Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T03:15:58.541Z Has data issue: false hasContentIssue false

7 - Structure and function of the thin filament proteins of smooth muscle

Published online by Cambridge University Press:  04 August 2010

C. Y. Kao
Affiliation:
State University of New York Health Sciences Center, Brooklyn
Mary E. Carsten
Affiliation:
University of California, Los Angeles
Get access

Summary

The goal of this chapter is to explore possible models by which caldesmon and calponin may alter the force-producing interaction between myosin and actin and how the inhibitory activity of caldesmon and calponin may be controlled. Contraction may be potentially regulated by altering the properties of either myosin or actin. In both cases, one or more of many possible transitions in the cycle of ATP hydrolysis by actomyosin may be affected, including (but not limited to) the binding of myosin to actin, the binding of ATP, Pi, and ADP to actomyosin, and cooperative transitions between the active and inactive forms of the actintropomyosin filament. A detailed account of these transitions is not possible here but may be found elsewhere (Chalovich 1992).

Evidence for actin filament-mediated regulation

Phosphorylation of the 20-kDa myosin light chain (MLC20) by the Ca2+ − and calmodulin-dependent myosin light chain kinase (MLCK) is generally thought to be the primary event initiating smooth muscle contraction (for reviews see Kamm and Stull 1985; Somlyo and Somlyo 1994; and Chapter 6 of this volume). In fact, there is evidence that MLC20 phosphorylation is sufficient to trigger smooth muscle contraction (Itoh et al. 1989). On the other hand, numerous physiological studies have shown that there is no fixed relationship between isometric force and MLC20 phosphorylation. During prolonged contraction MLC20 phosphorylation, crossbridge cycling rates, and intracellular Ca2+ decrease while force is fully maintained by the so-called latch state (Dillon et al. 1981; see also Kamm and Stull 1985 for a review).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×