Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T03:44:41.335Z Has data issue: false hasContentIssue false

18 - Coronary perfusion pressure during cardiopulmonary resuscitation

from Part III - The pathophysiology of global ischemia and reperfusion

Published online by Cambridge University Press:  06 January 2010

Karl B. Kern
Affiliation:
University of Arizona Sarver Heart Center, Tucson, AZ, USA
James T. Niemann
Affiliation:
Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance CA, USA
Stig Steen
Affiliation:
Department of Cardiothoracic Surgery, University Hospital of Lund, Sweden
Norman A. Paradis
Affiliation:
University of Colorado, Denver
Henry R. Halperin
Affiliation:
The Johns Hopkins University School of Medicine
Karl B. Kern
Affiliation:
University of Arizona
Volker Wenzel
Affiliation:
Medizinische Universität Innsbruck, Austria
Douglas A. Chamberlain
Affiliation:
Cardiff University
Get access

Summary

Introduction

The resurgence of resuscitation research in the 1970s and 1980s initially focused on the physiological mechanisms for systemic blood flow during closed chest resuscitation for cardiac arrest. At the same time, the importance of both myocardial and cerebral blood flow during cardiopulmonary resuscitation (CPR) became evident. Using contemporary, state-of-art techniques, investigators found that regional perfusion of vital organs occurs with closed chest compression CPR, but at substantially lower rates than that measured during normal sinus rhythm. Such studies have shown that standard anteroposterior chest compressions can, at best, provide 30% to 40% of normal cerebral blood flow levels. Myocardial blood flow achieved with external chest compressions is often even lower, typically between 10% and 30% of normal. Peripheral perfusion is almost non-existent during CPR. Nevertheless, good CPR efforts can temporarily provide at least some perfusion to the myocardium and cerebrum until more definitive treatment (i.e., defibrillation) can be accomplished.

Myocardial perfusion during cardiac arrest can be estimated by measuring “coronary perfusion pressure” during the resuscitation effort. This perfusion pressure gradient correlates well with resultant myocardial blood flow generated with CPR and with the subsequent possibility of successful defibrillation. The critical importance of coronary perfusion pressure during CPR has been confirmed in both laboratory and clinical studies of resuscitation. This part of the chapter focuses on coronary perfusion pressure during CPR: its generation and impact.

Determinants of coronary perfusion pressure during cardiopulmonary resuscitation

AoD pressure during CPR

The importance of anadequate perfusion pressure for resuscitation from cardiac arrest was first noted by Crile and Dolley in 1906.

Type
Chapter
Information
Cardiac Arrest
The Science and Practice of Resuscitation Medicine
, pp. 369 - 388
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×