Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T05:29:24.693Z Has data issue: false hasContentIssue false

APPENDIX A - A Hybrid Analogue/Digital Multiplexer/Multiplier-Based Adaptive Signal Processor

Published online by Cambridge University Press:  28 October 2009

John S. Barlow
Affiliation:
Massachusetts General Hospital and Harvard Medical School
Get access

Summary

The implementation of the adaptive signal processors (ASPs) depicted in Figures 15.11, 15.12, and 15.15, with some modifications, was as follows. In the case of the linear predictor of Figure 15.11 (in which the training signal is identical with the input signal), the processor consists basically of a 16-tap delay line (Fig. A.1), the outputs of taps 9–16 of which are fed, respectively, to eight amplitude-matching units, each of the type shown in Figure 15.1A. (If the 16 taps of such a delay line are summed by means of precision (1%) resistors, linear interpolation results [compare traces 1 and 2 of Fig. A.2]. If two such units are cascaded, a sigmoid [actually a double parabolic] curve can be generated from a step function [compare traces 1 and 3 of Fig. A.2].)

As indicated in Figure A.1, the analog tapped delay line itself (which has a DC response) consists of two synchronously driven 16-channel analogue multiplexers, which serially transfer, via their interconnected common terminals, the stored voltages between adjacent condenser-based storage (sample-and-hold) units (Barlow 1993, pp. 313–315). The outputs are available both in individual form and in multiplexed form, the latter from the interconnected common terminals of the multiplexers (Fig. A.1). In essence, the unit operates as a “bucket brigade,” as does a charge-transfer device. In the present unit, however, it is voltage rather than charge that is transferred. Figure 15.10 shows a sine wave read out from the tapped delay line at four successively increasing delays.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×