Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T14:22:26.050Z Has data issue: false hasContentIssue false

18 - Enhancing Cognition

from Part V - Translating Research on the Neuroscience of Intelligence into Action

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

It is useful to consider three very general approaches to enhancing cognitive functions such as attention, memory, or problem solving (Tang & Posner, 2014). One is training a specific brain network by practice on a task that uses that network (Network Training). Attention and working memory have been two of the most widely used tasks for studying network training. Another approach to enhancement involves a change in brain state by use of physical exercise, meditation, drugs, or playing video games (Brain State). A third approach involves the use of external electrical or magnetic stimulation to activate or inhibit brain pathways (Brain Stimulation). Recently studies have examined these methods in combination (Daugherty et al., 2018; Ward et al., 2017). In this chapter we review examples of each approach designed to improve cognition, related criticisms, and opportunities for further research and application.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, D. (ed.) (2018). The genius within: Smart pills, brain hacks and adventures in intelligence. London: Picador.Google Scholar
Albensi, B.C., Oliver, D. R., Toupin, J., & Odero, G. (2007). Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: Are they effective or relevant? Experimental Neurology, 204, 113.CrossRefGoogle ScholarPubMed
Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). Practice and retention: A unifying analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(5), 11201136.Google Scholar
Baniqued, P., Kranz, M. B., Voss, M. W., Lee, H., Casman, J. D., Severson, J., & Kramer, A. F. (2014). Cognitive training with casual video games: Points to consider. Frontiers in Psychology, 4, 1010.Google Scholar
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 820.Google Scholar
Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Reviews of Neuroscience, 35, 391416.CrossRefGoogle ScholarPubMed
Berman, M. G., Jonides, J., & Kaplan, S. (2008). The cognitive benefits of interacting with nature. Psychological Science, 19(12), 12071212. doi: 10.1111/j.1467-9280.2008.02225.x.CrossRefGoogle ScholarPubMed
Bourrier, S. C., Berman, M. G., & Enns, J. T. (2018). Cognitive strategies and natural environments interact in influencing executive function. Frontiers in Psychology, 9, 1248. doi: 10.3389/fpsyg.2018.01248.CrossRefGoogle ScholarPubMed
Cohen-Kadosh, R. (ed.) (2014). The stimulated brain. Amsterdam: ElsevierGoogle Scholar
Daugherty, A. M., Zwillinga, C., Paula, E. J., Sherepaa, N., Allena, C., Kramer, A. F., … Barbey, A. K. (2018). Multi-modal fitness and cognitive training to enhance fluid intelligence. Intelligence, 66, 3243. doi: 10.1016/j.intell.2017.11.001.CrossRefGoogle Scholar
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4–12 years old. Science, 333(6054), 959964.CrossRefGoogle Scholar
Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage, 26(2), 471479.Google Scholar
Fan, J., McCandliss, B. D., Sommer, T., Raz, M. & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 3(14), 340347.Google Scholar
Farah, M. J. (2015). The unknowns of cognitive enhancement. Science, 379(3), 379380.Google Scholar
Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont, CA: Wadsworth.Google Scholar
Gallen, C. L., & D’Esposito, M. (2019). Brain modularity: A biomarker of intervention-related plasticity. Trends in Cognitive Science, 23(4), 293304.CrossRefGoogle ScholarPubMed
Green, C. S., & Bavelier, D. (2003). Action video games modify visual selective attention. Nature, 423(6939), 534537.Google Scholar
Green, C. S., & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692701.Google Scholar
Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience ontask-switching. Computers in Human Behavior, 28(3), 984994.Google Scholar
Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 24092419.CrossRefGoogle Scholar
Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000) The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185207.CrossRefGoogle ScholarPubMed
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 5865.Google Scholar
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535550.CrossRefGoogle ScholarPubMed
Husain, M., & Mehta, M. A. (2011). Cognitive enhancement by drugs in health and disease. Trends in Cognitive Science, 15(1), 28–36.CrossRefGoogle Scholar
Jaeggi, A. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 196829196833.Google Scholar
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781791.CrossRefGoogle ScholarPubMed
Lynch, G. (1998). Memory and the brain: Unexpected chemistries and a new pharmacology. Neurobiology of Learning and Memory, 70(1–2), 82100.CrossRefGoogle Scholar
Mandolesi, L., Polverino, A., Monturori, S., Foti, F., Giampaolo, F. Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Frontiers in Psychology, 9, 509.Google Scholar
Melby-Lervag, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other mMeasures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512534.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H. L., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth and public safety. Proceedings of the National Academy of Sciences USA, 108(7), 26932698.Google Scholar
Neville, H. J., Stevens, C., Pakulak, E., Bell, T. A., Fanning, J., Klein, S., & Isbell, E. (2013). Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proceedings of the National Academy of Sciences USA, 110(29), 1213812143.Google Scholar
Peng, P., & Miller, A. C. (2016). Does attention training work? A selective meta-analysis to explore the effects of attention training and moderators. Learning and Individual Differences, 45, 7787.CrossRefGoogle Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7189.Google Scholar
Piscopo, D., Weible, A., Rothbart, M. K., Posner, M. I., & Niell, C. M. (2018). Changes in white matter in mice resulting from low frequency brain stimulation. Proceedings of the National Academy of Sciences USA, 115(27), 66396646. doi: 10.1073/pnas.1802160115.CrossRefGoogle ScholarPubMed
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.Google Scholar
Posner, M. I., Tang, Y. Y., & Lynch, G. (2014) Mechanisms of white matter change induced by meditation. Frontiers in Psychology, 5, 1220. doi: 10.3389/fpsyg.2014.01220.Google Scholar
Redick, T. S. (2019) The hype cycle in working memory training. Current Directions in Psychological Science, 28(5), 17.Google Scholar
Reinhart, R. M. G. (2017). Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proceedings of the National Academy of Sciences USA, 114(43), 1154211547.Google Scholar
Reinhart, R. M. G., & Woodman, G. F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences USA, 112(2), 625630.Google Scholar
Reinhart, R. M. G., Zhu, J., Park, S., & Woodman, G. F. (2015). Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proceedings of the National Academy of Sciences USA, 112(30), 94489453.Google Scholar
Rinne, P., Hassan, M., Goniotakis, D., Chohan, K., Sharma, P., Langdon, D., … Bentley, P. (2013). Triple dissociation of attention networks in stroke according to lesion location. Neurology, 81(9), 812820.Google Scholar
Roberts, B. M., Clarke, A., Addante, R. J., & Ranganath, C. (2018). Entrainment enhances theta oscillations and improves episodic memory. Cognitive Neuroscience, 9(3–4), 181193.Google Scholar
Rueda, M. R., Checa, P., & Combita, L. M. (2012). Enhanced efficiency of the executive attention network after training in preschool children: Immediate and after two month effects. Developemental Cognitive Neuroscience, 2(Supp 1), S192S204.Google Scholar
Rueda, M. R., Rothbart, M. K., McCandliss, B., Saccamanno, L., & Posner, M. I. (2005). Training, maturation and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences USA, 102(41), 1493114936.Google Scholar
Santarnecchi, E., Brem, A.-K., Levenbaum, E., Thompson, T., Kadosh, R. C., & Pascual-Leone, A. (2015). Enhancing cognition using transcranial electrical stimulation Current Opinion in Behavioral Sciences, 4, 171178.CrossRefGoogle Scholar
Sasaki, S. R., Tsuiki, S., Miyaguchi, S., Kojima, S., Masaki, M., Otsuru, N., & Onishi, H. (2016). Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Fontiers in Human Neuroscience, 10, 668. doi: 10.3389/fnhum.2016.00668.Google Scholar
Simons, D. J. , Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103186.Google Scholar
Sohlberg, M. M., & Mateer, C. A. (2001). Cognitive rehabilitation: An integrative neuropsychological approach. New York: Guilford.Google Scholar
Sohlberg, M. M., McLaughlin, K. A., Pavese, A., Heidrich, A., & Posner, M. I. (2000). Evaluation of attention process therapy training in persons with acquired brain injury. Journal of Clinical and Experimental Neuropsychology, 22(5), 656676.Google Scholar
Tang, Y. Y., Holzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(5), 213–225.Google Scholar
Tang, Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010) Short term mental training induces white-matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences USA, 107(35), 1564915652.Google Scholar
Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., … Posner, M. I. (2007). Short term meditation training improves attention and self regulation. Proceedings of the National Academy of Sciences USA, 104(43), 1715217156.Google Scholar
Tang, Y. Y., & Posner, M. I. (2009). Attention training and attention state training. Trends in Cognitive Science, 13(5), 222227.Google Scholar
Tang, Y. Y., & Posner, M. I. (2014). Training brain networks and states. Trends in Cognitive Science, 18(7), 345350. doi: 10.1016/j.tics.2014.04.002.CrossRefGoogle ScholarPubMed
Tang, Y. Y., Tang, R., & Posner, M. I. (2013). Brief meditation training induces smoking reduction. Proceedings of the National Academy of Sciences USA, 110(34), 1397113975.Google Scholar
Thimm, M., Fink, G. R., Kust, J., Karbe, H., Sturm, W. (2006). Impact of alertness training on spatial neglect: A behavioural and fMRI study. Neuropsychology, 44(7), 12301246.Google Scholar
Van Kessel, M. E., Geurts, A. C. H., Brouwer, W. H., & Fasotti, L. (2013). Visual scanning training for neglect after stroke with and without a computerized lane tracking dual task. Frontiers in Human Neuroscience, 7, 358.Google Scholar
Vinogradova, O. S., Kitchigina, V. F., Kudina, T. A., & Zenchenko, K. I. (1999). Spontaneous activity and sensory responses of hippocampal neurons during persistent theta-rhythm evoked by median raphe nucleus blockade in rabbit. Neuroscience, 94(3), 745753. doi: 10.1016/S0306-4522(99)00253-5.Google Scholar
Voelker, P., Rothbart, M. K., & Posner, M. I. (2016) A polymorphism related to methylation influences attention during performance of speeded skills. AIMS Neuroscience, 3(1), 4055.Google Scholar
Ward, N., Paul, E., Watson, P., Cook, G. E., Hillman, C. H., Cohen, N. J., … Barbey, A. K. (2017). Enhanced learning through multimodal training: Evidence from a comprehensive cognitive, physical fitness, and neuroscience intervention. Scientific Reports, 7, 5808 doi: 10.1038/s41598–017-06237-5.CrossRefGoogle ScholarPubMed
Willis, S. L.., Tennstedt, S. L., Mariske, M., Ball, K., Elias, J., Koepke, K. M., … Wright, E. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296(23), 28052814.Google Scholar
Zhang, Q., Wang, C. P., Zhao, Q. W., Yang, L., Buschkuehl, M., & Jaeggi, S. M. (2019). The malleability of executive function in early childhood: Effects of schooling and targeted training. Development Science, 22(2), e12748.Google Scholar
Zwilling, C. E., Daugherty, A. M., Hillman, C. H., Kramer, A. F., Cohen, N. J., & Barbey, A. K. (2018). Enhanced decision-making through multimodal training. NPJ Science of Learning, 4(1). doi: 10.1038/s41539–019-0049.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×