Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T06:18:35.744Z Has data issue: false hasContentIssue false

19 - Acute myeloid leukemia

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Jeffrey E. Rubnitz
Affiliation:
Associate Member, Department of Hematology/Oncology, Director of Fellowship Program, St. Jude Children's Research Hospital, Memphis, TN, USA
Bassem I. Razzouk
Affiliation:
Associate Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
Raul C. Ribeiro
Affiliation:
Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic malignancies characterized by the proliferation of abnormal leukemic blast cells and impaired production of normal blood cells. AML accounts for only 15% to 20% of cases of acute leukemia in children and adolescents, but is responsible for more than one third of the deaths due to leukemia in these age groups.

The outcome of treatment for children with AML has improved markedly over the last three decades: about half of all affected children now remain free of disease at 5 years from diagnosis and are probably cured. This improvement has been accomplished by enrolling pediatric patients in clinical trials, administering more intensive therapy (including hematopoietic stem cell transplantation), and improving supportive care. However, the cure rate for children with AML continues to lag behind that for children with acute lymphoblastic leukemia (ALL). The main reasons for treatment failure are relapse and treatment-related mortality. A major challenge is the development of novel therapies that overcome drug resistance and decrease relapse rates, while reducing the short- and long-term adverse effects of treatment. Recent advances in understanding the molecular heterogeneity of AML and in identifying specific molecular therapeutic targets should provide essential information needed to meet this challenge. Here we update findings on the epidemiology and pathogenesis of AML in children and adolescents and discuss treatment options, supportive care issues, and complications of therapy.

Epidemiology and risk factors

AML accounts for approximately 16% of the acute leukemias in children and adolescents younger than 15 years.

Type
Chapter
Information
Childhood Leukemias , pp. 499 - 539
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonnet, D. & Dick, J. E.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997; 3: 730–7.CrossRefGoogle ScholarPubMed
Stevens, R. F., Hann, I. M., Wheatley, K., et al.Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol, 1998; 101: 130–40.CrossRefGoogle ScholarPubMed
Woods, W. G., Neudorf, S., Gold, S., et al.A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood, 2001; 97: 56–62.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Zimmermann, M., et al.Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Munster 93. J Clin Oncol, 2001; 19: 2705–13.CrossRefGoogle ScholarPubMed
O'Brien, T. A., Russell, S. J., Vowels, M. R., et al.Results of consecutive trials for children newly diagnosed with acute myeloid leukemia from the Australian and New Zealand Children's Cancer Study Group. Blood, 2002; 100: 2708–16.CrossRefGoogle ScholarPubMed
Smith, M. A., Ries, L. A. G., Gurney, J. G., & Ross, J. A. Leukemia. In: , L. A. G. Ries, , M. A. Smith, , J. G. Gurney, et al., eds., Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. (Bethesda, MD: National Cancer Institute, SEER Program, 1999), pp. 17–31.Google Scholar
Parkin, D. M., Stiller, C. A., Draper, G. J., et al.International Incidence of Childhood Cancer, IARC Scientific Publications 87 (Lyon, France: IARC, 1988).Google ScholarPubMed
Bhatia, S. & Neglia, J. P.Epidemiology of childhood acute myelogenous leukemia. J Pediatr Hematol Oncol, 1995; 17: 94–100.CrossRefGoogle ScholarPubMed
Douer, D., Preston-Martin, S., Chang, E., et al.High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood, 1996; 87: 308–13.Google ScholarPubMed
Zimmerman, L. E. & Font, R. L.Ophthalmologic manifestations of granulocytic sarcoma (myeloid sarcoma or chloroma). The third Pan American Association of Ophthalmology and American Journal of Ophthalmology Lecture. Am J Ophthalmol, 1975; 80: 975–90.CrossRefGoogle Scholar
Cavdar, A. O., Babacan, E., Gozdasoglu, S., et al.High risk subgroup of acute myelomonocytic leukemia (AMML) with orbito-ocular granulocytic sarcoma (OOGS) in Turkish children. Retrospective analysis of clinical, hematological, ultrastructural and therapeutical findings of thirty-three OOGS. Acta Haematol, 1989; 81: 80–5.CrossRefGoogle ScholarPubMed
Gamis, A. S.Acute myeloid leukemia and Down syndrome: evolution of modern therapy – state of the art review. Pediatr Blood Cancer, 2005; 44: 13–20.CrossRefGoogle ScholarPubMed
Ross, J. A., Spector, L. G., Robison, L. L., et al.Epidemiology of leukemia in children with Down syndrome. Pediatr Blood Cancer, 2005; 44: 8–12.CrossRefGoogle ScholarPubMed
Rosenberg, P. S., Greene, M. H., & Alter, B. P.Cancer incidence in persons with Fanconi anemia. Blood, 2003; 101: 822–6.CrossRefGoogle ScholarPubMed
German, J.Bloom's syndrome. The first 100 cancers. Cancer Genet Cytogenet, 1997; 93: 100–6.CrossRefGoogle ScholarPubMed
Bader, J. L. & Miller, R. W.Neurofibromatosis and childhood leukemia. J Pediatr, 1978; 92: 925–9.CrossRefGoogle ScholarPubMed
Bader-Meunier, B., Tchernia, G., Mielot, F., et al.Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr, 1997; 130: 885–9.CrossRefGoogle ScholarPubMed
Freedman, M. H. & Alter, B. P.Malignant myeloid transformation in congenital forms of neutropenia. Isr Med Assoc J, 2002; 4: 1011–14.Google ScholarPubMed
Song, W. J., Sullivan, M. G., Legare, R. D., et al.Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 1999; 23: 166–75.CrossRefGoogle ScholarPubMed
Baranger, L., Baruchel, A., Leverger, G., et al.Monosomy-7 in childhood hemopoietic disorders. Leukemia, 1990; 4: 345–9.Google ScholarPubMed
Luna-Fineman, S., Shannon, K. M., & Lange, B. J.Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 1995; 85: 1985–99.Google ScholarPubMed
Brill, A., Tomonaga, M., & Heyssel, R. M.Leukemia in man following exposure to ionizing radiation. Ann Intern Med, 1962; 56: 590–609.CrossRefGoogle ScholarPubMed
Noshchenko, A. G., Zamostyan, P. V., Bondar, O. Y., et al.Radiation-induced leukemia risk among those aged 0–20 at the time of the Chernobyl accident: a case-control study in the Ukraine. Int J Cancer, 2002; 99: 609–18.CrossRefGoogle ScholarPubMed
Smith, M. A., McCaffrey, R. P., & Karp, J. E.The secondary leukemias: challenges and research directions. J Natl Cancer Inst, 1996; 88: 407–18.CrossRefGoogle ScholarPubMed
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al.Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.CrossRefGoogle ScholarPubMed
Sandler, D. P.Epidemiology and etiology of acute leukemia: an update. Leukemia, 1992; 6 (Suppl. 4): 3–5.Google ScholarPubMed
Sandler, D. P. & Ross, J. A.Epidemiology of acute leukemia in children and adults. Semin Oncol, 1997; 24: 3–16.Google ScholarPubMed
Ma, X., Buffler, P. A., Gunier, R. B., et al.Critical windows of exposure to household pesticides and risk of childhood leukemia. Environ Health Perspect, 2002; 110: 955–60.CrossRefGoogle ScholarPubMed
Rinsky, R. A., Hornung, R. W., Silver, S. R., et al.Benzene exposure and hematopoietic mortality: a long-term epidemiologic risk assessment. Am J Ind Med, 2002; 42: 474–80.CrossRefGoogle ScholarPubMed
Steinbuch, M., Weinberg, C. R., Buckley, J. D., et al.Indoor residential radon exposure and risk of childhood acute myeloid leukaemia. Br J Cancer, 1999; 81: 900–6.CrossRefGoogle ScholarPubMed
Ahlbom, I. C., Cardis, E., Green, A., et al.Review of the epidemiologic literature on EMF and Health. Environ Health Perspect, 2001; 109 (Suppl. 6): 911–33.CrossRefGoogle ScholarPubMed
Relling, M. V. & Dervieux, T.Pharmacogenetics and cancer therapy. Nat Rev Cancer, 2001; 1: 99–108.CrossRefGoogle ScholarPubMed
Krajinovic, M., Richer, C., Sinnett, H., et al.Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev, 2000; 9: 557–62.Google ScholarPubMed
Woo, M. H., Shuster, J. J., Chen, C., et al.Glutathione S-transferase genotypes in children who develop treatment-related acute myeloid malignancies. Leukemia, 2000; 14: 232–7.CrossRefGoogle ScholarPubMed
Schwahn, B. & Rozen, R.Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics, 2001; 1: 189–201.CrossRefGoogle ScholarPubMed
Smith, M. A., Chen, T., & Simon, R.Age-specific incidence of acute lymphoblastic leukemia in U.S. children: in utero initiation model. J Natl Cancer Inst, 1997; 89: 1542–4.CrossRefGoogle ScholarPubMed
Rowley, J. D.Backtracking leukemia to birth. Nat Med, 1998; 4: 150–1.CrossRefGoogle Scholar
Ross, J. A., Potter, J. D., & Robison, L. L.Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst, 1994; 86: 1678–80.CrossRefGoogle ScholarPubMed
Ross, J. A.Dietary flavonoids and the MLL gene: a pathway to infant leukemia ?Proc Natl Acad Sci U S A, 2000; 97: 4411–13.CrossRefGoogle ScholarPubMed
Speck, N. A. & Gilliland, D. G.Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer, 2002; 2: 502–13.CrossRefGoogle ScholarPubMed
Tenen, D. G.Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer, 2003; 3: 89–101.CrossRefGoogle Scholar
Stirewalt, D. L. & Radich, J. P.The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003; 3: 650–65.CrossRefGoogle ScholarPubMed
Gilliland, D. G. & Griffin, J. D.The roles of FLT3 in hematopoiesis and leukemia. Blood, 2002; 100: 1532–42.CrossRefGoogle ScholarPubMed
Pabst, T., Mueller, B. U., Zhang, P., et al.Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet, 2001; 27: 263–70.CrossRefGoogle Scholar
Downing, J. R.The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 1999; 106: 296–308.CrossRefGoogle ScholarPubMed
Higuchi, M., O'Brien, D., Kumaravelu, P., et al.Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 2002; 1: 63–74.CrossRefGoogle Scholar
Meshinchi, S., Stirewalt, D. L., Alonzo, T. A., et al.Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood, 2003; 102: 1474–9.CrossRefGoogle ScholarPubMed
Head, D. R.Proposed changes in the definitions of acute myeloid leukemia and myelodysplastic syndrome: are they helpful ?Curr Opin Oncol, 2002; 14: 19–23.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol, 1976; 33: 451–8.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 620–5.CrossRefGoogle ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med, 1985; 103: 460–2.CrossRefGoogle Scholar
Bennett, J. M., Cassileth, P. A., Paietta, E., et al.Morphologic classification of acute myeloid leukemia: concordance among Eastern Cooperative Oncology Group investigators: a comment. Leukemia, 1996; 10: 1365.Google Scholar
Head, D. R.Revised classification of acute myeloid leukemia. Leukemia, 1996; 10: 1826–31.Google ScholarPubMed
Chan, G. C., Wang, W. C., Raimondi, S. C., et al.Myelodysplastic syndrome in children: differentiation from acute myeloid leukemia with a low blast count. Leukemia, 1997; 11: 206–11.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haemopoietic and Lymphoid Tissues 3rd edn. (Lyon, France: IARC, 2001).Google Scholar
Vardiman, J. W., Harris, N. L., & Brunning, R. D.The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002; 100: 2292–302.CrossRefGoogle ScholarPubMed
Chan, J. K.The new World Health Organization classification of lymphomas: the past, the present and the future. Hematol Oncol, 2001; 19: 129–50.CrossRefGoogle ScholarPubMed
Hasle, H., Niemeyer, C. M., Chessells, J. M., et al.A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia, 2003; 17: 277–82.CrossRefGoogle ScholarPubMed
Resnik, K. S. & Brod, B. B.Leukemia cutis in congenital leukemia. Analysis and review of the world literature with report of an additional case. Arch Dermatol, 1993; 129: 1301–6.CrossRefGoogle ScholarPubMed
Kaddu, S., Zenahlik, P., Beham-Schmid, C., et al.Specific cutaneous infiltrates in patients with myelogenous leukemia: a clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol, 1999; 40: 966–78.CrossRefGoogle ScholarPubMed
Sansone, R., Haupt, R., Strigini, P., et al.Congenital leukemia: persistent spontaneous regression in a patient with an acquired abnormal karyotype. Acta Haematol, 1989; 81: 48–50.CrossRefGoogle Scholar
Bresters, D., Reus, A. C., Veerman, A. J., et al.Congenital leukaemia: the Dutch experience and review of the literature. Br J Haematol, 2002; 117: 513–24.CrossRefGoogle ScholarPubMed
Grundy, R. G., Martinez, A., Kempski, H., et al.Spontaneous remission of congenital leukemia: a case for conservative treatment. J Pediatr Hematol Oncol, 2000; 22: 252–5.CrossRefGoogle ScholarPubMed
Ribeiro, R. C. & Pui, C. H.The clinical and biological correlates of coagulopathy in children with acute leukemia. J Clin Oncol, 1986; 4: 1212–18.CrossRefGoogle ScholarPubMed
Ravandi-Kashani, F., Cortes, J., & Giles, F. J.Myelodysplasia presenting as granulocytic sarcoma of mediastinum causing superior vena cava syndrome. Leuk Lymphoma, 2000; 36: 631–7.CrossRefGoogle ScholarPubMed
Nounou, R., Al Zahrani, H. H., Ajarim, D. S., et al.Extramedullary myeloid cell tumours localised to the mediastinum: a rare clinicopathological entity with unique karyotypic features. J Clin Pathol, 2002; 55: 221–5.CrossRefGoogle ScholarPubMed
Nichols, C. R., Roth, B. J., Heerema, N., et al.Hematologic neoplasia associated with primary mediastinal germ-cell tumors. N Engl J Med, 1990; 322: 1425–9.CrossRefGoogle ScholarPubMed
Ross, M. E., Mahfouz, R., Onciu, M., et al.Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 2004; 104: 3679–87.CrossRefGoogle ScholarPubMed
Pinkel, D. & Woo, S.Prevention and treatment of meningeal leukemia in children. Blood, 1994; 84: 355–66.Google ScholarPubMed
Dahl, G. V., Simone, J. V., Hustu, H. O., et al.Preventive central nervous system irradiation in children with acute nonlymphocytic leukemia. Cancer, 1978; 42: 2187–92.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Stavem, P. & Evensen, S. A.CNS involvement in acute myelomonoblastic leukemia. Br J Haematol, 1984; 58: 383–4.CrossRefGoogle ScholarPubMed
Pui, C. H., Dahl, G. V., Kalwinsky, D. K., et al.Central nervous system leukemia in children with acute nonlymphoblastic leukemia. Blood, 1985; 66: 1062–7.Google ScholarPubMed
Amadori, S., Ceci, A., Comelli, A., et al.Treatment of acute myelogenous leukemia in children: results of the Italian Cooperative Study AIEOP/LAM 8204. J Clin Oncol, 1987; 5: 1356–63.CrossRefGoogle ScholarPubMed
Ravindranath, Y., Steuber, C. P., Krischer, J., et al.High-dose cytarabine for intensification of early therapy of childhood acute myeloid leukemia: a Pediatric Oncology Group study. J Clin Oncol, 1991; 9: 572–80.CrossRefGoogle ScholarPubMed
Woods, W. G., Kobrinsky, N., Buckley, J. D., et al.Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children's Cancer Group. Blood, 1996; 87: 4979–89.Google ScholarPubMed
Webb, D. K., Harrison, G., Stevens, R. F., et al.Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood, 2001; 98: 1714–20.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Zimmermann, M., et al.Does cranial irradiation reduce the risk for bone marrow relapse in acute myelogenous leukemia ? Unexpected results of the Childhood Acute Myelogenous Leukemia Study BFM-87. J Clin Oncol, 1993; 11: 279–86.CrossRefGoogle ScholarPubMed
Weinstein, H. J., Mayer, R. J., Rosenthal, D. S., et al.Chemotherapy for acute myelogenous leukemia in children and adults: VAPA update. Blood, 1983; 62: 315–19.Google ScholarPubMed
Pui, C. H., Rivera, G., Mirro, J., et al.Acute megakaryoblastic leukemia. Blast cell aggregates simulating metastatic tumor. Arch Pathol Lab Med, 1985; 109: 1033–5.Google ScholarPubMed
Daliphard, S., Behar, C., Cornillet-Lefebvre, P., et al.Acute megakaryoblastic leukemia in an infant mimicking polycystic kidney disease. Med Pediatr Oncol, 2002; 38: 53–4.CrossRefGoogle Scholar
Wiemels, J. L., Xiao, Z., Buffler, P. A., et al.In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002; 99: 3801–5.CrossRefGoogle Scholar
Mori, H., Colman, S. M., Xiao, Z., et al.Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A, 2002; 99: 8242–7.CrossRefGoogle ScholarPubMed
Perel, Y., Auvrignon, A., Leblanc, T., et al.Impact of addition of maintenance therapy to intensive induction and consolidation chemotherapy for childhood acute myeloblastic leukemia: results of a prospective randomized trial, LAME 89/91. Leucamie Aique Myeloide Enfant. J Clin Oncol, 2002; 20: 2774–82.CrossRefGoogle ScholarPubMed
Lie, S. O., Jonmundsson, G., Mellander, L., et al.A population-based study of 272 children with acute myeloid leukaemia treated on two consecutive protocols with different intensity: best outcome in girls, infants, and children with Down's syndrome. Nordic Society of Paediatric Haematology and Oncology (NOPHO). Br J Haematol, 1996; 94: 82–8.CrossRefGoogle Scholar
Krance, R. A., Hurwitz, C. A., Head, D. R., et al.Experience with 2-chlorodeoxyadenosine in previously untreated children with newly diagnosed acute myeloid leukemia and myelodysplastic diseases. J Clin Oncol, 2001; 19: 2804–11.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Zimmermann, M., et al.Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Munster 93. J Clin Oncol, 2001; 19: 2705–13.CrossRefGoogle ScholarPubMed
Ravindranath, Y., Yeager, A. M., Chang, M. N., et al.Autologous bone marrow transplantation versus intensive consolidation chemotherapy for acute myeloid leukemia in childhood. Pediatric Oncology Group. N Engl J Med, 1996; 334: 1428–34.CrossRefGoogle ScholarPubMed
Raimondi, S. C., Chang, M. N., Ravindranath, Y., et al.Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative Pediatric Oncology Group study-POG 8821. Blood, 1999; 94: 3707–16.Google Scholar
Forestier, E., Heim, S., Blennow, E., et al.Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. Br J Haematol, 2003; 121: 566–77.CrossRefGoogle ScholarPubMed
Grimwade, D., Walker, H., Oliver, F., et al.The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 1998; 92: 2322–33.Google ScholarPubMed
Byrd, J. C., Mrozek, K., Dodge, R. K., et al.Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002; 100: 4325–36.CrossRefGoogle Scholar
Wolman, S. R., Gundacker, H., Appelbaum, F. R., et al.Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood, 2002; 100: 29–35.CrossRefGoogle ScholarPubMed
Thiede, C., Steudel, C., Mohr, B., et al.Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood, 2002; 99: 4326–35.CrossRefGoogle ScholarPubMed
Preudhomme, C., Sagot, C., Boissel, N., et al.Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood, 2002; 100: 2717–23.CrossRefGoogle Scholar
Dohner, K., Tobis, K., Ulrich, R., et al.Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol, 2002; 20: 3254–61.CrossRefGoogle ScholarPubMed
Sansone, R. & Negri, D.Cytogenetic features of neonatal leukemias. Cancer Genet Cytogenet, 1992; 63: 56–61.CrossRefGoogle ScholarPubMed
Sorensen, P. H., Chen, C. S., Smith, F. O., et al.Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J Clin Invest, 1994; 93: 429–37.CrossRefGoogle ScholarPubMed
Dastugue, N., Lafage-Pochitaloff, M., Pages, M. P., et al.Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2002; 100: 618–26.CrossRefGoogle Scholar
Pui, C. H., Ribeiro, R. C., Campana, D., et al.Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia, 1996; 10: 952–6.Google ScholarPubMed
Chessells, J. M.Leukaemia in the young child. Br J Cancer Suppl, 1992; 18: S54–7.Google ScholarPubMed
Vormoor, J., Ritter, J., Creutzig, U., et al.Acute myelogenous leukaemia in children under 2 years – experiences of the West German AML studies BFM-78, -83 and -87. AML-BFM Study Group. Br J Cancer Suppl, 1992; 18: S63–7.Google ScholarPubMed
Chessells, J. M., Harrison, C. J., Kempski, H., et al.Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia, 2002; 16: 776–84.CrossRefGoogle ScholarPubMed
Kawasaki, H., Isoyama, K., Eguchi, M., et al.Superior outcome of infant acute myeloid leukemia with intensive chemotherapy: results of the Japan Infant Leukemia Study Group. Blood, 2001; 98: 3589–94.CrossRefGoogle ScholarPubMed
Rubnitz, J. E., Raimondi, S. C., Tong, X., et al.Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol, 2002; 20: 2302–9.CrossRefGoogle Scholar
Athale, U. H., Razzouk, B. I., Raimondi, S. C., et al.Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood, 2001; 97: 3727–32.CrossRefGoogle ScholarPubMed
Bloomfield, C. D. & Brunning, R. D.FAB M7: acute megakaryoblastic leukemia – beyond morphology. Ann Intern Med, 1985; 103: 450–2.CrossRefGoogle ScholarPubMed
Tallman, M. S., Neuberg, D., Bennett, J. M., et al.Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience. Blood, 2000; 96: 2405–11.Google ScholarPubMed
Athale, U. H., Kaste, S. C., Razzouk, B. I., et al.Skeletal manifestations of pediatric acute megakaryoblastic leukemia. J Pediatr Hematol Oncol, 2002; 24: 561–5.CrossRefGoogle ScholarPubMed
Hitzler, J. K. & Zipursky, A.Origins of leukaemia in children with Down syndrome. Nat Rev Cancer, 2005; 5: 11–20.CrossRefGoogle ScholarPubMed
Crispino, J. D.GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer, 2005; 44: 40–4.CrossRefGoogle ScholarPubMed
Lightfoot, J., Hitzler, J. K., Zipursky, A., et al.Distinct gene signatures of transient and acute megakaryoblastic leukemia in Down syndrome. Leukemia, 2004; 18: 1617–23.CrossRefGoogle ScholarPubMed
Ruchelli, E. D., Uri, A., Dimmick, J. E., et al.Severe perinatal liver disease and Down syndrome: an apparent relationship. Hum Pathol, 1991; 22: 1274–80.CrossRefGoogle Scholar
Miyauchi, J., Ito, Y., Kawano, T., et al.Unusual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down's syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood, 1992; 80: 1521–7.Google ScholarPubMed
Lange, B. J., Kobrinsky, N., Barnard, D. R., et al.Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood, 1998; 91: 608–15.Google ScholarPubMed
Zubizarreta, P., Felice, M. S., Alfaro, E., et al.Acute myelogenous leukemia in Down's syndrome: report of a single pediatric institution using a BFM treatment strategy. Leuk Res, 1998; 22: 465–72.CrossRefGoogle ScholarPubMed
Wechsler, J., Greene, M., McDevitt, M. A., et al.Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.CrossRefGoogle ScholarPubMed
Mundschau, G., Gurbuxani, S., Gamis, A. S., et al.Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood, 2003; 101: 4298–300.CrossRefGoogle ScholarPubMed
Hitzler, J. K., Cheung, J., Li, Y., et al. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood, 2003; 101: 4301–4.CrossRefGoogle ScholarPubMed
Xu, G., Nagano, M., Kanezaki, R., et al.Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood, 2003; 102: 2960–8.CrossRefGoogle ScholarPubMed
Schoch, C., Schnittger, S., Klaus, M., et al.AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood, 2003; 102: 2395–402.CrossRefGoogle Scholar
Zwaan, C. M., Kaspers, G. J., Pieters, R., et al.Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood, 2002; 99: 245–51.CrossRefGoogle ScholarPubMed
Kardos, G., Baumann, I., Passmore, S. J., et al.Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood, 2003; 102: 1997–2003.CrossRefGoogle ScholarPubMed
Carroll, W. L., Morgan, R., & Glader, B. E.Childhood bone marrow monosomy 7 syndrome: a familial disorder ?J Pediatr, 1985; 107: 578–80.CrossRefGoogle ScholarPubMed
Gilchrist, D. M., Friedman, J. M., Rogers, P. C., et al.Myelodysplasia and leukemia syndrome with monosomy 7: a genetic perspective. Am J Med Genet, 1990; 35: 437–41.CrossRefGoogle ScholarPubMed
Gyger, M., Bonny, Y., & Forest, L.Childhood monosomy 7 syndrome. Am J Hematol, 1982; 13: 329–34.CrossRefGoogle ScholarPubMed
Johnson, E. & Cotter, F. E.Monosomy 7 and 7q-associated with myeloid malignancy. Blood Rev, 1997; 11: 46–55.CrossRefGoogle ScholarPubMed
Shannon, K. M., Turhan, A. G., Chang, S. S., et al.Familial bone marrow monosomy 7. Evidence that the predisposing locus is not on the long arm of chromosome 7. J Clin Invest, 1989; 84: 984–9.CrossRefGoogle ScholarPubMed
Hasle, H., Arico, M., Basso, G., et al.Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia, 1999; 13: 376–85.CrossRefGoogle Scholar
Ruutu, P., Ruutu, T., Vuopie, P., et al.Defective chemotaxis in monosomy-7. Nature, 1977; 265: 146–7.CrossRefGoogle ScholarPubMed
Ruutu, P., Ruutu, T., Repo, H., et al.Defective neutrophil migration in monosomy-7. Blood, 1981; 58: 739–45.Google ScholarPubMed
Savage, P., Frenck, R., Paderanga, D., et al.Parental origins of chromosome 7 loss in childhood monosomy 7 syndrome. Leukemia, 1994; 8: 485–9.Google ScholarPubMed
Haas, O. A. & Gadner, H.Pathogenesis, biology, and management of myelodysplastic syndromes in children. Semin Hematol, 1996; 33: 225–35.Google ScholarPubMed
Kalwinsky, D. K., Raimondi, S. C., Schell, M. J., et al.Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia. J Clin Oncol, 1990; 8: 75–83.CrossRefGoogle ScholarPubMed
Reinhardt, D. & Creutzig, U.Isolated myelosarcoma in children – update and review. Leuk Lymphoma, 2002; 43: 565–74.CrossRefGoogle ScholarPubMed
Schwyzer, R., Sherman, G. G., Cohn, R. J., et al.Granulocytic sarcoma in children with acute myeloblastic leukemia and t(8;21). Med Pediatr Oncol, 1998; 31: 144–9.3.0.CO;2-B>CrossRefGoogle Scholar
Byrd, J. C., Edenfield, W. J., Shields, D. J., et al.Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol, 1995; 13: 1800–16.CrossRefGoogle ScholarPubMed
Ooi, G. C., Chim, C. S., Khong, P. L., et al.Radiologic manifestations of granulocytic sarcoma in adult leukemia. AJR Am J Roentgenol, 2001; 176: 1427–31.CrossRefGoogle ScholarPubMed
Pui, M. H., Fletcher, B. D., & Langston, J. W.Granulocytic sarcoma in childhood leukemia: imaging features. Radiology, 1994; 190: 698–702.CrossRefGoogle ScholarPubMed
Stein-Wexler, R., Wootton-Gorges, S. L., & West, D. C.Orbital granulocytic sarcoma: an unusual presentation of acute myelocytic leukemia. Pediatr Radiol, 2003; 33: 136–9.CrossRefGoogle ScholarPubMed
Binder, C., Tiemann, M., Haase, D., et al.Isolated meningeal chloroma (granulocytic sarcoma) – a case report and review of the literature. Ann Hematol, 2000; 79: 459–62.CrossRefGoogle ScholarPubMed
Grignani, F., Fagioli, M., Alcalay, M., et al.Acute promyelocytic leukemia: from genetics to treatment. Blood, 1994; 83: 10–25.Google Scholar
Castaigne, S., Chomienne, C., Daniel, M. T., et al.All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia I. Clinical results. Blood, 1990; 76: 1704–9.Google ScholarPubMed
Carter, M., Kalwinsky, D. K., Dahl, G. V., et al.Childhood acute promyelocytic leukemia: a rare variant of nonlymphoid leukemia with distinctive clinical and biologic features. Leukemia, 1989; 3: 298–302.Google ScholarPubMed
Biondi, A., Rovelli, A., Cantu-Rajnoldi, A., et al.Acute promyelocytic leukemia in children: experience of the Italian Pediatric Hematology and Oncology Group (AIEOP). Leukemia, 1994; 8(Suppl. 2): S66–70.Google Scholar
Douer, D., Preston-Martin, S., Chang, E., et al.High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood, 1996; 87: 308–13.Google ScholarPubMed
Estey, E., Thall, P., Kantarjian, H., et al.Association between increased body mass index and a diagnosis of acute promyelocytic leukemia in patients with acute myeloid leukemia. Leukemia, 1997; 11: 1661–4.CrossRefGoogle Scholar
Thomas, X., Fiere, D., & Archimbaud, E.Influence of increased body mass index on drug toxicity in patients with acute promyelocytic leukemia. Leukemia, 1998; 12: 1503–6.CrossRefGoogle ScholarPubMed
Konopleva, M., Mikhail, A., Estrov, Z., et al.Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. Blood, 1999; 93: 1668–76.Google ScholarPubMed
Redner, R. L., Rush, E. A., Faas, S., et al.The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood, 1996; 87: 882–6.Google Scholar
Wells, R. A., Catzavelos, C., & Kamel-Reid, S.Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet, 1997; 17: 109–13.CrossRefGoogle ScholarPubMed
Arnould, C., Philippe, C., Bourdon, V., et al.The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet, 1999; 8: 1741–9.CrossRefGoogle ScholarPubMed
Chojnowski, K., Wawrzyniak, E., Trelinski, J., et al.Assessment of coagulation disorders in patients with acute leukemia before and after cytostatic treatment. Leuk Lymphoma, 1999; 36: 77–84.CrossRefGoogle ScholarPubMed
Menell, J. S., Cesarman, G. M., Jacovina, A. T., et al.Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med, 1999; 340: 994–1004.CrossRefGoogle ScholarPubMed
Di, Bona E., Avvisati, G., Castaman, G., et al.Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol, 2000; 108: 689–95.Google Scholar
Creutzig, U., Ritter, J., Budde, M., et al.Early deaths due to hemorrhage and leukostasis in childhood acute myelogenous leukemia. Associations with hyperleukocytosis and acute monocytic leukemia. Cancer, 1987; 60: 3071–9.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Liso, V., Specchia, G., Pogliani, E. M., et al.Extramedullary involvement in patients with acute promyelocytic leukemia: a report of seven cases. Cancer, 1998; 83: 1522–8.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Evans, G., Grimwade, D., Prentice, H. G., et al.Central nervous system relapse in acute promyelocytic leukaemia in patients treated with all-trans retinoic acid. Br J Haematol, 1997; 98: 437–9.CrossRefGoogle ScholarPubMed
Ko, B. S., Tang, J. L., Chen, Y. C., et al.Extramedullary relapse after all-trans retinoic acid treatment in acute promyelocytic leukemia – the occurrence of retinoic acid syndrome is a risk factor. Leukemia, 1999; 13: 1406–8.CrossRefGoogle ScholarPubMed
Specchia, G., Lo, C. F., Vignetti, M., et al.Extramedullary involvement at relapse in acute promyelocytic leukemia patients treated or not with all-trans retinoic acid: a report by the Gruppo Italiano Malattie Ematologiche dell'Adulto. J Clin Oncol, 2001; 19: 4023–8.CrossRefGoogle ScholarPubMed
Katsura, Y.Redefinition of lymphoid progenitors. Nat Rev Immunol, 2002; 2: 127–32.CrossRefGoogle ScholarPubMed
Lee, E. J., Pollak, A., Leavitt, R. D., et al.Minimally differentiated acute nonlymphocytic leukemia: a distinct entity. Blood, 1987; 70: 1400–6.Google ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al.Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol, 1991; 78: 325–9.CrossRefGoogle Scholar
Kuzmanovic, M., Rasovic, N., Bunjevacki, G., et al.Minimally differentiated acute myeloid leukemia (AML-M0) in children: a single center experience. Med Pediatr Oncol, 2000; 34: 364–5.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Huang, S. Y., Tang, J. L., Jou, S. T., et al.Minimally differentiated acute myeloid leukemia in Taiwan: predominantly occurs in children less than 3 years and adults between 51 and 70 years. Leukemia, 1999; 13: 1506–12.CrossRefGoogle ScholarPubMed
Kotylo, P. K., Seo, I. S., Smith, F. O., et al.Flow cytometric immunophenotypic characterization of pediatric and adult minimally differentiated acute myeloid leukemia (AML-M0). Am J Clin Pathol, 2000; 113: 193–200.CrossRefGoogle Scholar
Roumier, C., Eclache, V., Imbert, M., et al.M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood, 2003; 101: 1277–83.CrossRefGoogle Scholar
Matutes, E., Morilla, R., Farahat, N., et al.Definition of acute biphenotypic leukemia. Haematologica, 1997; 82: 64–6.Google ScholarPubMed
Kantarjian, H. M., Hirsch-Ginsberg, C., Yee, G., et al.Mixed-lineage leukemia revisited: acute lymphocytic leukemia with myeloperoxidase-positive blasts by electron microscopy. Blood, 1990; 76: 808–13.Google ScholarPubMed
Cross, A. H., Goorha, R. M., Nuss, R., et al.Acute myeloid leukemia with T-lymphoid features: a distinct biologic and clinical entity. Blood, 1988; 72: 579–87.Google ScholarPubMed
Creutzig, U., Harbott, J., Sperling, C., et al.Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87. Blood, 1995; 86: 3097–108.Google ScholarPubMed
Killick, S., Matutes, E., Powles, R. L., et al.Outcome of biphenotypic acute leukemia. Haematologica, 1999; 84: 699–706.Google ScholarPubMed
Mirro, J., Zipf, T. F., Pui, C. H., et al.Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood, 1985; 66: 1115–23.Google ScholarPubMed
Legrand, O., Perrot, J. Y., Simonin, G., et al.Adult biphenotypic acute leukaemia: an entity with poor prognosis which is related to unfavourable cytogenetics and P-glycoprotein over- expression. Br J Haematol, 1998; 100: 147–55.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Mounce, K. G., & Grier, H. E.Treatment of patients with acute myelogenous leukemia: review of clinical trials of the past decade. J Pediatr Hematol Oncol, 1995; 17: 185–97.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., Zimmermann, M., et al.Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia, 2001; 15: 348–54.CrossRefGoogle ScholarPubMed
Hann, I. M., Stevens, R. F., Goldstone, A. H., et al.Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council's 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood, 1997; 89: 2311–18.Google Scholar
Arnaout, M. K., Radomski, K. M., Srivastava, D. K., et al.Treatment of childhood acute myelogenous leukemia with an intensive regimen (AML-87) that individualizes etoposide and cytarabine dosages: short- and long-term effects. Leukemia, 2000; 14: 1736–42.CrossRefGoogle ScholarPubMed
Crews, K. R., Gandhi, V., Srivastava, D. K., et al.Interim comparison of a continuous infusion versus a short daily infusion of cytarabine given in combination with cladribine for pediatric acute myeloid leukemia. J Clin Oncol, 2002; 20: 4217–24.CrossRefGoogle Scholar
Carella, A. M., Berman, E., Maraone, M. P., et al.Idarubicin in the treatment of acute leukemias. An overview of preclinical and clinical studies. Haematologica, 1990; 75: 159–69.Google ScholarPubMed
Berman, E. & McBride, M.Comparative cellular pharmacology of daunorubicin and idarubicin in human multidrug-resistant leukemia cells. Blood, 1992; 79: 3267–73.Google ScholarPubMed
Hollingshead, L. M. & Faulds, D.Idarubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs, 1991; 42: 690–719.CrossRefGoogle Scholar
Becton, D., Ravindranath, Y. & Dahl, G. V.A phase III study of intensive cytarabine (Ara-C) induction followed by cyclosporine (CSA) modulation of drug resistance in de novo pediatric AML: POG 9421. Blood, 2001; 98: 461, abstract 1929.Google Scholar
Rees, J. K., Gray, R. G., & Wheatley, K.Dose intensification in acute myeloid leukaemia: greater effectiveness at lower cost. Principal report of the Medical Research Council's AML9 study. MRC Leukaemia in Adults Working Party. Br J Haematol, 1996; 94: 89–98.CrossRefGoogle ScholarPubMed
Lowenberg, B., Putten, W., Theobald, M., et al.Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med, 2003; 349: 743–52.CrossRefGoogle ScholarPubMed
Cassileth, P. A., Begg, C. B., Silber, R., et al.Prolonged unmaintained remission after intensive consolidation therapy in adult acute nonlymphocytic leukemia. Cancer Treat Rep, 1987; 71: 137–40.Google ScholarPubMed
Cassileth, P. A., Andersen, J. W., Bennett, J. M., et al.Escalating the intensity of post-remission therapy improves the outcome in acute myeloid leukemia: the ECOG experience. The Eastern Cooperative Oncology Group. Leukemia, 1992; 6 (Suppl. 2): 116–19.Google ScholarPubMed
Dahl, G. V., Kalwinsky, D. K., Murphy, S., et al.Cytokinetically based induction chemotherapy and splenectomy for childhood acute nonlymphocytic leukemia. Blood, 1982; 60: 856–63.Google ScholarPubMed
Baehner, R. L., Kennedy, A., Sather, H., et al.Characteristics of children with acute nonlymphocytic leukemia in long- term continuous remission: a report for Childrens Cancer Study Group. Med Pediatr Oncol, 1981; 9: 393–403.CrossRefGoogle ScholarPubMed
Weinstein, H. J., Mayer, R. J., Rosenthal, D. S., et al.Treatment of acute myelogenous leukemia in children and adults. N Engl J Med, 1980; 303: 473–8.CrossRefGoogle ScholarPubMed
Wells, R. J., Woods, W. G., Lampkin, B. C., et al.Impact of high-dose cytarabine and asparaginase intensification on childhood acute myeloid leukemia: a report from the Childrens Cancer Group. J Clin Oncol, 1993; 11: 538–45.CrossRefGoogle ScholarPubMed
Ritter, J., Creutzig, U., & Schellong, G.Treatment results of three consecutive German childhood AML trials: BFM-78, -83, and -87. AML-BFM-Group. Leukemia, 1992; 6 (Suppl. 2): 59–62.Google ScholarPubMed
Kamps, W. A., Veerman, A. J., Wering, E. R., et al.Long-term follow-up of Dutch Childhood Leukemia Study Group (DCLSG) protocols for children with acute lymphoblastic leukemia, 1984–1991. Leukemia, 2000; 14: 2240–6.CrossRefGoogle Scholar
Wells, R. J., Woods, W. G., Buckley, J. D., et al.Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Childrens Cancer Group study. J Clin Oncol, 1994; 12: 2367–77.CrossRefGoogle ScholarPubMed
Mayer, R. J., Davis, R. B., Schiffer, C. A., et al.Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med, 1994; 331: 896–903.CrossRefGoogle ScholarPubMed
Buchner, T., Hiddemann, W., Wormann, B., et al.Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the German AML Cooperative Group. Blood, 1999; 93: 4116–24.Google ScholarPubMed
Feig, S. A., Lampkin, B., Nesbit, M. E., et al.Outcome of BMT during first complete remission of AML: a comparison of two sequential studies by the Children's Cancer Group. Bone Marrow Transplant, 1993; 12: 65–71.Google ScholarPubMed
Bloomfield, C. D., Lawrence, D., Byrd, J. C., et al.Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res, 1998; 58: 4173–9.Google ScholarPubMed
Byrd, J. C., Dodge, R. K., Carroll, A., et al.Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol, 1999; 17: 3767–75.CrossRefGoogle Scholar
Santos, G. W., Tutschka, P. J., Brookmeyer, R., et al.Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med, 1983; 309: 1347–53.CrossRefGoogle ScholarPubMed
Forman, S. J., Spruce, W. E., Farbstein, M. J., et al.Bone marrow ablation followed by allogeneic marrow grafting during first complete remission of acute nonlymphocytic leukemia. Blood, 1983; 61: 439–42.Google ScholarPubMed
Dahl, G. V., Kalwinsky, D. K., Mirro, J. Jr., et al.Allogeneic bone marrow transplantation in a program of intensive sequential chemotherapy for children and young adults with acute nonlymphocytic leukemia in first remission. J Clin Oncol, 1990; 8: 295–303.CrossRefGoogle Scholar
Cassileth, P. A., Harrington, D. P., Appelbaum, F. R., et al.Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med, 1998; 339: 1649–56.CrossRefGoogle ScholarPubMed
Amadori, S., Testi, A. M., Arico, M., et al.Prospective comparative study of bone marrow transplantation and postremission chemotherapy for childhood acute myelogenous leukemia. The Associazione Italiana Ematologia ed Oncologia Pediatrica Cooperative Group. J Clin Oncol, 1993; 11: 1046–54.CrossRefGoogle ScholarPubMed
Michel, G., Leverger, G., Leblanc, T., et al.Allogeneic bone marrow transplantation vs aggressive post- remission chemotherapy for children with acute myeloid leukemia in first complete remission. A prospective study from the French Society of Pediatric Hematology and Immunology (SHIP). Bone Marrow Transplant, 1996; 17: 191–6.Google Scholar
Burnett, A. K., Goldstone, A. H., Stevens, R. M., et al.Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children's Leukaemia Working Parties. Lancet, 1998; 351: 700–8.CrossRefGoogle ScholarPubMed
Burnett, A. K., Wheatley, K., Goldstone, A. H., et al.The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol, 2002; 118: 385–400.CrossRefGoogle ScholarPubMed
Nesbit, M. E. Jr., Buckley, J. D., Feig, S. A., et al.Chemotherapy for induction of remission of childhood acute myeloid leukemia followed by marrow transplantation or multiagent chemotherapy: a report from the Childrens Cancer Group. J Clin Oncol, 1994; 12: 127–35.CrossRefGoogle ScholarPubMed
Creutzig, U. & Reinhardt, D.Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation ? – a European view. Br J Haematol, 2002; 118: 365–77.CrossRefGoogle ScholarPubMed
Chen, A. R., Alonzo, T. A., Woods, W. G., et al.Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation ? – an American view. Br J Haematol, 2002; 118: 378–84.CrossRefGoogle ScholarPubMed
Creutzig, U., Ritter, J., & Schellong, G.Identification of two risk groups in childhood acute myelogenous leukemia after therapy intensification in study AML-BFM-83 as compared with study AML-BFM-78. AML-BFM Study Group. Blood, 1990; 75: 1932–40.Google ScholarPubMed
Walter, A. W., Hancock, M. L., Pui, C. H., et al.Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children's Research Hospital. J Clin Oncol, 1998; 16: 3761–7.CrossRefGoogle ScholarPubMed
Loning, L., Zimmermann, M., Reiter, A., et al.Secondary neoplasms subsequent to Berlin-Frankfurt-Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood, 2000; 95: 2770–5.Google ScholarPubMed
Hasle, H., Helgestad, J., Christensen, J. K., et al.Prolonged intrathecal chemotherapy replacing cranial irradiation in high-risk acute lymphatic leukaemia: long-term follow up with cerebral computed tomography scans and endocrinological studies. Eur J Pediatr, 1995; 154: 24–9.CrossRefGoogle ScholarPubMed
Leung, W., Hudson, M. M., Strickland, D. K., et al.Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol, 2000; 18: 3273–9.CrossRefGoogle ScholarPubMed
Woods, W. G., Kobrinsky, N., Buckley, J., et al.Intensively timed induction therapy followed by autologous or allogeneic bone marrow transplantation for children with acute myeloid leukemia or myelodysplastic syndrome: a Childrens Cancer Group pilot study. J Clin Oncol, 1993; 11: 1448–57.CrossRefGoogle ScholarPubMed
Abbott, B. L., Rubnitz, J. E., Tong, X., et al.Clinical significance of central nervous system involvement at diagnosis of pediatric acute myeloid leukemia: a single institution's experience. Leukemia, 2003; 17: 2090–6.CrossRefGoogle ScholarPubMed
Mahmoud, H. H., Rivera, G. K., Hancock, M. L., et al.Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med, 1993; 329: 314–19.CrossRefGoogle ScholarPubMed
Pui, C. H.Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol, 2003; 21: 179–81.CrossRefGoogle ScholarPubMed
Razzouk, B. I., Raimondi, S. C., Srivastava, D. K., et al.Impact of treatment on the outcome of acute myeloid leukemia with inversion 16: a single institution's experience. Leukemia, 2001; 15: 1326–30.CrossRefGoogle ScholarPubMed
Rubnitz, J. E., Raimondi, S. C., Tong, X., et al.Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol, 2002; 20: 2302–9.CrossRefGoogle Scholar
Hsu, C. A., Rishi, A. K., Su-Li, X., et al.Retinoid induced apoptosis in leukemia cells through a retinoic acid nuclear receptor-independent pathway. Blood, 1997; 89: 4470–9.Google ScholarPubMed
Calleja, E. M. & Warrell, R. P. Jr.Differentiating agents in pediatric malignancies: all-trans-retinoic acid and arsenic in acute promyelocytic leukemia. Curr Oncol Rep, 2000; 2: 519–23.CrossRefGoogle ScholarPubMed
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med, 1997; 337: 1021–8.CrossRefGoogle ScholarPubMed
De Botton, S., Coiteux, V., Chevret, S., et al.Outcome of childhood acute promyelocytic leukemia with all-trans-retinoic acid and chemotherapy. J Clin Oncol, 2004; 22: 1404–12.CrossRefGoogle ScholarPubMed
Paietta, E., Andersen, J., Racevskis, J., et al.Significantly lower P-glycoprotein expression in acute promyelocytic leukemia than in other types of acute myeloid leukemia: immunological, molecular and functional analyses. Leukemia, 1994; 8: 968–73.Google ScholarPubMed
Michieli, M., Damiani, D., Ermacora, A., et al.P-glycoprotein (PGP), lung resistance-related protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia. Br J Haematol, 2000; 108: 703–9.CrossRefGoogle ScholarPubMed
Bernard, J., Weil, M., Boiron, M., et al.Acute promyelocytic leukemia: results of treatment by daunorubicin. Blood, 1973; 41: 489–96.Google ScholarPubMed
Avvisati, G., Mandelli, F., Petti, M. C., et al.Idarubicin (4-demethoxydaunorubicin) as single agent for remission induction of previously untreated acute promyelocytic leukemia: a pilot study of the Italian cooperative group GIMEMA. Eur J Haematol, 1990; 44: 257–60.CrossRefGoogle ScholarPubMed
Head, D., Kopecky, K. J., Weick, J., et al.Effect of aggressive daunomycin therapy on survival in acute promyelocytic leukemia. Blood, 1995; 86: 1717–28.Google ScholarPubMed
Chen, Z. X., Xue, Y. Q., Zhang, R., et al.A clinical and experimental study on all-trans retinoic acid- treated acute promyelocytic leukemia patients. Blood, 1991; 78: 1413–19.Google ScholarPubMed
Fenaux, P., Le Deley, M. C., Castaigne, S., et al.Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood, 1993; 82: 3241–9.Google ScholarPubMed
De Botton, S., Dombret, H., Sanz, M., et al.Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood, 1998; 92: 2712–18.Google ScholarPubMed
Fenaux, P., Chastang, C., Chevret, S., et al.A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood, 1999; 94: 1192–200.Google ScholarPubMed
Vahdat, L., Maslak, P., Miller, W. H. Jr., et al.Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: impact of leukocytosis, low-dose chemotherapy, PMN/RAR-alpha isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood, 1994; 84: 3843–9.Google ScholarPubMed
Avvisati, G., Lo, Coco F., Diverio, D., et al.AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) pilot study. Blood, 1996; 88: 1390–8.Google ScholarPubMed
Sanz, M. A., Martin, G., Rayon, C., et al.A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARa positive acute promyelocytic leukemia. Blood, 1999; 94: 3015–21.Google Scholar
Estey, E., Thall, P. F., Pierce, S., et al.Treatment of newly diagnosed acute promyelocytic leukemia without cytarabine. J Clin Oncol, 1997; 15: 483–90.CrossRefGoogle ScholarPubMed
Mandelli, F., Diverio, D., Avvisati, G., et al.Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood, 1997; 90: 1014–21.Google ScholarPubMed
Rowe, J. M.Uncertainties in the standard care of acute myelogenous leukemia. Leukemia, 2001; 15: 677–9.CrossRefGoogle ScholarPubMed
Testi, A. M., Biondi, A., Lo, C. F., et al.GIMEMA-AIEOP AIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood, 2005; 106: 447–53.CrossRefGoogle Scholar
Shen, Z. X., Chen, G. Q., Ni, J. H., et al.Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 1997; 89: 3354–60.Google ScholarPubMed
Niu, C., Yan, H., Yu, T., et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood, 1999; 94: 3315–24.Google ScholarPubMed
Chen, G. Q., Shi, X. G., Tang, W., et al.Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood, 1997; 89: 3345–53.Google ScholarPubMed
Jing, Y., Dai, J., Chalmers-Redman, R. M., et al.Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood, 1999; 94: 2102–11.Google Scholar
Soignet, S. L., Maslak, P., Wang, Z. G., et al.Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med, 1998; 339: 1341–8.CrossRefGoogle ScholarPubMed
Soignet, S. L., Frankel, S. R., Douer, D., et al.United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol, 2001; 19: 3852–60.CrossRefGoogle ScholarPubMed
Camacho, L. H., Soignet, S. L., Chanel, S., et al.Leukocytosis and the retinoic acid syndrome in patients with acute promyelocytic leukemia treated with arsenic trioxide. J Clin Oncol, 2000; 18: 2620–5.CrossRefGoogle ScholarPubMed
Unnikrishnan, D., Dutcher, J. P., Varshneya, N., et al.Torsades de pointes in 3 patients with leukemia treated with arsenic trioxide. Blood, 2001; 97: 1514–16.CrossRefGoogle ScholarPubMed
Westervelt, P., Brown, R. A., Adkins, D. R., et al.Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide. Blood, 2001; 98: 266–71.CrossRefGoogle ScholarPubMed
Jing, Y., Wang, L., Xia, L., et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood, 2001; 97: 264–9.CrossRefGoogle ScholarPubMed
Estey, E. H., Giles, F. J., Beran, M., et al.Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood, 2002; 99: 4222–4.CrossRefGoogle ScholarPubMed
Ravindranath, Y., Abella, E., Krischer, J. P., et al.Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood, 1992; 80: 2210–4.Google ScholarPubMed
Taub, J. W., Huang, X., Matherly, L. H., et al.Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood, 1999; 94: 1393–400.Google ScholarPubMed
Ge, Y., Jensen, T., James, S. J., et al.High frequency of the 844ins68 cystathionine-beta-synthase gene variant in Down syndrome children with acute myeloid leukemia. Leukemia, 2002; 16: 2339–41.CrossRefGoogle ScholarPubMed
Galmarini, C. M., Thomas, X., Calvo, F., et al.In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol, 2002; 117: 860–8.CrossRefGoogle ScholarPubMed
Gati, W. P., Paterson, A. R., Belch, A. R., et al.Es nucleoside transporter content of acute leukemia cells: role in cell sensitivity to cytarabine (araC). Leuk Lymphoma, 1998; 32: 45–54.Google Scholar
Galmarini, C. M., Thomas, X., Graham, K., et al.Deoxycytidine kinase and cN-III nucleotidase expression in blast cells predict survival in acute myeloid leukaemia patients treated with cytarabine. Br J Haematol, 2003; 122: 53–60.CrossRefGoogle Scholar
Davies, S. M., Robison, L. L., Buckley, J. D., et al.Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol, 2001; 19: 1279–87.CrossRefGoogle ScholarPubMed
Naoe, T., Tagawa, Y., Kiyoi, H., et al.Prognostic significance of the null genotype of glutathione S- transferase-T1 in patients with acute myeloid leukemia: increased early death after chemotherapy. Leukemia, 2002; 16: 203–8.CrossRefGoogle ScholarPubMed
Voso, M. T., D'Alo, F., Putzulu, R., et al.Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood, 2002; 100: 2703–7.CrossRefGoogle ScholarPubMed
Illmer, T., Schuler, U. S., Thiede, C., et al.MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res, 2002; 62: 4955–62.Google ScholarPubMed
Delaunay, J., Vey, N., Leblanc, T., et al.Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML Intergroup. Blood, 2003; 102: 462–9.CrossRefGoogle Scholar
Rubnitz, J. E., Raimondi, S. C., Halbert, A. R., et al.Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia, 2002; 16: 2072–7.CrossRefGoogle Scholar
Nguyen, S., Leblanc, T., Fenaux, P., et al.A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood, 2002; 99: 3517–23.CrossRefGoogle Scholar
Raimondi, S. C., Kalwinsky, D. K., Hayashi, Y., et al.Cytogenetics of childhood acute nonlymphocytic leukemia. Cancer Genet Cytogenet, 1989; 40: 13–27.CrossRefGoogle ScholarPubMed
Dimartino, J. F. & Cleary, M. L.Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol, 1999; 106: 614–26.CrossRefGoogle ScholarPubMed
Mrozek, K., Heinonen, K., Lawrence, D., et al.Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood, 1997; 90: 4532–8.Google Scholar
Sandoval, C., Head, D. R., Mirro, J. Jr., et al.Translocation t(9;11)(p21;q23) in pediatric de novo and secondary acute myeloblastic leukemia. Leukemia, 1992; 6: 513–19.Google Scholar
Martinez-Climent, J. A., Lane, N. J., Rubin, C. M., et al.Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia, 1995; 9: 95–101.Google ScholarPubMed
Odom, L. F., Gordon, E. M.Acute monoblastic leukemia in infancy and early childhood: successful treatment with an epipodophyllotoxin. Blood, 1984; 64: 875–82.Google ScholarPubMed
Nishikawa, A., Nakamura, Y., Nobori, U., et al.Acute monocytic leukemia in children. Response to VP-16-213 as a single agent. Cancer, 1987; 60: 2146–9.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Zwaan, C. M., Kaspers, G. J., Pieters, R., et al.Cellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities. Blood, 2002; 100: 3352–60.CrossRefGoogle ScholarPubMed
Shiah, H. S., Kuo, Y. Y., Tang, J. L., et al.Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia, 2002; 16: 196–202.CrossRefGoogle ScholarPubMed
Pagano, L., Pulsoni, A., Vignetti, M., et al.Acute megakaryoblastic leukemia: experience of GIMEMA trials. Leukemia, 2002; 16: 1622–6.CrossRefGoogle ScholarPubMed
Pui, C. H. & Relling, M. V.Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol, 2000; 109: 13–23.CrossRefGoogle ScholarPubMed
Hale, G. A., Heslop, H. E., Bowman, L. C., et al.Bone marrow transplantation for therapy-induced acute myeloid leukemia in children with previous lymphoid malignancies. Bone Marrow Transplant, 1999; 24: 735–9.CrossRefGoogle ScholarPubMed
Luna-Fineman, S., Shannon, K. M., Atwater, S. K., et al.Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood, 1999; 93: 459–66.Google ScholarPubMed
Sasaki, H., Manabe, A., Kojima, S., et al.Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia, 2001; 15: 1713–20.CrossRefGoogle ScholarPubMed
Mrozek, K., Heinonen, K., & Bloomfield, C. D.Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol, 2001; 14: 19–47.CrossRefGoogle ScholarPubMed
Asou, N., Adachi, K., Tamura, J., et al.Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan Adult Leukemia Study Group. J Clin Oncol, 1998; 16: 78–85.CrossRefGoogle ScholarPubMed
Chou, W. C., Tang, J. L., Yao, M., et al.Clinical and biological characteristics of acute promyelocytic leukemia in Taiwan: a high relapse rate in patients with high initial and peak white blood cell counts during all-trans retinoic acid treatment. Leukemia, 1997; 11: 921–8.CrossRefGoogle ScholarPubMed
Albitar, M., Chang, K. S., Pierce, S., et al.The short form of PML-RARalpha fusion transcript is associated with poor survival. Leuk Res, 1999; 23: 89–92.CrossRefGoogle ScholarPubMed
Fukutani, H., Naoe, T., Ohno, R., et al. Isoforms of PML-retinoic acid receptor alpha fused transcripts affect neither clinical features of acute promyelocytic leukemia nor prognosis after treatment with all-trans retinoic acid. The Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia, 1995; 9: 1478–82.Google Scholar
Gallagher, R. E., Willman, C. L., Slack, J. L., et al.Association of PML-RARɑ fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: An intergroup molecular study. Blood, 1997; 90: 1656–63.Google Scholar
Ferrara, F., Morabito, F., Martino, B., et al.CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol, 2000; 18: 1295–300.CrossRefGoogle ScholarPubMed
Bolognesi, E., Cimino, G., Diverio, D., et al.HLA class I in acute promyelocytic leukemia (APL): possible correlation with clinical outcome. Leukemia, 2000; 14: 393–8.CrossRefGoogle Scholar
Jurcic, J. G., Caron, P. C., Miller, W. H. Jr., et al.Sequential targeted therapy for relapsed acute promyelocytic leukemia with all-trans retinoic acid and anti-CD33 monoclonal antibody M195. Leukemia, 1995; 9: 244–8.Google ScholarPubMed
Kiyoi, H., Naoe, T., Nakano, Y., et al.Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood, 1999; 93: 3074–80.Google ScholarPubMed
Lacayo, N. J., Meshinchi, S., Kinnunen, P., et al.Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood, 2004; 104: 2646–54.CrossRefGoogle ScholarPubMed
Abu-Duhier, F. M., Goodeve, A. C., Wilson, G. A., et al.FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol, 2000; 111: 190–5.CrossRefGoogle ScholarPubMed
Kottaridis, P. D., Gale, R. E., Frew, M. E., et al.The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001; 98: 1752–9.CrossRefGoogle ScholarPubMed
Meshinchi, S., Woods, W. G., Stirewalt, D. L., et al.Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood, 2001; 97: 89–94.CrossRefGoogle ScholarPubMed
Frohling, S., Schlenk, R. F., Breitruck, J., et al.Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood, 2002; 100: 4372–80.CrossRefGoogle ScholarPubMed
Zwaan, C. M., Meshinchi, S., Radich, J. P., et al.FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood, 2003; 102: 2387–94.CrossRefGoogle ScholarPubMed
Whitman, S. P., Archer, K. J., Feng, L., et al.Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res, 2001; 61: 7233–9.Google ScholarPubMed
Boissel, N., Cayuela, J. M., Preudhomme, C., et al.Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy. Leukemia, 2002; 16: 1699–704.CrossRefGoogle ScholarPubMed
Schnittger, S., Schoch, C., Dugas, M., et al.Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood, 2002; 100: 59–66.CrossRefGoogle ScholarPubMed
Inokuchi, K., Yamaguchi, H., Hanawa, H., et al.Loss of DCC gene expression is of prognostic importance in acute myelogenous leukemia. Clin Cancer Res, 2002; 8: 1882–8.Google ScholarPubMed
De Bont, E. S., Fidler, V., Meeuwsen, T., et al.Vascular endothelial growth factor secretion is an independent prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients. Clin Cancer Res, 2002; 8: 2856–61.Google ScholarPubMed
Kohler, T., Schill, C., Deininger, M. W., et al.High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia, 2002; 16: 22–9.CrossRefGoogle Scholar
Del Poeta, G., Venditti, A., Del Principe, M. I., et al.Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood, 2003; 101: 2125–31.CrossRefGoogle Scholar
Valk, P. J., Verhaak, R. G., Beijen, M. A., et al.Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med., 2004; 350: 1617–28.CrossRefGoogle ScholarPubMed
Bullinger, L., Dohner, K., Bair, E., et al.Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med, 2004; 350: 1605–16.CrossRefGoogle ScholarPubMed
Leith, C. P., Kopecky, K. J., Chen, I. M., et al.Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood, 1999; 94: 1086–99.Google ScholarPubMed
Legrand, O., Simonin, G., Beauchamp-Nicoud, A., et al.Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood, 1999; 94: 1046–56.Google ScholarPubMed
Boer, M. L., Pieters, R., Kazemier, K. M., et al.Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia. Blood, 1998; 91: 2092–8.Google Scholar
Steinbach, D., Sell, W., Voigt, A., et al.BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia, 2002; 16: 1443–7.CrossRefGoogle ScholarPubMed
Heuvel-Eibrink, M. M., Wiemer, E. A., Prins, A., et al.Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia, 2002; 16: 833–9.CrossRefGoogle Scholar
Kolk, D. M., Vellenga, E., Scheffer, G. L., et al.Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood, 2002; 99: 3763–70.CrossRefGoogle ScholarPubMed
Abbott, B. L., Colapietro, A. M., Barnes, Y., et al.Low levels of ABCG2 expression in adult AML blast samples. Blood, 2002; 100: 4594–601.CrossRefGoogle ScholarPubMed
Gaynon, P. S., Desai, A. A., Bostrom, B. C., et al.Early response to therapy and outcome in childhood acute lymphoblastic leukemia: a review. Cancer, 1997; 80: 1717–26.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Campana, D. & Coustan-Smith, E.Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol, 2002; 15: 1–19.CrossRefGoogle ScholarPubMed
Pui, C. H. & Campana, D.New definition of remission in childhood acute lymphoblastic leukemia. Leukemia, 2000; 14: 783–5.CrossRefGoogle ScholarPubMed
Szczepanski, T., Orfao, A., Velden, V. H., et al.Minimal residual disease in leukaemia patients. Lancet Oncol, 2001; 2: 409–17.CrossRefGoogle ScholarPubMed
Creutzig, U., Zimmermann, M., Ritter, J., et al.Definition of a standard-risk group in children with AML. Br J Haematol, 1999; 104: 630–9.CrossRefGoogle ScholarPubMed
Kern, W., Haferlach, T., Schoch, C., et al.Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AML Cooperative Group (AMLCG) 1992 trial. Blood, 2003; 101: 64–70.CrossRefGoogle ScholarPubMed
San Miguel, J. F., Vidriales, M. B., & Orfao, A.Immunological evaluation of minimal residual disease (MRD) in acute myeloid leukaemia (AML). Best Pract Res Clin Haematol, 2002; 15: 105–18.CrossRefGoogle Scholar
Coustan-Smith, E., Ribeiro, R. C., Rubnitz, J. E., et al.Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol, 2003; 123: 243–52.CrossRefGoogle ScholarPubMed
Sievers, E. L., Lange, B. J., Buckley, J. D., et al.Prediction of relapse of pediatric acute myeloid leukemia by use of multidimensional flow cytometry. J Natl Cancer Inst, 1996; 88: 1483–8.CrossRefGoogle ScholarPubMed
Sievers, E. L., Lange, B. J., Alonzo, T. A., et al.Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia. Blood, 2003; 101: 3398–406.CrossRefGoogle ScholarPubMed
San Miguel, J. F., Martinez, A., Macedo, A., et al.Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood, 1997; 90: 2465–70.Google ScholarPubMed
Venditti, A., Buccisano, F., Del Poeta, G., et al.Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood, 2000; 96: 3948–52.Google ScholarPubMed
San Miguel, J. F., Vidriales, M. B., Lopez-Berges, C., et al.Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood, 2001; 98: 1746–51.CrossRefGoogle ScholarPubMed
Yin, J. A. & Grimwade, D.Minimal residual disease evaluation in acute myeloid leukaemia. Lancet, 2002; 360: 160–2.CrossRefGoogle ScholarPubMed
Schnittger, S., Weisser, M., Schoch, C., et al.New score predicting for prognosis in PML-+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood, 2003; 102: 2746–55.CrossRefGoogle ScholarPubMed
Lo, C. F., Diverio, D., Avvisati, G., et al.Therapy of molecular relapse in acute promyelocytic leukemia. Blood, 1999; 94: 2225–9.Google Scholar
Tobal, K., Newton, J., Macheta, M., et al.Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse. Blood, 2000; 95: 815–19.Google Scholar
Buonamici, S., Ottaviani, E., Testoni, N., et al.Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood, 2002; 99: 443–9.CrossRefGoogle Scholar
Guerrasio, A., Pilatrino, C., De Micheli, D., et al.Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia, 2002; 16: 1176–81.CrossRefGoogle ScholarPubMed
Viehmann, S., Teigler-Schlegel, A., Bruch, J., et al.Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia, 2003; 17: 1130–6.CrossRefGoogle ScholarPubMed
Trka, J., Kalinova, M., Hrusak, O., et al.Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia, 2002; 16: 1381–9.CrossRefGoogle ScholarPubMed
Cilloni, D., Gottardi, E., De Micheli, D., et al.Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia, 2002; 16: 2115–21.CrossRefGoogle ScholarPubMed
Lo, C. F., Avvisati, G., Diverio, D., et al.Molecular evaluation of response to all-trans-retinoic acid therapy in patients with acute promyelocytic leukemia. Blood, 1991; 77: 1657–9.Google Scholar
Miller, W. H. Jr., Kakizuka, A., Frankel, S. R., et al.Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci U S A, 1992; 89: 2694–8.CrossRefGoogle ScholarPubMed
Diverio, D., Rossi, V., Avvisati, G., et al.Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA- AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood, 1998; 92: 784–9.Google ScholarPubMed
Ikeda, K., Sasaki, K., Tasaka, T., et al.Reverse transcription-polymerase chain reaction for PML-RAR alpha fusion transcripts in acute promyelocytic leukemia and its application to minimal residual leukemia detection. Leukemia, 1993; 7: 544–8.Google ScholarPubMed
Fukutani, H., Naoe, T., Ohno, R., et al. Prognostic significance of the RT-PCR assay of PML-RARa transcripts in acute promyelocytic leukemia. The Leukemia Study Group of the Ministry of Health and Welfare (Kouseisho). Leukemia, 1995; 9: 588–93.Google Scholar
Burnett, A. K., Grimwade, D., Solomon, E., et al.Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood, 1999; 93: 4131–43.Google ScholarPubMed
Lo, C. F., Diverio, D., Falini, B., et al.Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood, 1999; 94: 12–22.Google Scholar
Cassinat, B., Zassadowski, F., Balitrand, N., et al.Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia, 2000; 14: 324–8.CrossRefGoogle Scholar
Tobal, K., Moore, H., Macheta, M., et al.Monitoring minimal residual disease and predicting relapse in APL by quantitating PML-RARalpha transcripts with a sensitive competitive RT- PCR method. Leukemia, 2001; 15: 1060–5.CrossRefGoogle ScholarPubMed
Rubnitz, J. E., Lensing, S., Zhou, Y., et al.Death during induction therapy and first remission of acute leukemia in childhood: the St. Jude experience. Cancer, 2004; 101: 1677–84.CrossRefGoogle ScholarPubMed
Okamoto, Y., Ribeiro, R. C., Srivastava, D. K., et al.Viridans streptococcal sepsis: clinical features and complications in childhood acute myeloid leukemia. J Pediatr Hematol Oncol, 2003; 25: 696–703.CrossRefGoogle ScholarPubMed
Pizzo, P. A.Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med, 1993; 328: 1323–32.Google ScholarPubMed
Freifeld, A., Marchigiani, D., Walsh, T., et al.A double-blind comparison of empirical oral and intravenous antibiotic therapy for low-risk febrile patients with neutropenia during cancer chemotherapy. N Engl J Med, 1999; 341: 305–11.CrossRefGoogle ScholarPubMed
Gamis, A. S., Howells, W. B., DeSwarte-Wallace, J., et al.Alpha hemolytic streptococcal infection during intensive treatment for acute myeloid leukemia: a report from the Children's Cancer Group Study CCG-2891. J Clin Oncol, 2000; 18: 1845–55.CrossRefGoogle ScholarPubMed
Walsh, T. J., Pappas, P., Winston, D. J., et al.Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med, 2002; 346: 225–34.CrossRefGoogle ScholarPubMed
Herbrecht, R., Denning, D. W., Patterson, T. F., et al.Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med, 2002; 347: 408–15.CrossRefGoogle ScholarPubMed
Estey, E. H.Growth factors in acute myeloid leukaemia. Best Pract Res Clin Haematol, 2001; 14: 175–87.CrossRefGoogle ScholarPubMed
Godwin, J. E., Kopecky, K. J., Head, D. R., et al.A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest oncology group study (9031). Blood, 1998; 91: 3607–15.Google Scholar
Amadori, S., Suciu, S., Jehn, U., et al.Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase 3 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell'Adulto (EORTC/GIMEMA) Leukemia Groups. Blood, 2005; 106: 27–34.CrossRefGoogle Scholar
Rowe, J. M., Andersen, J. W., Mazza, J. J., et al.A randomized placebo-controlled phase III study of granulocyte- macrophage colony-stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood, 1995; 86: 457–62.Google Scholar
Alonzo, T. A., Kobrinsky, N. L., Aledo, A., et al.Impact of granulocyte colony-stimulating factor use during induction for acute myelogenous leukemia in children: a report from the Children's Cancer Group. J Pediatr Hematol Oncol, 2002; 24: 627–35.CrossRefGoogle ScholarPubMed
Frankel, S. R., Eardley, A., Heller, G., et al.All-trans retinoic acid for acute promyelocytic leukemia. Results of the New York Study. Ann Intern Med, 1994; 120: 278–86.CrossRefGoogle ScholarPubMed
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood, 2000; 95: 90–5.Google ScholarPubMed
Wiley, J. S. & Firkin, F. C.Reduction of pulmonary toxicity by prednisolone prophylaxis during all-trans retinoic acid treatment of acute promyelocytic leukemia. Australian Leukaemia Study Group. Leukemia, 1995; 9: 774–8.Google ScholarPubMed
Bargetzi, M. J., Tichelli, A., Gratwohl, A., et al.[Oral All-transretinoic acid administration in intubated patients with acute promyelocytic leukemia]. Schweiz Med Wochenschr, 1996; 126: 1944–5.Google Scholar
Estey, E. H., Giles, F. J., Kantarjian, H., et al.Molecular remissions induced by liposomal-encapsulated all-trans retinoic acid in newly diagnosed acute promyelocytic leukemia. Blood, 1999; 94: 2230–5.Google ScholarPubMed
Douer, D., Estey, E., Santillana, S., et al.Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood, 2001; 97: 73–80.CrossRefGoogle ScholarPubMed
Smith, M. A., Adamson, P. C., Balis, F. M., et al.Phase I and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients with cancer. J Clin Oncol, 1992; 10: 1666–73.CrossRefGoogle ScholarPubMed
Mahmoud, H. H., Hurwitz, C. A., Roberts, W. M., et al.Tretinoin toxicity in children with acute promyelocytic leukaemia. Lancet, 1993; 342: 1394–5.CrossRefGoogle ScholarPubMed
Krischer, J. P., Epstein, S., Cuthbertson, D. D., et al.Clinical cardiotoxicity following anthracycline treatment for childhood cancer: The Pediatric Oncology Group Experience. J Clin Oncol, 1997; 15: 1544–52.CrossRefGoogle ScholarPubMed
Pui, C. H. & Relling, M. V.Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol, 2000; 109: 13–23.CrossRefGoogle ScholarPubMed
Micallef, I. N., Lillington, D. M., Apostolidis, J., et al.Therapy-related myelodysplasia and secondary acute myelogenous leukemia after high-dose therapy with autologous hematopoietic progenitor-cell support for lymphoid malignancies. J Clin Oncol, 2000; 18: 947–55.CrossRefGoogle ScholarPubMed
Sandoval, C., Pui, C. H., Bowman, L. C., et al.Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol, 1993; 11: 1039–45.CrossRefGoogle ScholarPubMed
Aquino, V. M., Schneider, N. R., & Sandler, E. S.Secondary myelodysplasia with monosomy 7 arising after treatment for acute lymphoblastic leukemia in childhood. J Pediatr Hematol Oncol, 2001; 23: 48–50.CrossRefGoogle ScholarPubMed
Pui, C. H., Relling, M. V., Rivera, G. K., et al.Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia, 1995; 9: 1990–6.Google ScholarPubMed
Pulsoni, A., Pagano, L., Lo, C. F., et al.Clinicobiological features and outcome of acute promyelocytic leukemia occurring as a second tumor: the GIMEMA experience. Blood, 2002; 100: 1972–6.CrossRefGoogle ScholarPubMed
Beaumont, M., Sanz, M., Carli, P. M., et al.Therapy-related acute promyelocytic leukemia. J Clin Oncol, 2003; 21: 2123–37.CrossRefGoogle ScholarPubMed
Latagliata, R., Petti, M. C., Fenu, S., et al.Therapy-related myelodysplastic syndrome-acute myelogenous leukemia in patients treated for acute promyelocytic leukemia: an emerging problem. Blood, 2002; 99: 822–4.CrossRefGoogle ScholarPubMed
Giles, F. J., Garcia-Manero, G., Cortes, J. E., et al.Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. J Clin Oncol, 2002; 20: 656–64.CrossRefGoogle ScholarPubMed
Rizzieri, D. A., Bass, A. J., Rosner, G. L., et al.Phase I evaluation of prolonged-infusion gemcitabine with mitoxantrone for relapsed or refractory acute leukemia. J Clin Oncol, 2002; 20: 674–9.CrossRefGoogle ScholarPubMed
Gandhi, V., Plunkett, W., Du, M., et al.Prolonged infusion of gemcitabine: clinical and pharmacodynamic studies during a phase I trial in relapsed acute myelogenous leukemia. J Clin Oncol, 2002; 20: 665–73.CrossRefGoogle ScholarPubMed
Seiter, K., Liu, D., Loughran, T., et al.Phase I study of temozolomide in relapsed/refractory acute leukemia. J Clin Oncol, 2002; 20: 3249–53.CrossRefGoogle ScholarPubMed
Sievers, E. L., Appelbaum, F. R., Spielberger, R. T., et al.Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood, 1999; 93: 3678–84.Google ScholarPubMed
Sievers, E. L., Larson, R. A., Stadtmauer, E. A., et al.Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol, 2001; 19: 3244–54.CrossRefGoogle ScholarPubMed
Larson, R. A., Boogaerts, M., Estey, E., et al.Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia, 2002; 16: 1627–36.CrossRefGoogle Scholar
Zwaan, C. M., Reinhardt, D., Corbacioglu, S., et al.Gemtuzumab ozogamicin: first clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate-use basis. Blood, 2003; 101: 3868–71.CrossRefGoogle ScholarPubMed
Wadleigh, M., Richardson, P. G., Zahrieh, D., et al.Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood, 2003; 102: 1578–82.CrossRefGoogle ScholarPubMed
Daskalakis, M., Nguyen, T. T., Nguyen, C., et al.Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2’-deoxycytidine (decitabine) treatment. Blood, 2002; 100: 2957–64.CrossRefGoogle ScholarPubMed
Silverman, L. R., Demakos, E. P., Peterson, B. L., et al.Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol, 2002; 20: 2429–40.CrossRefGoogle ScholarPubMed
Byrd, J. C., Marcucci, G., Parthun, M. R., et al.A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood, 2005; 105: 959–67.CrossRefGoogle ScholarPubMed
Gore, S. D., Weng, L. J., Figg, W. D., et al.Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res, 2002; 8: 963–70.Google ScholarPubMed
Sandor, V., Bakke, S., Robey, R. W., et al.Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res, 2002; 8: 718–28.Google Scholar
Brown, P., Meshinchi, S., Levis, M., et al.Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood, 2004; 104: 1841–9.CrossRefGoogle ScholarPubMed
Kelly, L. M., Yu, J. C., Boulton, C. L., et al.CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell, 2002; 1: 421–32.CrossRefGoogle Scholar
Weisberg, E., Boulton, C., Kelly, L. M., et al.Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell, 2002; 1: 433–43.CrossRefGoogle ScholarPubMed
Zheng, R., Friedman, A. D., & Small, D.Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations. Blood, 2002; 100: 4154–61.CrossRefGoogle ScholarPubMed
Stone, R. M., DeAngelo, D. J., Klimek, V., et al.Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood, 2005; 105: 54–60.CrossRefGoogle ScholarPubMed
Lie, S. O., Abrahamsson, J., Clausen, N., et al.Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol, 2003; 122: 217–25.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Acute myeloid leukemia
    • By Jeffrey E. Rubnitz, Associate Member, Department of Hematology/Oncology, Director of Fellowship Program, St. Jude Children's Research Hospital, Memphis, TN, USA, Bassem I. Razzouk, Associate Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raul C. Ribeiro, Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Acute myeloid leukemia
    • By Jeffrey E. Rubnitz, Associate Member, Department of Hematology/Oncology, Director of Fellowship Program, St. Jude Children's Research Hospital, Memphis, TN, USA, Bassem I. Razzouk, Associate Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raul C. Ribeiro, Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Acute myeloid leukemia
    • By Jeffrey E. Rubnitz, Associate Member, Department of Hematology/Oncology, Director of Fellowship Program, St. Jude Children's Research Hospital, Memphis, TN, USA, Bassem I. Razzouk, Associate Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raul C. Ribeiro, Member, Department of Hematology/Oncology, Director, International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.020
Available formats
×