Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T13:11:44.807Z Has data issue: false hasContentIssue false

Chapter 6 - Fragment-Based Ligand Discovery

from Section two - Molecules for Chemical Genomics

Published online by Cambridge University Press:  05 June 2012

Haian Fu
Affiliation:
Emory University, Atlanta
Get access

Summary

“Reversible molecular interactions are at the heart of the dance of life.” Lubert Stryer

Biochemical systems, their communication pathways, and the related transformations that take place are based on molecular interactions, so we may safely say that these regulate life at a molecular level. For basic science studies or for therapeutic purposes, we can perturb these systems with chemical manipulations. Because of the accumulated knowledge in the fields of organic chemistry and molecular recognition, our investigative instruments have become increasingly powerful. During the last fifty years, there has been a continuous evolution in chemical approaches to interact with biological systems, and fragment-based drug discovery can be considered one of the products of this evolution [1]. In short, fragment-based ligand discovery (FBLD) may be described as the search for a ligand for a macromolecule, which may constitute a lead for a medicinal chemistry program, through the use of very small molecules. This approach, as we will see, may provide a number of advantages over the classical approaches together with the logical consequence that the observed affinities for a good lead compound will fall in the micromolar-millimolar range rather than in the nanomolar range, necessitating that chemists and biologists leave behind the high-affinity paradigm.

This chapter discusses in detail the historical background, key concepts, and basis for the FBLD approach. An illustration of the technology involved will follow, together with a selection of practical and successful applications.

Type
Chapter
Information
Chemical Genomics , pp. 74 - 86
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hajduk, P. JGreer, J. A 2007 A decade of fragment-based drug design: strategic advances and lessons learnedNature Rev Drug Discov 6 211Google Scholar
Bemis, J. WMurcko, M. A 1996 The properties of known drugs. 1. Molecular frameworksJ Med Chem 39 2887Google Scholar
Evans, B. EBock, M. G 1993 Promiscuity in receptor ligand research: benzodiazepine-based cholecystokinin antagonistsAdv Med Chem 2 111Google Scholar
Patchett, A. A 2002 J Med Chem 45 5609
Teague, S. JDavis, A. MLeeson, P. DOprea, T 1999 The design of lead-like combinatorial librariesAngew Chem IEE 38 3743Google Scholar
Lipinski, CLombardo, FDominy, BFeeney, P 1997 Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settingsAdv Drug Delivery Rev 23 3Google Scholar
Hann, M. MLeach, A. RHarper, G 2001 Molecular complexity and its impact on the probability of finding leads for drug discoveryJ Chem Inf Comput Sci 41 856Google Scholar
Rejito, P. AVerkhivker, G. M 1996 Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchorsProc Natl Acad Sci USA 93 8945Google Scholar
Shuker, S. BHajduk, P. JMeadows, R. PFesik, S. W 1996 Discovering high-affinity ligands for proteins: SAR by NMRScience 274 1531Google Scholar
Everts, S 2008 Piece by piece. More and more companies are using fragment-based lead design as a drug discovery strategyChem & Eng News 86 15Google Scholar
Clackson, TWells, J. A 1995 A hot spot of binding energy in a hormone-receptor interfaceScience 267 383Google Scholar
Hajduk, P. JHuth, J. RFesik, S. W 2005 Druggability indices for protein targets derived from NMR-based screening dataJ Med Chem 48 2518Google Scholar
Hopkins, A. LGroom, C. RAlex, A 2004 Ligand efficiency: a useful metric for drug selectionDrug Discov Today 9 430Google Scholar
Andrews, P. RCraik, D. JMartin, J. L 1984 Functional group contributions to drug-receptor interactionsJ Med Chem 27 1648Google Scholar
Kunz, I. DChen, KSharp, K. AKollman, P. A 1999 The maximal affinity of ligandsProc Natl Acad Sci U S A 96 9997Google Scholar
Abad-Zapatero, CMetz, J. T 2005 Ligand efficiency indeces as guidepost for drug discoveryDrug Discov Today 10 464Google Scholar
Hajduk, P. J 2006 Fragment-based drug design. How big is too big ?J Med Chem 49 6972Google Scholar
Bartoli, SFincham, C. IFattori, D 2006 The fragment approach: an update. Technol 3 425Google Scholar
Barker, JCourtney, SHesterkamp, TUllmann, DWhittaker, M 2006 Fragment screening by biochemical assayExpert Opin Drug Discov 1 225Google Scholar
Hajduk, P. JSheppard, GNettesheim, D. GOlejniczak, E. TShuker, S. BMeadows, R. PSteinman, D. HCarrera, G. MMarcotte, P. ASeverin, JWalter, KSmith, HGubbins, ESimmer, RHolzman, T. FMorgan, D. WDavidsen, S. KSummers, J. BFesik, S. W 1997 Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMRJ Am Chem Soc 119 5818Google Scholar
Meyer, MMeyer, B 1999 Characterization of ligand binding by saturation transfer difference NMR spectroscopyAngew Chem Int Ed 38 1784Google Scholar
Dalvit, CFogliatto, GSteward, AVeronesi, MStockman, B 2001 WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicabilityJ Biomol NMR 21 349Google Scholar
Dalvit, CMongelli, NPaper, GGiordano, PVeronesi, MMoskau, DKümmerle, R 2005 Sensitivity improvement in 19F-based screening experiments: theoretical considerations and experimental applicationsJ Am Chem Soc 127 13380Google Scholar
Vanwetswinkel, SHeetebrij, R. Jvan Duynhoven, JHollander, J. GFilippov, D. VHajduk, P. JSiegal, G 2005 TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discoveryChem Biol 12 207Google Scholar
Nienaber, V. LRichardson, P. LKlighofer, VBouska, J. JGiranda, V. LGreer, J 2000 Discovering novel ligands for macromolecules using X-ray crystallographic screeningNat Biotechnol 18 1105Google Scholar
Vetter, D 2002 Chemical microarrays, fragment diversity, label-free imaging by plasmon resonance – a chemical genomic approachJ Cell Biochem 39 79Google Scholar
Slon-Usakiewicz, J. JNg, WDai, J.-RPasternak, ARedden, P. R 2005 Frontal affinity chromatography with MS detection (FAC-MS) in drug discoveryDrug Discov Today 30 409Google Scholar
Murray, C. WCallaghan, OChessari, GCleasby, ACongreve, MFrederickson, MHartshorn, M. JMcMenamin, RPatel, SWallis, N 2007 Application of fragment screening by X-ray crystallography to beta-secretaseJ Med Chem 50 1116Google Scholar
Boehm, H. JBoehringer, MBur, DGmuender, HHuber, WKlaus, WKostrewa, DKuehne, HLuebbers, TMeunier-Keller, NMueller, F 2000 Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screeningJ Med Chem 43 2664Google Scholar
Hajduk, P. JDinges, JSchkeryantz, J. MJanowick, DKaminski, MTufano, MAugeri, D. JPetros, ANienaber, VZhong, PHammond, RCoen, MBeutel, BKatz, LFesik, S. W 1999 Novel inhibitors of Erm methyltransferases from NMR and parallel synthesisJ Med Chem 42 3852Google Scholar
Beevers, R. EBuckley, G. MDavies, NFraser, J. LGalvin, F. CHannah, D. RHaughan, A. FJenkins, KMack, S. RPitt, W. RRatcliffe, A. JRichard, M. DSabin, VSharpe, AWilliams, S. C 2006 Low molecular weight indole fragments as IMPDH inhibitorsBioorg Med Chem Lett 16 2535Google Scholar
Sanders, W. JNienaber, V. LLerner, C. GMcCall, J. OMerrick, S. MSwanson, S. JHarlan, J. EStoll, V. SStamper, G. FBetz, S. FCondroski, K. RMeadows, R. PSeverin, J. MWalter, K. AMagdalinos, PJakob, C. GWagner, RBeutel, B. A 2004 Discovery of potent inhibitors of dihydroneopterin aldolase using CrystaLEAD high-throughput X-ray crystallographic screening and structure-directed lead optimizationJ Med Chem 47 1709Google Scholar
Solit, D. BRosen, N 2006 Hsp90: a novel target for cancer therapyCurr Top Med Chem 6 1204Google Scholar
Huth, J. RPark, CPetros, A. MKunzer, A. RWendt, M. DWang, XLynch, C. LMack, J. CSwift, K. MJudge, R. AChen, JRichardson, P. LJin, STahir, S. KMatayoshi, E. DDorwin, S. ALadror, U. SSeverin, J. MWalter, K. ABartley, D. MFesik, S. WElmore, S. WHajduk, P. J 2007 Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategiesChem Biol Drug Des 70 1Google Scholar
Hajduk, P. JSheppard, GNettesheim, D. GOlejniczak, E. TShuker, S. BMeadows, R. PSteinman, D. HCarrera, G. MMarcotte, P. ASeverin, JWalter, KSmith, HGubbins, ESimmer, RHolzman, T. FMorgan, D. WDavidsen, S. KSummers, J. BFesik, S. W 1997 Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMRJ Am Chem Soc 119 5818Google Scholar
Oltersdorf, TElmore, S. WShoemaker, A. RArmstrong, R. CAugeri, D. JBelli, B. ABruncko, MDeckwerth, T. LDinges, JHajduk, P. JJoseph, M. KKitada, SKorsmeyer, S. JKunzer, A. RLetai, ALi, CMitten, M. JNettesheim, D. GNg, SNimmer, P. MO’Connor, J. MOleksijew, APetros, A. MReed, J. CShen, WTahir, S. KThompson, C. BTomaselli, K. JWang, BWendt, M. DZhang, HFesik, S. WRosenberg, S. H 2005 An inhibitor of Bcl-2 family proteins induces regression of solid tumoursNature 435 677Dinges, A. M.Augeri, D. JBaumeister, S. ABetebenner, D. ABures, M. GElmore, S. WHajduk, P. JJoseph, M. KLandis, S. KNettesheim, D. GRosenberg, S. HShen, WThomas, SWang, XZanze, IZhang, HFesik, S. WGoogle Scholar
Howard, NAbell, CBlakemore, WChessari, GCongreve, MHoward, SJhoti, HMurray, C.W.Seavers, L. CVan Montfort, R. L 2006 Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitorsJ Med Chem 49 1346Google Scholar
Shuker, S. BHajduk, P. JMeadows, R. PFesik, S. W 1996 Discovering high-affinity ligands for proteins: SAR by NMRScience 274 1531Google Scholar
Mocharia, V. PColasson, BLee, L. VRoper, S.Sharpless, K. BWong, C. HKolb, H. C 2005 In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase IIAngew Chem Int Ed 44 116Google Scholar
Whiting, MMuldoon, JLin, Y. CSilverman, S. MLindstrom, WOlson, A. JKolb, H. CFinn, M. GSharpless, K. BElder, J. HFokin, V. V 2006 Inhibitors of HIV-1 protease by using in situ click chemistryAngew Chem Int Ed 45 1435Google Scholar
Krasinski, ARadic, ZManetsch, RRaushel, JTaylor, PSharpless, K. BKolb, H. C 2005 In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitorsJ Am Chem Soc 127 6686Google Scholar
Congreve, M. SDavis, D. JDevine, LGranata, CO’Reilly, MWyatt, P. GJhoti, H 2003 Detection of ligands from a dynamic combinatorial library by X-ray crystallographyAngew Chem Int Ed 42 4479Google Scholar
Hochgurtel, MBiesinger, RKroth, HPiecha, DHofmann, M. WKrause, SSchaaf, ONicolau, CEliseev, A. V 2003 Ketones as building blocks for dynamic combinatorial libraries: highly active neuraminidase inhibitors generated via selection pressure of the biological targetJ Med Chem 46 356Google Scholar
O’Brien, TFahr, B. TSopko, M. MLam, J. WWaal, N. DRaimundo, B. CPurkey, H. EPham, PRomanowski, M. J 2005 Structural analysis of caspase-1 inhibitors derived from TetheringActa Crystallogr Sect F Struct Biol Cryst Commun 61 451Google Scholar
Braisted, A. COslob, J. DDelano, W. LHyde, JMcDowell, R. SWaal, NYu, CArkin, M. RRaimundo, B. C 2003 Discovery of a potent small molecule IL-2 inhibitor through fragment assemblyJ Am Chem Soc 125 3714Google Scholar
Murray, C. WRees, D. C 2009 The rise of fragment-based drug discoveryNature Chemistry 1 187Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×