): cytochemical, immunophenotypic and cytogenetic analysis of 19 cases. Br J Haematol, 1994; 88: 784–93.CrossRefGoogle ScholarPubMed
Charak, B. S., Advani, S. H., Karandikar, S. M., et al.Sudan black B positivity in acute lymphoblastic leukemia. Acta Haematol, 1988; 80: 199–202.CrossRefGoogle ScholarPubMed
Stass, S. A., Pui, C. H., Melvin, S., et al.Sudan black B positive acute lymphoblastic leukaemia. Br J Haematol, 1984; 57: 413–21.CrossRefGoogle ScholarPubMed
Tricot, G., Orshoven, Broeckaert-Van A., Hoof, A. Van, & Verwilghen, R. L.Sudan Black B positivity in acute lymphoblastic leukaemia. Br J Haematol, 1982; 51: 615–21.CrossRefGoogle ScholarPubMed
Li, C. Y., Lam, K. W., & Yam, L. T.Esterases in human leukocytes. J Histochem Cytochem, 1973; 21: 1–12.CrossRefGoogle ScholarPubMed
Koike, T.Megakaryoblastic leukemia: the characterization and identification of megakaryoblasts. Blood, 1984; 64: 683–92.Google ScholarPubMed
Peterson, B. A. & Levine, E. G.Uncommon subtypes of acute nonlymphocytic leukemia: clinical features and management of FAB M5, M6 and M7. Semin Oncol, 1987; 14: 425–34.Google ScholarPubMed
Oliveira, Pombo M. S., Gregory, C., Matutes, E., Parreira, A., & Catovsky, D.Cytochemical profile of megakaryoblastic leukaemia: a study with cytochemical methods, monoclonal antibodies, and ultrastructural cytochemistry. J Clin Pathol, 1987; 40: 663–9.CrossRefGoogle Scholar
Pui, C. H., Williams, D. L., Scarborough, V., et al.Acute megakaryoblastic leukaemia associated with intrinsic platelet dysfunction and constitution ring 21 chromosome in a young boy. Br J Haematol, 1982; 50: 191–200.CrossRefGoogle Scholar
Ribeiro, R. C., Oliveira, M. S., Fairclough, D., et al.Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases. Leuk Lymphoma, 1993; 10: 299–306.CrossRefGoogle ScholarPubMed
Yam, L. T., Li, C. Y., & Crosby, W. H.Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol, 1971; 55: 283–90.CrossRefGoogle ScholarPubMed
Neiman, R. S., Barcos, M., Berard, C., et al.Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer, 1981; 48: 1426–37.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Keifer, J., Abromowitch, M., & Stass, S. A.Chloroacetate esterase positivity in acute lymphoblastic leukemia. Am J Clin Pathol, 1985; 83: 647–9.CrossRefGoogle ScholarPubMed
Bennett, J. M. & Dutcher, T. F.The cytochemistry of acute leukemia: observations on glycogen and neutral fat in bone marrow aspirates. Blood, 1969; 33: 341–7.Google ScholarPubMed
Hayhoe, F. G. J. & Cawley, J. C.Acute leukemia:cellular morphology, cytochemistry and fine structure. Clin Haematol, 1972; 1: 49–94.CrossRefGoogle Scholar
Snower, D. P., Smith, B. R., Munz, U. J., & McPhedran, P.Reevaluation of the periodic acid-Schiff stain in acute leukemia with immunophenotypic analyses. Arch Pathol Lab Med, 1991; 115: 346–50.Google ScholarPubMed
Quaglino, D. & Hayhoe, F. G.Periodic-acid-Schiff positivity in erythroblasts with special reference to Di Guglielmo's disease. Br J Haematol, 1960; 6: 26–33.CrossRefGoogle ScholarPubMed
Skinnider, L. F. & Ghadially, F. N.Glycogen in erythroid cells. Arch Pathol, 1973; 95: 139–41.Google ScholarPubMed
Catovsky, D., Cherchi, M., Greaves, M. F., et al.Acid-phosphatase reaction in acute lymphoblastic leukaemia. Lancet, 1978; 1: 749–51.CrossRefGoogle ScholarPubMed
Head, D. R., Borowitz, M., Cerezo, L., et al.Acid phosphatase positivity in childhood acute lymphocytic leukemia. Am J Clin Pathol, 1986; 86: 650–3.CrossRefGoogle ScholarPubMed
Morphologic, immunologic, and cytogenetic (MIC) working classification of acute lymphoblastic leukemias. Report of the workshop held in Leuven, Belgium, April 22–23, 1985. First MIC Cooperative Study Group. Cancer Genet Cytogenet, 1986; 23: 189–97.
Morphologic, immunologic and cytogenetic (MIC) working classification of the acute myeloid leukaemias. Second MIC Cooperative Study Group. Br J Haematol, 1988; 68: 487–94.
Cline, M. J.The molecular basis of leukemia. N Engl J Med, 1994; 330: 328–36.Google ScholarPubMed
Kersey, J., Nesbit, M., Hallgren, H., et al.Evidence for origin of certain childhood acute lymphoblastic leukemias and lymphomas in thymus-derived lymphocytes. Cancer, 1975; 36: 1348–52.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Look, A. T.Oncogenic transcription factors in the human acute leukemias. Science, 1997; 278: 1059–64.CrossRefGoogle ScholarPubMed
Pui, C. H., Raimondi, S. C., Dodge, R. K., et al.Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (greater than 50 chromosomes) acute lymphoblastic leukemia. Blood, 1989; 73: 1963–7.Google ScholarPubMed
Pui, C. H., Behm, F. G., Singh, B., et al.Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990; 75: 174–9.Google ScholarPubMed
Pui, C. H., Behm, F. G., & Crist, W. M.Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 343–62.Google ScholarPubMed
Rubin, C. M., Le Beau, M. M., Mick, R., et al.Impact of chromosomal translocations on prognosis in childhood acute lymphoblastic leukemia. J Clin Oncol, 1991; 9: 2183–92.CrossRefGoogle ScholarPubMed
Secker-Walker, L. M., Lawler, S. D., & Hardisty, R. M.Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. Br Med J, 1978; 2: 1529–30.CrossRefGoogle ScholarPubMed
Sen, L. & Borella, L.Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N Engl J Med, 1975; 292: 828–32.CrossRefGoogle Scholar
Trueworthy, R., Shuster, J., Look, T., et al.Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 606–13.CrossRefGoogle ScholarPubMed
Williams, D. L., Tsiatis, A., Brodeur, G. M., et al.Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood, 1982; 60: 864–71.Google ScholarPubMed
Dyment, P. G., Savage, R. A., & McMahon, J. T.Anomalous azurophilic granules in acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol, 1982; 4: 207–11.Google ScholarPubMed
Hecht, J. L. & Aster, J. C.Molecular biology of Burkitt's lymphoma. J Clin Oncol, 2000; 18: 3707–21.CrossRefGoogle ScholarPubMed
Bene, M. C., Castoldi, G., Knapp, W., et al.Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia, 1995; 9: 1783–6.Google Scholar
Brouet, J. C. & Seligmann, M.The immunological classification of acute lymphoblastic leukemias. Cancer, 1978; 42: 817–27.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Campana, D., Dongen, J. J., Mehta, A., et al.Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood, 1991; 77: 1546–54.Google ScholarPubMed
Rothe, G. & Schmitz, G.Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia, 1996; 10: 877–95.Google Scholar
Drexler, H. G., Thiel, E., & Ludwig, W. D.Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia. Leukemia, 1991; 5: 637–45.Google ScholarPubMed
Fink, F. M., Koller, U., Mayer, H., et al.Prognostic significance of myeloid-associated antigen expression on blast cells in children with acute lymphoblastic leukemia. The Austrian Pediatric Oncology Group. Med Pediatr Oncol, 1993; 21: 340–6.CrossRefGoogle ScholarPubMed
Kurec, A. S., Belair, P., Stefanu, C., et al.Significance of aberrant immunophenotypes in childhood acute lymphoid leukemia. Cancer, 1991; 67: 3081–6.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Pui, C. H., Behm, F. G., Singh, B., et al.Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. Blood, 1990; 75: 198–202.Google ScholarPubMed
Uckun, F. M., Nachman, J. B., Sather, H. N., et al.Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children's Cancer Group. Cancer, 1998; 83: 2030–9.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Pui, C. H., Rubnitz, J. E., Hancock, M. L., et al.Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol, 1998; 16: 3768–73.CrossRefGoogle ScholarPubMed
Putti, M. C., Rondelli, R., Cocito, M. G., et al.Expression of myeloid markers lacks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP-ALL 88–91 studies. Blood, 1998; 92: 795–801.Google ScholarPubMed
Pui, C. H.Acute lymphoblastic leukemia in children. Curr Opin Oncol, 2000; 12: 3–12.CrossRefGoogle ScholarPubMed
Pui, C. H., Campana, D., & Evans, W. E.Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol, 2001; 2: 597–607.CrossRefGoogle ScholarPubMed
Ferrando, A. A. & Look, A. T.Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol, 2000; 37: 381–95.CrossRefGoogle ScholarPubMed
Harrison, C. J., Martineau, M., & Secker-Walker, L. M.The Leukaemia Research Fund/United Kingdom Cancer Cytogenetics Group Karyotype Database in acute lymphoblastic leukaemia: a valuable resource for patient management. Br J Haematol, 2001; 113: 3–10.CrossRefGoogle ScholarPubMed
Recommendations for a morphologic, immunologic, and cytogenetic (MIC) working classification of the primary and therapy-related myelodysplastic disorders. Report of the workshop held in Scottsdale, Arizona, USA, on February 23–25, 1987. Third MIC Cooperative Study Group. Cancer Genet Cytogenet, 1988; 32: 1–10.
Harrison, C. J.The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev, 2001; 15: 49–59.CrossRefGoogle ScholarPubMed
Pui, C. H., Williams, D. L., Raimondi, S. C., et al.Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood, 1987; 70: 247–53.Google ScholarPubMed
Pui, C. H., Williams, D. L., Roberson, P. K., et al.Correlation of karyotype and immunophenotype in childhood acute lymphoblastic leukemia. J Clin Oncol, 1988; 6: 56–61.CrossRefGoogle ScholarPubMed
Pui, C. H., Carroll, A. J., Head, D., et al.Near-triploid and near-tetraploid acute lymphoblastic leukemia of childhood. Blood, 1990; 76: 590–6.Google ScholarPubMed
Pui, C. H., Carroll, A. J., Raimondi, S. C., et al.Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood, 1990; 75: 1170–7.Google ScholarPubMed
Raimondi, S. C., Pui, C. H., Hancock, M. L., et al.Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 213–24.Google ScholarPubMed
Secker-Walker, L. M., Chessells, J. M., Stewart, E. L., et al.Chromosomes and other prognostic factors in acute lymphoblastic leukaemia: a long-term follow-up. Br J Haematol, 1989; 72: 336–42.CrossRefGoogle ScholarPubMed
Heerema, N. A., Nachman, J. B., Sather, H. N., et al.Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 1999; 94: 4036–45.Google ScholarPubMed
Look, A. T., Melvin, S. L., Williams, D. L., et al.Aneuploidy and percentage of S-phase cells determined by flow cytometry correlate with cell phenotype in childhood acute leukemia. Blood, 1982; 60: 959–67.Google ScholarPubMed
Look, A. T., Roberson, P. K., Williams, D. L., et al.Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood, 1985; 65: 1079–86.Google ScholarPubMed
Ito, C., Kumagai, M., Manabe, A., et al.Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood, 1999; 93: 315–20.Google ScholarPubMed
Pui, C. H., Crist, W. M., & Look, A. T.Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood, 1990; 76: 1449–63.Google ScholarPubMed
Rubnitz, J. E., Downing, J. R., Pui, C. H., et al.TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol, 1997; 15: 1150–7.CrossRefGoogle ScholarPubMed
Shurtleff, S. A., Buijs, A., Behm, F. G., et al.TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.Google Scholar
Filatov, L. F., Behm, F. G., & Pui, C. H.Childhood acute lymphoblastic leukemias with equivocal chromosome markers of the t(1;19) translocation. Genes Chromosom Cancer, 1995; 13: 99–103.CrossRefGoogle Scholar
Privitera, E., Kamps, M. P., Hayashi, Y., et al.Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood, 1992; 79: 1781–8.Google ScholarPubMed
Pui, C. H., Raimondi, S. C., Hancock, M. L., et al.Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.CrossRefGoogle ScholarPubMed
Rieder, H., Kolbus, U., Koop, U., et al.Translocation t(1;22) mimicking t(1;19) in a child with acute lymphoblastic leukemia as revealed by chromosome painting. Leukemia, 1993; 7: 1663–6.Google Scholar
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al.Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 87: 2870–7.Google ScholarPubMed
Raimondi, S. C., Frestedt, J. L., Pui, C. H., et al.Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11)(p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood, 1995; 86: 1881–6.Google ScholarPubMed
Loh, M. L. & Rubnitz, J. E.TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol, 2002; 9: 345–52.CrossRefGoogle ScholarPubMed
Romana, S. P., Poirel, H., Leconiat, M., et al.High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood, 1995; 86: 4263–9.Google Scholar
Romana, S. P., Le Coniat, M., & Berger, R.t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer, 1994; 9: 186–91.CrossRefGoogle Scholar
Baruchel, A., Cayuela, J. M., Ballerini, P., et al.The majority of myeloid-antigen-positive (My+) childhood B-cell precursor acute lymphoblastic leukaemias express TEL-AML1 fusion transcripts. Br J Haematol, 1997; 99: 101–6.CrossRefGoogle ScholarPubMed
Weir, E. G. & Borowitz, M. J.Flow cytometry in the diagnosis of acute leukemia. Semin Hematol, 2001; 38: 124–38.CrossRefGoogle Scholar
Ramakers-van Woerden, N. L., Pieters, R., Loonen, A. H., et al.TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 1094–9.Google ScholarPubMed
Hunger, S. P., Galili, N., Carroll, A. J., et al.The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood, 1991; 77: 687–93.Google Scholar
Izraeli, S., Henn, T., Strobl, H., et al.Expression of identical E2A/PBX1 fusion transcripts occurs in both pre-B and early pre-B immunological subtypes of childhood acute lymphoblastic leukemia. Leukemia, 1993; 7: 2054–6.Google ScholarPubMed
Arico, M., Valsecchi, M. G., Camitta, B., et al.Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.CrossRefGoogle ScholarPubMed
Silva, M. L., Fernandez, T. S., de Souza, M. H., et al.M-BCR rearrangement in a case of T-cell childhood acute lymphoblastic leukemia. Med Pediatr Oncol, 1999; 32: 455–63.0.CO;2-S>CrossRefGoogle Scholar
Ribeiro, R. C., Abromowitch, M., Raimondi, S. C., et al.Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood, 1987; 70: 948–53.Google ScholarPubMed
Borkhardt, A., Wuchter, C., Viehmann, S., et al.Infant acute lymphoblastic leukemia – combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia, 2002; 16: 1685–90.CrossRefGoogle ScholarPubMed
Chessells, J. M., Harrison, C. J., Watson, S. L., Vora, A. J., & Richards, S. M.Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br J Haematol, 2002; 117: 306–14.CrossRefGoogle ScholarPubMed
Chessells, J. M., Harrison, C. J., Kempski, H., et al.Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia, 2002; 16: 776–84.CrossRefGoogle ScholarPubMed
Heerema, N. A., Sather, H. N., Ge, J., et al.Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia, 1999; 13: 679–86.CrossRefGoogle Scholar
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al.Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.CrossRefGoogle ScholarPubMed
Hilden, J. M., Smith, F. O., Frestedt, J. L., et al.MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood, 1997; 89: 3801–5.Google ScholarPubMed
Smith, F. O., Rauch, C., Williams, D. E., et al.The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23. Blood, 1996; 87: 1123–33.Google Scholar
Pieters, R., den Boer, M. L., Durian, M., et al.Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia, 1998; 12: 1344–8.CrossRefGoogle ScholarPubMed
Stam, R. W., Boer, M. L., Meijerink, J. P., et al.Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood, 2003; 101: 1270–6.CrossRefGoogle ScholarPubMed
Schneider, N. R., Carroll, A. J., Shuster, J. J., et al.New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood, 2000; 96: 2543–9.Google ScholarPubMed
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al.HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood, 2002; 100: 991–7.CrossRefGoogle ScholarPubMed
Ferrando, A. A., Neuberg, D. S., Staunton, J., et al.Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 2002; 1: 75–87.CrossRefGoogle ScholarPubMed
Ulich, T. R., del Castillo, J., Yin, S. M., & Egrie, J. C.The erythropoietic effects of interleukin 6 and erythropoietin in vivo. Exp Hematol, 1991; 19: 29–34.Google ScholarPubMed
Kotylo, P. K., Seo, I. S., Smith, F. O., et al.Flow cytometric immunophenotypic characterization of pediatric and adult minimally differentiated acute myeloid leukemia (AML-M0). Am J Clin Pathol, 2000; 113: 193–200.CrossRefGoogle Scholar
Roumier, C., Eclache, V., Imbert, M., et al.M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2003; 101: 1277–83.CrossRefGoogle Scholar
Arber, D. A., Stein, A. S., Carter, N. H., et al.Prognostic impact of acute myeloid leukemia classification. Importance of detection of recurring cytogenetic abnormalities and multilineage dysplasia on survival. Am J Clin Pathol 2003; 119: 672–80.CrossRefGoogle ScholarPubMed
Cantu-Rajnoldi, A., Biondi, A., Jankovic, M., et al.Diagnosis and incidence of acute promyelocytic leukemia (FAB M3 and M3 variant) in childhood. Blood, 1993; 81: 2209–10.Google Scholar
Chan, K. W., Steinherz, P. G., & Miller, D. R.Acute promyelocytic leukemia in children. Med Pediatr Oncol, 1981; 9: 5–15.CrossRefGoogle ScholarPubMed
Rovelli, A., Biondi, A., Cantu, R. A., et al.Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol, 1992; 10: 1413–18.CrossRefGoogle ScholarPubMed
Biondi, A., Rovelli, A., Cantu-Rajnoldi, A., et al.Acute promyelocytic leukemia in children: experience of the Italian Pediatric Hematology and Oncology Group (AIEOP). Leukemia, 1994; 8: 1264–8.Google Scholar
Biondi, A., Luciano, A., Bassan, R., et al.CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia, 1995; 9: 1461–6.Google Scholar
Guglielmi, C., Martelli, M. P., Diverio, D., et al.Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol, 1998; 102: 1035–41.CrossRefGoogle ScholarPubMed
Falini, B., Flenghi, L., Fagioli, M., et al.Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood, 1997; 90: 4046–53.Google Scholar
Chen, Z., Brand, N. J., Chen, A., et al.Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J, 1993; 12: 1161–7.Google Scholar
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Hypergranular promyelocytic leukemia: correlation between morphology and chromosomal translocations including t(15;17) and t(11;17). Leukemia, 2000; 14: 1197–200.CrossRefGoogle Scholar
Sainty, D., Liso, V., Cantu-Rajnoldi, A., et al. on behalf of Group Français d'Haematologie Cellulaire, Group Francais de Cytogenetique Hematologique, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood, 2000; 96: 1287–96.Google Scholar
Baer, M. R., Stewart, C. C., Lawrence, D., et al.Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry. Leukemia, 1998; 12: 317–25.CrossRefGoogle ScholarPubMed
Malkin, D. & Freedman, M. H.Childhood erythroleukemia: review of clinical and biological features. Am J Pediatr Hematol Oncol, 1989; 11: 348–59.Google ScholarPubMed
Mirchandani, I. & Palutke, M.Acute megakaryoblastic leukemia. Cancer, 1982; 50: 2866–72.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Dastugue, N., Lafage-Pochitaloff, M., Pages, M. P., et al.Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2002; 100: 618–26.CrossRefGoogle Scholar
Athale, U. H., Razzouk, B. I., Raimondi, S. C., et al.Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood, 2001; 97: 3727–32.CrossRefGoogle ScholarPubMed
Byrd, J. C., Dodge, R. K., Carroll, A., et al.Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol, 1999; 17: 3767–75.CrossRefGoogle Scholar
Grimwade, D., Walker, H., Oliver, F., et al.The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 1998; 92: 2322–33.Google ScholarPubMed
Raimondi, S. C., Chang, M. N., Ravindranath, Y., et al.Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood, 1999; 94: 3707–16.Google Scholar
Rubnitz, J. E., Raimondi, S. C., Hall, S., et al.Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia, 2002; 16: 2072–7.CrossRefGoogle Scholar
Felice, M. S., Zubizarreta, P. A., Alfaro, E. M., et al.Good outcome of children with acute myeloid leukemia and t(8;21)(q22;q22), even when associated with granulocytic sarcoma: a report from a single institution in Argentina. Cancer, 2000; 88: 1939–44.3.0.CO;2-Z>CrossRefGoogle Scholar
Andrieu, V., Radford-Weiss, I., Troussard, X., et al.Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol, 1996; 92: 855–65.CrossRefGoogle Scholar
Haferlach, T., Bennett, J. M., Loffler, H., et al.Acute myeloid leukemia with translocation (8;21). Cytomorphology, dysplasia and prognostic factors in 41 cases. AML Cooperative Group and ECOG. Leuk Lymphoma, 1996; 23: 227–34.CrossRefGoogle ScholarPubMed
Nucifora, G., Dickstein, J. I., Torbenson, V., et al.Correlation between cell morphology and expression of the AML1/ETO chimeric transcript in patients with acute myeloid leukemia without the t(8;21). Leukemia, 1994; 8: 1533–8.Google Scholar
Swirsky, D. M., Li, Y. S., Matthews, J. G., et al.8;21 translocation in acute granulocytic leukaemia: cytological, cytochemical and clinical features. Br J Haematol, 1984; 56: 199–213.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Raimondi, S. C., Head, D., et al.Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood, 1992; 80: 3182–8.Google Scholar
Ferrara, F., Di Noto, R., Annunziata, M., et al.Immunophenotypic analysis enables the correct prediction of t(8;21) in acute myeloid leukaemia. Br J Haematol, 1998; 102: 444–8.CrossRefGoogle Scholar
Arthur, D. C. & Bloomfield, C. D.Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood, 1983; 61: 994–8.Google Scholar
Bitter, M. A., Le Beau, M. M., Larson, R. A., et al.A morphologic and cytochemical study of acute myelomonocytic leukemia with abnormal marrow eosinophils associated with inv(16)(p13q22). Am J Clin Pathol, 1984; 81: 733–41.CrossRefGoogle Scholar
Le Beau, M. M., Larson, R. A., Bitter, M. A., et al.Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983; 309: 630–6.CrossRefGoogle ScholarPubMed
Haferlach, T., Winkemann, M., Loffler, H., et al.The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May-Grunwald-Giemsa staining and fluorescence in situ hybridization. Blood, 1996; 87: 2459–63.Google ScholarPubMed
Adriaansen, H. J., te Boekhorst, P. A., Hagemeijer, A. M., et al.Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood, 1993; 81: 3043–51.Google ScholarPubMed
Byrd, J. C., Mrozek, K., Dodge, R. K., et al.Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002; 100: 4325–36.CrossRefGoogle Scholar
Haferlach, T., Schoch, C., Loffler, H., et al.Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol, 2003; 21: 256–65.CrossRefGoogle ScholarPubMed
Razzouk, B. I., Raimondi, S. C., Srivastava, D. K., et al.Impact of treatment on the outcome of acute myeloid leukemia with inversion 16: a single institution's experience. Leukemia, 2001; 15: 1326–30.CrossRefGoogle ScholarPubMed
Tosi, P., Visani, G., Ottaviani, E., et al.Inv(16) acute myeloid leukemia cells show an increased sensitivity to cytosine arabinoside in vitro. Eur J Haematol, 1998; 60: 161–5.CrossRefGoogle ScholarPubMed
Harbott, J., Mancini, M., Verellen-Dumoulin, C., Moorman, A. V., & Secker-Walker, L. M.Hematological malignancies with a deletion of 11q23: cytogenetic and clinical aspects. EU Concerted Action 11q23 Workshop participants. Leukemia, 1998; 12: 823–7.CrossRefGoogle Scholar
Rubnitz, J. E., Raimondi, S. C., Tong, X., et al.Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol, 2002; 20: 2302–9.CrossRefGoogle Scholar
Pui, C. H. & Relling, M. V.Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol, 2000; 109: 13–23.CrossRefGoogle ScholarPubMed
Dann, E. J. & Rowe, J. M.Biology and therapy of secondary leukaemias. Best Pract Res Clin Haematol, 2001; 14: 119–37.CrossRefGoogle ScholarPubMed
Foucar, K., McKenna, R. W., Bloomfield, C. D., Bowers, T. K., & Brunning, R. D.Therapy-related leukemia: a panmyelosis. Cancer, 1979; 43: 1285–96.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Leone, G., Voso, M. T., Sica, S., Morosetti, R., & Pagano, L.Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma, 2001; 41: 255–76.CrossRefGoogle Scholar
Michels, S. D., McKenna, R. W., Arthur, D. C., & Brunning, R. D.Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood, 1985; 65: 1364–72.Google ScholarPubMed
Armitage, J. O., Carbone, P. P., Connors, J. M., et al.Treatment-related myelodysplasia and acute leukemia in non-Hodgkin's lymphoma patients. J Clin Oncol, 2003; 21: 897–906.CrossRefGoogle ScholarPubMed
Le Deley, M. C., Leblanc, T., Shamsaldin, A., et al.Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Societe Francaise d'Oncologie Pediatrique. J Clin Oncol, 2003; 21: 1074–81.CrossRefGoogle ScholarPubMed
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al.Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.CrossRefGoogle ScholarPubMed
Block, A. W., Carroll, A. J., Hagemeijer, A., et al.Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 2002; 33: 401–12.CrossRefGoogle ScholarPubMed
Beaumont, M., Sanz, M., Carli, P. M., et al.Therapy-related acute promyelocytic leukemia. J Clin Oncol, 2003; 21: 2123–37.CrossRefGoogle ScholarPubMed
Detourmignies, L., Castaigne, S., Stoppa, A. M., et al.Therapy-related acute promyelocytic leukemia: a report on 16 cases. J Clin Oncol, 1992; 10: 1430–5.CrossRefGoogle ScholarPubMed
Quesnel, B., Kantarjian, H., Bjergaard, J. P., et al.Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol, 1993; 11: 2370–9.CrossRefGoogle Scholar
Andersen, M. K., Larson, R. A., Mauritzson, N., et al.Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 2002; 33: 395–400.CrossRefGoogle Scholar
Matutes, E., Morilla, R., Farahat, N., et al.Definition of acute biphenotypic leukemia. Haematologica, 1997; 82: 64–6.Google ScholarPubMed
Reinhardt, D., Zimmermann, M., Langebrake, C., et al.Acute mixed lineage leukemia in childhood. Blood, 2002; 100: 69a.Google Scholar
Carbonell, F., Swansbury, J., Min, T., et al.Cytogenetic findings in acute biphenotypic leukaemia. Leukemia, 1996; 10: 1283–7.Google ScholarPubMed
Killick, S., Matutes, E., Powles, R. L., et al.Outcome of biphenotypic acute leukemia. Haematologica, 1999; 84: 699–706.Google ScholarPubMed
Pui, C. H., Raimondi, S. C., Head, D. R., et al.Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.Google ScholarPubMed
Pane, F., Frigeri, F., Camera, A., et al.Complete phenotypic and genotypic lineage switch in a Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia, 1996; 10: 741–5.Google Scholar
Bierings, M., Szczepanski, T., van Wering, E. R., et al.Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol, 2001; 113: 757–62.CrossRefGoogle Scholar
Tsimberidou, A. M., Kantarjian, H. M., Estey, E., et al.Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy. Leukemia, 2003; 17: 1100–3.CrossRefGoogle ScholarPubMed
Tallman, M. S., Hakimian, D., Shaw, J. M., et al.Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol, 1993; 11: 690–7.CrossRefGoogle ScholarPubMed
Jenkin, R. D., Al Shabanah, M., Al Nasser, A., et al.Extramedullary myeloid tumors in children: the limited value of local treatment. J Pediatr Hematol Oncol, 2000; 22: 34–40.CrossRefGoogle ScholarPubMed
Johansson, B., Gray, A., Kullendorff, C. M., et al.Granulocytic sarcoma in body cavities in childhood acute myeloid leukemias with 11q23/MLL rearrangements. Genes Chromosomes Cancer, 2000; 27: 136–42.3.0.CO;2-9>CrossRefGoogle Scholar
Peterson, L., Dehner, L. P., & Brunning, R. D.Extramedullary masses as presenting features of acute monoblastic leukemia. Am J Clin Pathol, 1981; 75: 140–8.CrossRefGoogle ScholarPubMed
Bown, N. P., Rowe, D., & Reid, M. M.Granulocytic sarcoma with translocation (9;11)(p22;q23): two cases. Cancer Genet Cytogenet, 1997; 96: 115–7.CrossRefGoogle ScholarPubMed
Menasce, L. P., Banerjee, S. S., Beckett, E., & Harris, M.Extra-medullary myeloid tumour (granulocytic sarcoma) is often misdiagnosed: a study of 26 cases. Histopathology, 1999; 34: 391–8.CrossRefGoogle ScholarPubMed
Oliva, E., Ferry, J. A., Young, R. H., et al.Granulocytic sarcoma of the female genital tract: a clinicopathologic study of 11 cases. Am J Surg Pathol, 1997; 21: 1156–65.CrossRefGoogle ScholarPubMed
Ritter, J. H., Goldstein, N. S., Argenyi, Z., & Wick, M. R.Granulocytic sarcoma: an immunohistologic comparison with peripheral T-cell lymphoma in paraffin sections. J Cutan Pathol, 1994; 21: 207–16.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposals for the classification of the myelodysplastic syndromes. Br J Haematol, 1982; 51: 189–99.CrossRefGoogle ScholarPubMed
Estey, E. H., Keating, M. J., Smith, T. L., et al.Prediction of complete remission in patients with refractory acute leukemia treated with AMSA. J Clin Oncol, 1984; 2: 102–6.CrossRefGoogle ScholarPubMed
Seymour, J. F., & Estey, E. H.The prognostic significance of auer rods in myelodysplasia. Br J Haematol, 1993; 85: 67–76.CrossRefGoogle ScholarPubMed
Forty-four cases of childhood myelodysplasia with cytogenetics, documented by the Groupe Francais de Cytogenetique Hematologique. Leukemia, 1997; 11: 1478–85.CrossRef
Hasle, H., Jacobsen, B. B., & Pedersen, N. T.Myelodysplastic syndromes in childhood: a population based study of nine cases. Br J Haematol, 1992; 81: 495–8.CrossRefGoogle ScholarPubMed
Hasle, H., Wadsworth, L. D., Massing, B. G., McBride, M., & Schultz, K. R.A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol, 1999; 106: 1027–32.CrossRefGoogle ScholarPubMed
Luna-Fineman, S., Shannon, K. M., Atwater, S. K., et al.Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood, 1999; 93: 459–66.Google ScholarPubMed
Mielot, F.Childhood myelodysplastic syndromes. Pediatr Hematol Oncol, 1999; 16: 283–4.CrossRefGoogle ScholarPubMed
Mandel, K., Dror, Y., Poon, A., & Freedman, M. H.A practical, comprehensive classification for pediatric myelodysplastic syndromes: the CCC system. J Pediatr Hematol Oncol, 2002; 24: 596–605.CrossRefGoogle ScholarPubMed
Sasaki, H., Manabe, A., Kojima, S., et al.Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia, 2001; 15: 1713–20.CrossRefGoogle ScholarPubMed
Passmore, S. J., Hann, I. M., Stiller, C. A., et al.Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood, 1995; 85: 1742–50.Google Scholar
Passmore, S. J., Chessells, J., Kempski, H., et al.Pediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol, 2003; 121: 758–67.CrossRefGoogle Scholar
Arceci, R. J., Longley, B. J., & Emanuel, P. D. Atypical cellular disorders. In , V. C. Broudy, , J. L. Abkowitz, & , J. M. Vose, eds. Hematology, American Society of Hematology Education Program Book, 2002, pp. 297–314. http://www.asheducationbook.org/cgi/content/full/2002/11297.Google Scholar
Emanuel, P. D., Shannon, K. M., & Castleberry, R. P.Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Mol Med Today, 1996; 2: 468–75.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Arico, M., Basso, G., et al.Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood, 1997; 89: 3534–43.Google Scholar
Tartaglia, M., Niemeyer, C. M., Song, X., et al.Somatic PTPN11 mutations in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Blood, 2002; 100: 141a.Google Scholar
Arico, M., Biondi, A., & Pui, C. H.Juvenile myelomonocytic leukemia. Blood, 1997; 90: 479–88.Google ScholarPubMed
Castro-Malaspina, H., Schaison, G., Briere, J., et al.Philadelphia chromosome-positive chronic myelocytic leukemia in children. Survival and prognostic factors. Cancer, 1983; 52: 721–7.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Golub, T. R., Slonim, D. K., Tamayo, P., et al.Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999; 286: 531–7.CrossRefGoogle ScholarPubMed
Armstrong, S. A., Staunton, J. E., Silverman, L. B., et al.MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet, 2002; 30: 41–7.CrossRefGoogle ScholarPubMed
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.CrossRefGoogle ScholarPubMed
Ross, M. E., Zhou, X., Song, G., et al.Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 2003; 102: 2951–9.CrossRefGoogle ScholarPubMed
Cheok, M. H., Yang, W., Pui, C. H., et al.Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet, 2003; 34: 85–90.CrossRefGoogle ScholarPubMed
Pui, C.-H., Relling, M. V., & Downing, J. R.Acute lymphoblastic leukemia. N Engl J Med, 2004; 350: 1535–48.CrossRefGoogle ScholarPubMed
Cario, G., Stanulla, M., Fine, B. M., et al.Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood, 2005; 105: 821–6.CrossRefGoogle ScholarPubMed
Zaza, G., Cheok, M., Yang, M., et al.Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood, 2005; May 19 [Epub ahead of print] PMID: 15905191.CrossRefGoogle ScholarPubMed
Bullinger, L., Dohner, K., Bair, E., et al.Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med, 2004; 350, 1605–16.CrossRefGoogle ScholarPubMed
Ross, M. E., Mahfouz, R., Onciu, M., et al.Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–87.CrossRefGoogle ScholarPubMed
Valk, P. J., Verhaak, R. G., Beijen, M. A., et al.Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med, 2004; 350: 1617–28.CrossRefGoogle ScholarPubMed
Lacayo, N. J., Meshinchi, S., Kinnunen, P., et al.Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004; 104: 2646–54.CrossRefGoogle ScholarPubMed
Lu, J., Getz, G., Miska, E. A., et al.MicroRNA expression profiles classify human cancers. Nature, 2005; 439: 834–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×