Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T08:23:41.269Z Has data issue: false hasContentIssue false

Part I - Foundations

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 1 - 154
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adolph, K. E., & Berger, S. E. (2006). Motor development. Handbook of Child Psychology, 2, 161213.Google Scholar
Akerman, C. J., Smyth, D., & Thompson, I. D. (2002). Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron, 36(5), 869879.Google Scholar
Allendoerfer, K. L., & Shatz, C. J. (1994). The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex. Annual Review of Neuroscience, 17(1), 185218.CrossRefGoogle ScholarPubMed
Als, H., Lawhon, G., Brown, E., Gibes, R., Duffy, F. H., McAnulty, G., & Blickman, J. G. (1986). Individualized behavioral and environmental care for the very low birth weight preterm infant at high risk for bronchopulmonary dysplasia: Neonatal intensive care unit and developmental outcome. Pediatrics, 78(6), 11231132.Google Scholar
Asada, M., MacDorman, K. F., Ishiguro, H., & Kuniyoshi, Y. (2001). Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous Systems, 37(2–3), 185193.Google Scholar
Ball, G., Srinivasan, L., Aljabar, P., Counsell, S. J., Durighel, G., Hajnal, J. V., … Edwards, A. D. (2013). Development of cortical microstructure in the preterm human brain. Proceedings of the National Academy of Sciences, 110(23), 95419546.Google Scholar
Banerjee, A., Meredith, R. M., Rodríguez-Moreno, A., Mierau, S. B., Auberson, Y. P., & Paulsen, O. (2009). Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. Cerebral Cortex, 19(12), 29592969.CrossRefGoogle ScholarPubMed
Barbu-Roth, M., Anderson, D. I., Desprès, A., Streeter, R. J., Cabrol, D., Trujillo, M., … Provasi, J. (2014). Air stepping in response to optic flows that move toward and away from the neonate. Developmental Psychobiology, 56(5), 11421149.Google Scholar
Bayatti, N., Moss, J. A., Sun, L., Ambrose, P., Ward, J. F., Lindsay, S., & Clowry, G. J. (2007). A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cerebral Cortex, 18(7), 15361548.Google Scholar
Beccaria, E., Martino, M., Briatore, E., Podestà, B., Pomero, G., Micciolo, R., … Calzolari, S. (2012). Poor repertoire general movements predict some aspects of development outcome at 2 years in very preterm infants. Early Human Development, 88(6), 393396.Google Scholar
Ben-Ari, Y., Gaiarsa, J. -L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews, 87(4), 12151284.Google Scholar
Blaesse, P., Airaksinen, M. S., Rivera, C., & Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron, 61(6), 820838.Google Scholar
Blankenship, A. G., & Feller, M. B. (2010). Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Reviews Neuroscience, 11(1), 18.Google Scholar
Bobet, J., & Stein, R. B. (1998). A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Transactions on Biomedical Engineering, 45(8), 10101016.CrossRefGoogle ScholarPubMed
Boivin, M. J., Kakooza, A. M., Warf, B. C., Davidson, L. L., & Grigorenko, E. L. (2015). Reducing neurodevelopmental disorders and disability through research and interventions. Nature, 527(7578), S155.Google Scholar
Bosco, G., & Poppele, R. (2001). Proprioception from a spinocerebellar perspective. Physiological Reviews, 81(2), 539568.Google Scholar
Bradley, R. M., & Mistretta, C. M. (1975). Fetal sensory receptors. Physiological Reviews, 55(3), 352382.Google Scholar
Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). Multisensory development. Oxford: Oxford University Press.Google Scholar
Brooks, R. A. (1991). Intelligence without representation. Artificial intelligence, 47(1–3), 139159.Google Scholar
Brumley, M. R., & Robinson, S. R. (2013). Sensory feedback alters spontaneous limb movements in newborn rats: Effects of unilateral forelimb weighting. Developmental Psychobiology, 55(4), 323333.Google Scholar
Butterworth, G., & Hopkins, B. (1988). Hand–mouth coordination in the new-born baby. British Journal of Developmental Psychology, 6(4), 303314.Google Scholar
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain–body–behavior networks. Trends in Cognitive Sciences, 18(8), 395403.Google Scholar
Caligiore, D., Parisi, D., & Baldassarre, G. (2014). Integrating reinforcement learning, equilibrium points, and minimum variance to understand the development of reaching: A computational model. Psychological Review, 121(3), 389.Google Scholar
Cascio, C. J. (2010). Somatosensory processing in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2(2), 62.Google Scholar
Cheng-Yu, T. L., Poo, M. -M., & Dan, Y. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science, 324(5927), 643646.Google Scholar
Clancy, B., Darlington, R., & Finlay, B. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 717.Google Scholar
Clifton, R. K., Morrongiello, B. A., Kulig, J. W., & Dowd, J. M. (1981). Newborns’ orientation toward sound: Possible implications for cortical development. Child Development, 52(3), 833838.Google Scholar
Crisp, S. J., Evers, J. F., & Bate, M. (2011). Endogenous patterns of activity are required for the maturation of a motor network. Journal of Neuroscience, 31(29), 1044510450.Google Scholar
Cuajunco, F. (1940). Development of the neuromuscular spindle in human fetuses. Contributions to Embryology, 28, 97128.Google Scholar
de Vries, J. I., Visser, G. H., & Prechtl, H. F. (1982). The emergence of fetal behaviour. I: Qualitative aspects. Early Human Development, 7(4), 301322.Google Scholar
DeCasper, A. J., Lecanuet, J. -P., Busnel, M. -C., Granier-Deferre, C., & Maugeais, R. (1994). Fetal reactions to recurrent maternal speech. Infant Behavior and Development, 17(2), 159164.Google Scholar
Demiris, J., Rougeaux, S., Hayes, G., Berthouze, L., & Kuniyoshi, Y. (1997). Deferred imitation of human head movements by an active stereo vision head. Paper presented at 6th IEEE International Workshop on Robot and Human Communication, RO-MAN’97 SENDAI, Sendai, Japan.Google Scholar
The Developing Human Connectome Project. Retrieved from www.developingconnectome.org.Google Scholar
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage, 30(4), 11211132.Google Scholar
Eyre, J., Miller, S., Clowry, G., Conway, E., & Watts, C. (2000). Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain, 123(1), 5164.Google Scholar
Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591.CrossRefGoogle ScholarPubMed
Fuchino, Y., Naoi, N., Shibata, M., Niwa, F., Kawai, M., Konishi, Y., … Myowa-Yamakoshi, M. (2013). Effects of preterm birth on intrinsic fluctuations in neonatal cerebral activity examined using optical imaging. PloS one, 8(6), e67432.Google Scholar
Gallagher, S., & Zahavi, D. (2007). The phenomenological mind: An introduction to philosophy of mind and cognitive science. London: Routledge.Google Scholar
Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., … Reichert, J. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881.Google Scholar
Gerhard, D. (2013). Neuroscience. 5th edition. Yale Journal of Biology and Medicine, 86(1), 113114.Google Scholar
Ghosh, A., Antonini, A., McConnell, S. K., & Shatz, C. J. (1990). Requirement for subplate neurons in the formation of thalamocortical connections. Nature, 347(6289), 179.Google Scholar
Gibson, J. (1979). The theory of affordances. In Gibson, J. (Ed.), The ecological approach to visual perception (pp. 127143). Boston, MA: Houghton Mifflin.Google Scholar
Gima, H., Ohgi, S., Morita, S., Karasuno, H., Fujiwara, T., & Abe, K. (2011). A dynamical system analysis of the development of spontaneous lower extremity movements in newborn and young infants. Journal of Physiological Anthropology, 30(5), 179186.Google Scholar
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 78217826.Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 81748179.CrossRefGoogle ScholarPubMed
Goldman, A., & de Vignemont, F. (2009). Is social cognition embodied? Trends in Cognitive Sciences, 13(4), 154159.Google Scholar
Gonzalez-Islas, C., & Wenner, P. (2006). Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron, 49(4), 563575.CrossRefGoogle ScholarPubMed
Granmo, M., Petersson, P., & Schouenborg, J. (2008). Action-based body maps in the spinal cord emerge from a transitory floating organization. Journal of Neuroscience, 28(21), 54945503.Google Scholar
Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52(5), 751766.Google Scholar
Grillner, S., & Jessell, T. M. (2009). Measured motion: Searching for simplicity in spinal locomotor networks. Current Opinion in Neurobiology, 19(6), 572586.Google Scholar
Groen, S. E., de Blécourt, A. C., Postema, K., & Hadders-Algra, M. (2005). General movements in early infancy predict neuromotor development at 9 to 12 years of age. Developmental Medicine and Child Neurology, 47(11), 731738.Google Scholar
Hadders-Algra, M. (2004). General movements: A window for early identification of children at high risk for developmental disorders. Journal of Pediatrics, 145(2), S12S18.Google Scholar
Hadders-Algra, M. (2007). Putative neural substrate of normal and abnormal general movements. Neuroscience & Biobehavioral Reviews, 31(8), 11811190.Google Scholar
Hadders-Algra, M., Mavinkurve-Groothuis, A. M., Groen, S. E., Stremmelaar, E. F., Martijn, A., & Butcher, P. R. (2004). Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clinical Rehabilitation, 18(3), 287299.Google Scholar
Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17), 45354545.Google Scholar
Hakamada, S., Hayakawa, F., Kuno, K., & Tanaka, R. (1988). Development of the monosynaptic reflex pathway in the human spinal cord. Developmental Brain Research, 42(2), 239246.Google Scholar
Hamburger, V., Wenger, E., & Oppenheim, R. (1966). Motility in the chick embryo in the absence of sensory input. Journal of Experimental Zoology, 162(2), 133159.Google Scholar
Hanson, M. G., Milner, L. D., & Landmesser, L. T. (2008). Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. Brain Research Reviews, 57(1), 7785.Google Scholar
Hashimoto, T., Bazmi, H. H., Mirnics, K., Wu, Q., Sampson, A. R., & Lewis, D. A. (2008). Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. American Journal of Psychiatry, 165(4), 479489.Google Scholar
He, J., Maltenfort, M. G., Wang, Q., & Hamm, T. M. (2001). Learning from biological systems: Modeling neural control. IEEE Control Systems, 21(4), 5569.Google Scholar
Hepper, P. G. (1996). Fetal memory: Does it exist? What does it do? Acta Paediatrica, 85, 1620.Google Scholar
Hoffmann, M., Marques, H., Arieta, A., Sumioka, H., Lungarella, M., & Pfeifer, R. (2010). Body schema in robotics: A review. IEEE Transactions on Autonomous Mental Development, 2(4), 304324.Google Scholar
Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24), 1024010245.Google Scholar
Hooker, D. (1952). The prenatal origin of behavior. Lawrence: University of Kansas Press.Google Scholar
Hromádka, T., DeWeese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS biology, 6(1), e16.Google Scholar
Huffman, K. J., & Krubitzer, L. (2001). Area 3a: Topographic organization and cortical connections in marmoset monkeys. Cerebral Cortex, 11(9), 849867.Google Scholar
James, D. K. (2010). Fetal learning: A critical review. Infant and Child Development: An International Journal of Research and Practice, 19(1), 4554.Google Scholar
James, D. K., Spencer, C., & Stepsis, B. (2002). Fetal learning: A prospective randomized controlled study. Ultrasound in Obstetrics & Gynecology, 20(5), 431438.Google Scholar
Kaas, J. H. (1983). What, if anything, is SI? Organization of first somatosensory area of cortex. Physiological Reviews, 63(1), 206231.CrossRefGoogle ScholarPubMed
Kalaska, J., Cohen, D., Prud’Homme, M., & Hyde, M. (1990). Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research, 80(2), 351364.Google Scholar
Kanazawa, H., Kawai, M., Kinai, T., Iwanaga, K., Mima, T., & Heike, T. (2014). Cortical muscle control of spontaneous movements in human neonates. European Journal of Neuroscience, 40(3), 25482553.Google Scholar
Kanold, P. O., & Luhmann, H. J. (2010). The subplate and early cortical circuits. Annual Review of Neuroscience, 33, 2348.Google Scholar
Kanold, P. O., & Shatz, C. J. (2006). Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron, 51(5), 627638.Google Scholar
Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G. L., Ben-Ari, Y., & Buzsáki, G. (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432(7018), 758.Google Scholar
Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants. Journal of Neuropathology & Experimental Neurology, 47(3), 217234.Google Scholar
Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … Wang, Z. (2003). Effects of experience on fetal voice recognition. Psychological Science, 14(3), 220224.Google Scholar
Kostović, I., & Judaš, M. (2010). The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatrica, 99(8), 11191127.Google Scholar
Koyanagi, T., Horimoto, N., Maeda, H., Kukita, J., Minami, T., Ueda, K., & Nakano, H. (1993). Abnormal behavioral patterns in the human fetus at term: Correlation with lesion sites in the central nervous system after birth. Journal of child neurology, 8(1), 1926.Google Scholar
Kuniyoshi, Y. (1994). The science of imitation-towards physically and socially grounded intelligence. Paper presented at the Special Issue TR-94001, Real World Computing Project Joint Symposium, Tsukuba-shi, Ibaraki-ken.Google Scholar
Kuniyoshi, Y., & Berthouze, L. (1998). Neural learning of embodied interaction dynamics. Neural Networks, 11(7–8), 12591276.Google Scholar
Kuniyoshi, Y., Cheng, G., & Nagakubo, A. (2003). Etl-humanoid: A research vehicle for open-ended action imitation. Robotics Research, 6, 6782.CrossRefGoogle Scholar
Kuniyoshi, Y., Yorozu, Y., Inaba, M., & Inoue, H. (2003). From visuo-motor self-learning to early imitation: A neural architecture for humanoid learning. Paper presented at the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Japan.Google Scholar
Kurjak, A., Azumendi, G., Veček, N., Kupešic, S., Solak, M., Varga, D., & Chervenak, F. (2003). Fetal hand movements and facial expression in normal pregnancy studied by four-dimensional sonography. Journal of Perinatal Medicine, 31(6), 496508.Google Scholar
Larroque, B., Ancel, P. -Y., Marret, S., Marchand, L., André, M., Arnaud, C., … Thiriez, G. (2008). Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): A longitudinal cohort study. Lancet, 371(9615), 813820.Google Scholar
Larsen, R. S., Rao, D., Manis, P. B., & Philpot, B. D. (2010). STDP in the developing sensory neocortex. Frontiers in Synaptic Neuroscience, 2, 9.Google Scholar
Lawn, J. E., Mwansa-Kambafwile, J., Horta, B. L., Barros, F. C., & Cousens, S. (2010). “Kangaroo mother care” to prevent neonatal deaths due to preterm birth complications. International Journal of Epidemiology, 39(suppl. 1), i144i154.Google Scholar
Lüchinger, A. B., Hadders-Algra, M., van Kan, C. M., & de Vries, J. I. (2008). Fetal onset of general movements. Pediatric Research, 63(2), 191.Google Scholar
Ludington-Hoe, S. M. (2013). Kangaroo care as a neonatal therapy. Newborn and Infant Nursing Reviews, 13(2), 7375.Google Scholar
Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey. Connection Science, 15(4), 151190.Google Scholar
McConnell, S. K., Ghosh, A., & Shatz, C. J. (1989). Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science, 245(4921), 978982.Google Scholar
McQuillen, P. S., Sheldon, R. A., Shatz, C. J., & Ferriero, D. M. (2003). Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. Journal of Neuroscience, 23(8), 33083315.Google Scholar
Meliza, C. D., & Dan, Y. (2006). Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron, 49(2), 183189.Google Scholar
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 7578.Google Scholar
Merleau-Ponty, M., & Smith, C. (1996). Phenomenology of perception. Delhi: Motilal Banarsidass Publishers.Google Scholar
Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., & Khazipov, R. (2006). Rapid cortical oscillations and early motor activity in premature human neonate. Cerebral Cortex, 17(7), 15821594.Google Scholar
Miller, J. A., Ding, S. -L., Sunkin, S. M., Smith, K. A., Ng, L., Szafer, A., … Aiona, K. (2014). Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199.Google Scholar
Mullen, K. M., Vohr, B. R., Katz, K. H., Schneider, K. C., Lacadie, C., Hampson, M., … Ment, L. R. (2011). Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage, 54(4), 25632570.Google Scholar
Myowa-Yamakoshi, M., & Takeshita, H. (2006). Do human fetuses anticipate self-oriented actions? A study by four-dimensional (4D) ultrasonography. Infancy, 10(3), 289301.Google Scholar
Nagai, Y., Hosoda, K., Morita, A., & Asada, M. (2003). A constructive model for the development of joint attention. Connection Science, 15(4), 211229.Google Scholar
Narayanan, D. Z., & Ghazanfar, A. A. (2014). Developmental neuroscience: How twitches make sense. Current Biology, 24(19), R971R972.Google Scholar
Nebel, M. B., Joel, S. E., Muschelli, J., Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2014). Disruption of functional organization within the primary motor cortex in children with autism. Human Brain Mapping, 35(2), 567580.Google Scholar
Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69(6), 066133.Google Scholar
Ohgi, S., Morita, S., Loo, K. K., & Mizuike, C. (2007). A dynamical systems analysis of spontaneous movements in newborn infants. Journal of Motor Behavior, 39(3), 203214.Google Scholar
Ohlsson, A., & Jacobs, S. E. (2013). NIDCAP: A systematic review and meta-analyses of randomized controlled trials. Pediatrics, 131(3), e881e893.Google Scholar
Okado, N. (1984). Ontogeny of the central nervous system: Neurogenesis, fibre connection, synaptogenesis and myelination in the spinal cord. In Prechtl, H. F. R. (Ed.), Continuity of neural functions from prenatal to postnatal life (pp. 3145). London: Spastics International Medical Publications.Google Scholar
Partridge, E. A., Davey, M. G., Hornick, M. A., McGovern, P. E., Mejaddam, A. Y., Vrecenak, J. D., … Weiland, T. R. (2017). An extra-uterine system to physiologically support the extreme premature lamb. Nature Communications, 8, 15112.Google Scholar
Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389443.Google Scholar
Petersson, P., Granmo, M., & Schouenborg, J. (2004). Properties of an adult spinal sensorimotor circuit shaped through early postnatal experience. Journal of Neurophysiology, 92, 280288.Google Scholar
Petersson, P., Waldenström, A., Fåhraeus, C., & Schouenborg, J. (2003). Spontaneous muscle twitches during sleep guide spinal self-organization. Nature, 424(6944), 72.CrossRefGoogle ScholarPubMed
Pfeifer, R., & Scheier, C. (2001). Understanding intelligence. Cambridge, MA: MIT Press.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. Madison, CT: International Universities Press.Google Scholar
Pitcher, J. B., Schneider, L. A., Burns, N. R., Drysdale, J. L., Higgins, R. D., Ridding, M. C., … Robinson, J. S. (2012). Reduced corticomotor excitability and motor skills development in children born preterm. Journal of Physiology, 590(22), 58275844.Google Scholar
Pitti, A., Mori, H., Yamada, Y., & Kuniyoshi, Y. (2010). A model of spatial development from parieto-hippocampal learning of body-place associations. Paper presented at the 10th International Conference on Epigenetic Robotics, Sweden.Google Scholar
Prechtl, H. F. R. (1984). Continuity and change in early neural development. In Prechtl, H. F. R. (Ed.), Continuity of neural functions from prenatal to postnatal life (pp. 115). London: Spastics International Medical Publications.Google Scholar
Prechtl, H. F. R. (1990). Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Human Development, 23(3), 151158.Google Scholar
Prechtl, H. F. R. (2001). General movement assessment as a method of developmental neurology: New paradigms and their consequences. Developmental Medicine & Child Neurology, 43(12), 836842.Google Scholar
Purves, D. (2012). Neuroscience: Oxford: Oxford University Press.Google Scholar
Rausell, E., Bickford, L., Manger, P. R., Woods, T. M., & Jones, E. G. (1998). Extensive divergence and convergence in the thalamocortical projection to monkey somatosensory cortex. Journal of Neuroscience, 18(11), 42164232.Google Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 18251828. e1823.Google Scholar
Reissland, N., Francis, B., Aydin, E., Mason, J., & Schaal, B. (2014). The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology, 56(5), 955963.Google Scholar
Robinson, S. R., & Kleven, G. A. (2005). Learning to move before birth. In Hopkins, B. & Johnson, S. (Eds.), Prenatal development of postnatal functions (Advances in Infancy Research series) (Vol. 2, pp. 131175). Westport, CT: Praeger.Google Scholar
Robinson, S. R., Kleven, G. A., & Brumley, M. R. (2008). Prenatal development of interlimb motor learning in the rat fetus. Infancy, 13(3), 204228.Google Scholar
Rochat, P. (2009). The infant’s world. Cambridge, MA: Harvard University Press.Google Scholar
Rochat, P. (2011). The self as phenotype. Consciousness and Cognition, 20(1), 109119.Google Scholar
Rochat, P., & Hespos, S. J. (1997). Differential rooting response by neonates: Evidence for an early sense of self. Infant and Child Development, 6(3–4), 105112.Google Scholar
Rubenstein, J. L. (2010). Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology, 23(2), 118123.Google Scholar
Rubenstein, J. L. & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2(5), 255267.Google Scholar
Sarnat, H. B. (2003). Functions of the corticospinal and corticobulbar tracts in the human newborn. Journal of Pediatric Neurology, 1(1), 38.Google Scholar
Sasaki, R., Yamada, Y., Tsukahara, Y., & Kuniyoshi, Y. (2013). Tactile stimuli from amniotic fluid guides the development of somatosensory cortex with hierarchical structure using human fetus simulation. Paper presented at the 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL), Osaka, Japan.Google Scholar
Schaal, B., Marlier, L., & Soussignan, R. (1998). Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behavioral Neuroscience, 112(6), 1438.Google Scholar
Shirado, H., Konyo, M., & Maeno, T. (2007). Modeling of tactile texture recognition mechanism. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 73(9), 25142522.Google Scholar
Sizun, J., & Westrup, B. (2004). Early developmental care for preterm neonates: A call for more research. Archives of Disease in Childhood: Fetal and Neonatal Edition, 89(5), F384F388.Google Scholar
Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., & Neil, J. J. (2010). Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex, 20(12), 28522862.Google Scholar
Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334350.Google Scholar
Spittle, A., Orton, J., Doyle, L. W., & Boyd, R. (2007). Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database of Systematic Reviews, 2, CD005495. doi: 005491-CD005495.005471.Google Scholar
Spitzer, N. C. (2006). Electrical activity in early neuronal development. Nature, 444(7120), 707.Google Scholar
Sporns, O. (2010). Networks of the brain. Cambridge, MA: MIT Press.Google Scholar
Sretavan, D. W., Shatz, C. J., & Stryker, M. P. (1988). Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature, 336(6198), 468.Google Scholar
Stephen, D. G., Hsu, W. -H., Young, D., Saltzman, E. L., Holt, K. G., Newman, D. J., … Goldfield, E. C. (2012). Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination. Chaos, Solitons & Fractals, 45(9–10), 12011219.Google Scholar
Suster, M. L., & Bate, M. (2002). Embryonic assembly of a central pattern generator without sensory input. Nature, 416(6877), 174.Google Scholar
Symington, A. J., & Pinelli, J. (2006). Developmental care for promoting development and preventing morbidity in preterm infants. Cochrane Database Systematic Review, 4, CD001814.Google Scholar
Takahashi, E., Folkerth, R. D., Galaburda, A. M., & Grant, P. E. (2011). Emerging cerebral connectivity in the human fetal brain: An MR tractography study. Cerebral Cortex, 22(2), 455464.Google Scholar
Takahashi, E., Hayashi, E., Schmahmann, J. D., & Grant, P. E. (2014). Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. Neuroimage, 96, 326333.Google Scholar
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147.Google Scholar
Teramae, J. -N., Tsubo, Y., & Fukai, T. (2012). Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Scientific Reports, 2, 485.Google Scholar
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. TRENDS in Neurosciences, 29(3), 148159.Google Scholar
Tomasello, M. (2009). The cultural origins of human cognition: Cambridge, MA: Harvard University Press.Google Scholar
Tripodi, M., Stepien, A. E., & Arber, S. (2011). Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature, 479(7371), 61.Google Scholar
Vaal, J., van Soest, A., Hopkins, B., Sie, L., & van der Knaap, M. (2000). Development of spontaneous leg movements in infants with and without periventricular leukomalacia. Experimental Brain Research, 135(1), 94105.Google Scholar
van den Heuvel, M. P., Kersbergen, K. J., de Reus, M. A., Keunen, K., Kahn, R. S., Groenendaal, F., … Benders, M. J. (2014). The neonatal connectome during preterm brain development. Cerebral Cortex, 25(9), 30003013.Google Scholar
van der Meer, A. L. (1997). Keeping the arm in the limelight: Advanced visual control of arm movements in neonates. European Journal of Paediatric Neurology, 1(4), 103108.Google Scholar
Varela, F. J., Rosch, E., & Thompson, E. (1992). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
Vauclair, J. (2012). Developpment du jeune enfant, Motricite, Perception, Cognition. Paris: Belin.Google Scholar
von Hofsten, C. (1982). Eye–hand coordination in the newborn. Developmental Psychology, 18(3), 450.Google Scholar
von Hofsten, C. (2007). Action in development. Developmental Science, 10(1), 5460.Google Scholar
Waldmeier, S., Grunt, S., Delgado-Eckert, E., Latzin, P., Steinlin, M., Fuhrer, K., & Frey, U. (2013). Correlation properties of spontaneous motor activity in healthy infants: A new computer-assisted method to evaluate neurological maturation. Experimental Brain Research, 227(4), 433446.Google Scholar
Wallin, L., & Eriksson, M. (2009). Newborn individual development care and assessment program (NIDCAP): A systematic review of the literature. Worldviews on Evidence-Based Nursing, 6(2), 5469.Google Scholar
Warp, E., Agarwal, G., Wyart, C., Friedmann, D., Oldfield, C. S., Conner, A., … Isacoff, E. Y. (2012). Emergence of patterned activity in the developing zebrafish spinal cord. Current Biology, 22(2), 93102.Google Scholar
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440.Google Scholar
Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., & Thelen, E. (2001). Autonomous mental development by robots and animals. Science, 291(5504), 599600.Google Scholar
White, L. E., Coppola, D. M., & Fitzpatrick, D. (2001). The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature, 411(6841), 1049.Google Scholar
Yamada, Y., Fujii, K., & Kuniyoshi, Y. (2013). Impacts of environment, nervous system and movements of preterms on body map development: Fetus simulation with spiking neural network. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Conference, Osaka, Japan.Google Scholar
Yamada, Y., Kanazawa, H., Iwasaki, S., Tsukahara, Y., Iwata, O., Yamada, S., & Kuniyoshi, Y. (2016). An embodied brain model of the human foetus. Scientific Reports, 6, 27893.Google Scholar
Yamada, Y., & Kuniyoshi, Y. (2012a). Embodiment guides motor and spinal circuit development in vertebrate embryo and fetus. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference, San Diego, California.Google Scholar
Yamada, Y., & Kuniyoshi, Y. (2012b). Emergent spontaneous movements based on embodiment: Toward a general principle for early development. Paper presented at the Post-Graduate Conference on Robotics and Development of Cognition, Lausanne, Switzerland.Google Scholar
Yvert, B., Branchereau, P., & Meyrand, P. (2004). Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window. Journal of Neurophysiology, 91(5), 21012109.Google Scholar
Zoia, S., Blason, L., D’Ottavio, G., Bulgheroni, M., Pezzetta, E., Scabar, A., & Castiello, U. (2007). Evidence of early development of action planning in the human foetus: a kinematic study. Experimental Brain Research, 176(2), 217226.Google Scholar

References

Adair, L. S., Fall, C. H. D., Osmond, C., Stein, A. D., Martorell, R., Ramirez-Zea, M., … COHORTS Group (2013). Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: Findings from five birth cohort studies. Lancet, 382(9891), 525534.Google Scholar
Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley Interdisciplinary Reviews. Cognitive Science, 8 (12).Google Scholar
Adolph, K. E., & Robinson, S. R. (2015). Motor development. In Liben, L. S. & Muller, U. (Eds.), Handbook of child psychology and developmental science (7th ed., Vol. 2: Cognitive processes pp. 114157). New York, NY: Wiley.Google Scholar
Akaboshi, I., Kitano, A., Kan, H., Haraguchi, Y., & Mizumoto, Y. (2012). Chest circumference in infancy predicts obesity in 3-year-old children. Asia Pacific Journal of Clinical Nutrition, 21(4), 495501.Google Scholar
American Academy of Pediatrics (2014). Study on helmet therapy suffers from several weaknesses. AAP News, 35(11), 55.Google Scholar
American Academy of Pediatrics (2016). Systematic review and evidence-based guidelines for the management of patients with positional plagiocephaly. Pediatrics, 138(5), e20162802.Google Scholar
Amiel-Tison, C., Gosselin, J., & Infante-Rivard, C. (2002). Head growth and cranial assessment at neurological examination in infancy. Developmental Medicine and Child Neurology, 44(9), 643648.Google Scholar
Arner, P. (2018). Fat tissue growth and development in humans. Nestle Nutrition Institute Workshop Series, 89, 3745.Google Scholar
Avan, B., Richter, L. M., Ramchandani, P. G., Norris, S. A., & Stein, A. (2010). Maternal postnatal depression and children’s growth and behaviour during the early years of life: exploring the interaction between physical and mental health. Archives of Disease in Childhood, 95(9), 690695.Google Scholar
Barker, D. J. P. (1995). Fetal origins of coronary heart disease. British Medical Journal, 311(6998), 171174.Google Scholar
Bartholomeusz, H. H., Courchesne, E., & Karns, C. M. (2002). Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics, 33(5), 239241.Google Scholar
Bastir, M., García Martínez, D., Recheis, W., Barash, A., Coquerelle, M., Rios, L., … O’Higgins, P. (2013). Differential growth and development of the upper and lower human thorax. PLoS ONE, 8(9), e75128.Google Scholar
Bell, K. A., Wagner, C. L., Perng, W., Feldman, H. A., Shypailo, R. J., & Belfort, M. B. (2018). Validity of body mass index as a measure of adiposity in infancy. Journal of Pediatrics, 196, 168174.Google Scholar
Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Björk-Eriksson, T., … Frisén, J. (2006). Neocortical neurogenesis in humans is restricted to development. Proceedings of the National Academy of Sciences, 103(33), 1256412568.Google Scholar
Braude, P., Bolton, V., & Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature, 332(6163), 459461.Google Scholar
Bray, P. F., Shields, W. D., Wolcott, G. J., & Madsen, J. A. (1969). Occipitofrontal head circumference: An accurate measure of intracranial volume. Journal of Pediatrics, 75(2), 303305.Google Scholar
Brei, C., Much, D., Heimberg, E., Schulte, V., Brunner, S., Stecher, L., … Hauner, H. (2015). Sonographic assessment of abdominal fat distribution during the first year of infancy. Pediatric Research, 78(3), 342350.Google Scholar
Breij, L. M., Abrahamse-Berkeveld, M., Acton, D., de Lucia Rolfe, E., Ong, K. K., & Hokken-Koelega, A. C. S. (2017). Impact of early infant growth, duration of breastfeeding and maternal factors on total body fat mass and visceral fat at 3 and 6 months of age. Annals of Nutrition & Metabolism, 71(3–4), 203210.Google Scholar
Breij, L. M., Kerkhof, G. F., de Lucia Rolfe, E., Ong, K. K., Abrahamse-Berkeveld, M., Acton, D., … Hokken-Koelega, A. C. S. (2017). Longitudinal fat mass and visceral fat during the first 6months after birth in healthy infants: Support for a critical window for adiposity in early life. Pediatric Obesity, 12(4), 286294.Google Scholar
Buschang, P. H. (1982). Differential long bone growth of children between two months and eleven years of age. American Journal of Physical Anthropology, 58(3), 291295.Google Scholar
Butte, N. F., Hopkinson, J. M., Wong, W. W., Smith, E. O., & Ellis, K. J. (2000). Body composition during the first 2 years of life: An updated reference. Pediatric Research, 47(5), 578585.Google Scholar
Cameron, N. (1984). The measurement of human growth. London: Routledge.Google Scholar
Cameron, N., Preece, M. A., & Cole, T. J. (2005). Catch-up growth or regression to the mean? Recovery from stunting revisited. American Journal of Human Biology, 17(4), 412417.Google Scholar
Chen, H., Wang, J., Uddin, L. Q., Wang, X., Gui, X., Lu, F., … Wu, L. (2018). Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder. Autism Research, 11(12), 16431652.Google Scholar
Chen, L., Wang, D., Wu, Z., Ma, L., & Daley, G. Q. (2010). Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Research, 20(9), 982993.Google Scholar
Chester, V. L., & Jensen, R. K. (2005). Changes in infant segment inertias during the first three months of independent walking. Dynamic Medicine, 4(1), 9.Google Scholar
Collett, B. R., Starr, J. R., Kartin, D., Heike, C. L., Berg, J., Cunningham, M. L., & Speltz, M. L. (2011). Development in toddlers with and without deformational plagiocephaly. Archives of Pediatrics & Adolescent Medicine, 165(7), 653658.Google Scholar
Conkle, J., Suchdev, P. S., Alexander, E., Flores-Ayala, R., Ramakrishnan, U., & Martorell, R. (2018). Accuracy and reliability of a low-cost, handheld 3D imaging system for child anthropometry. PloS One, 13(10), e0205320.Google Scholar
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., … Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245254.Google Scholar
Courchesne, E., Pramparo, T., Gazestani, V. H., Lombardo, M. V., Pierce, K., & Lewis, N. E. (2018). The ASD living biology: From cell proliferation to clinical phenotype. Molecular Psychiatry, 24(1), 88107.Google Scholar
Day, N. L., Richardson, G., Robles, N., Sambamoorthi, U., Taylor, P., Scher, M., … Cornelius, M. 1990). Effect of prenatal alcohol exposure on growth and morphology of offspring at 8 months of age. Pediatrics, 85(5), 748752.Google Scholar
Davis, T. A., & Fiorotto, M. L. (2009). Regulation of muscle growth in neonates. Current Opinion in Clinical Nutrition and Metabolic Care, 12(1), 7885.Google Scholar
de Araújo, T. V. B., Rodrigues, L. C., de Alencar Ximenes, R., de Barros Miranda-Filho, D., Ramos Montarroyos, U., Lopes de Melo, A. P., … Turchi Martelli, C. M. (2016). Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. Lancet: Infectious Diseases, 16(12), 13561363.Google Scholar
de Brito, M. L., Nunes, M., Bernardi, J. R., Bosa, V. L., Goldani, M. Z., & da Silva, C. H. (2017). Somatic growth in the first six months of life of infants exposed to maternal smoking in pregnancy. BMC Pediatrics, 17(1), 67.Google Scholar
de Cunto, A., Paviotti, G., Ronfani, L., Travan, L., Bua, J., Cont, G., & Demarini, S. (2014). Can body mass index accurately predict adiposity in newborns? Archives of Disease in Childhood: Fetal and Neonatal Edition, 99(3), F238–239.Google Scholar
de Onis, M., de, Onyango, A. W., Borghi, E., Garza, C., & Yang, H. (2006). Child growth standards and the National Center for Health Statistics/WHO international growth reference: Implications for child health programmes. Public Health Nutrition, 9(7), 942947.Google Scholar
Demerath, E. W., Choh, A. C., Czerwinski, S. A., Lee, M., Sun, S. S., Chumlea, W. C., … Towne, B. (2007). Genetic and environmental influences on infant weight and weight changes: The Fels Longitudinal Study. American Journal of Human Biology, 19, 692702.Google Scholar
Demerath, E. W., & Fields, D. A. (2014). Body composition assessment in the infant. American Journal of Human Biology, 26(3), 291304.Google Scholar
Dingwall, E. J. (1931). Artificial cranial deformation: A contribution to the study of ethnic mutilations. London: J. Bale & Danielsson.Google Scholar
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior & Development, 31(3), 539553.Google Scholar
Dupont, C., Castellanos-Ryan, N., Séguin, J. R., Muckle, G., Simard, M. -N., Shapiro, G. D., … Lippé, S. (2018). The predictive value of head circumference growth during the first year of life on early child traits. Scientific Reports, 8(1), 9828.Google Scholar
Eveleth, P. B., & Tanner, J. M. (1990). Worldwide variation in human growth. Cambridge, UK: Cambridge University Press.Google Scholar
Fabiansen, C., Yaméogo, C. W., Devi, S., Friis, H., Kurpad, A., & Wells, J. C. (2017). Deuterium dilution technique for body composition assessment: Resolving methodological issues in children with moderate acute malnutrition. Isotopes in Environmental and Health Studies, 53(4), 344355.Google Scholar
Fields, D. A., Demerath, E. W., Pietrobelli, A., & Chandler-Laney, P. C. (2012). Body composition at 6 months of life: Comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity, 20(11), 23022306.Google Scholar
Fiorotto, M. L., & Davis, T. A. (2018). Critical windows for the programming effects of early-life nutrition on skeletal muscle mass. Nestle Nutrition Institute Workshop Series, 89, 2535.Google Scholar
Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., … Eckert, J. J. (2004). The embryo and its future. Biology of Reproduction, 71(4), 10461054.Google Scholar
Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: Causes and consequences. Lancet, 391(10132), 18421852.Google Scholar
Goto, E. (2011). Meta-analysis: Identification of low birthweight by other anthropometric measurements at birth in developing countries. Journal of Epidemiology, 21(5), 354362.Google Scholar
Hadush, M. Y., Berhe, A. H., & Medhanyie, A. A. (2017). Foot length, chest and head circumference measurements in detection of low birth weight neonates in Mekelle, Ethiopia: A hospital based cross sectional study. BMC Pediatrics, 17(1), 111.Google Scholar
Hamill, P. V., Drizd, T. A., Johnson, C. L., Reed, R. B., & Roche, A. F. (1977). NCHS growth curves for children birth–18 years: United States. Vital and Health Statistics Series 11: Data from the National Health Survey, 165(i–iv), 174.Google Scholar
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348351.Google Scholar
Helgeland, O., Vaudel, M., Juliusson, P. B., Holmen, O. L., Juodakis, J., Bacelis, J., … Njølstad, R. (2018). Genome-wide association study reveals a dynamic role of common genetic variation in infant and early childhood growth. bioRxiv, November 25. http://dx.doi.org/0.110/478255.Google Scholar
Himes, J. H. (2006). Long-term longitudinal studies and implications for the development of an international growth reference for children and adolescents. Food and Nutrition Bulletin, 27(Suppl. 4), S199–211.Google Scholar
Holzhauer, S., Zwijsen, R. M. L., Jaddoe, V. W. V., Boehm, G., Moll, H. A., Mulder, P. G., … Witteman, J. C. M. (2009). Sonographic assessment of abdominal fat distribution in infancy. European Journal of Epidemiology, 24(9), 521529.Google Scholar
Idriz, S., Patel, J. H., Renani, S. A., Allan, R. A., & Vlahos, I. (2015). CT of normal developmental and variant anatomy of the pediatric skull: Distinguishing trauma from normality. Radiographics, 35(5), 15851601.Google Scholar
Illingworth, R. S., & Lutz, W. (1965). Head circumference of infants related to body weight. Archives of Disease in Childhood, 40(214), 672676.Google Scholar
Janssen, P. A., Thiessen, P., Klein, M. C., Whitfield, M. F., Macnab, Y. C., & Cullis-Kuhl, S. C. (2007). Standards for the measurement of birth weight, length and head circumference at term in neonates of European, Chinese and South Asian ancestry. Open Medicine, 1(2), e74–288.Google Scholar
Jensen, R. K. (1981). The effect of a 12-month growth period on the body moments of inertia of children. Medicine and Science in Sports and Exercise, 13(4), 238242.Google Scholar
Johnson, L., Llewellyn, C. H., van Jaarsveld, C. H. M., Cole, T. J., & Wardle, J. (2011). Genetic and environmental influences on infant growth: Prospective analysis of the Gemini twin birth cohort. PloS One, 6(5), e19918.Google Scholar
Johnson, T. S., Engstrom, J. L., & Gelhar, D. K. (1997). Intra- and interexaminer reliability of anthropometric measurements of term infants. Journal of Pediatric Gastroenterology and Nutrition, 24(5), 497505.Google Scholar
Jukic, A. M., Baird, D. D., Weinberg, C. R., McConnaughey, D. R., & Wilcox, A. J. (2013). Length of human pregnancy and contributors to its natural variation. Human Reproduction, 28(10), 28482855.Google Scholar
Kabir, N., & Forsum, E. (1993). Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatric Research, 34(4), 448454.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLOS ONE, 13(10), e0204428.Google Scholar
Karsenty, G. (2017). Update on the biology of osteocalcin. Endocrine Practice, 23(10), 12701274.Google Scholar
Kelly, K. M., Joganic, E. F., Beals, S. P., Riggs, J. A., McGuire, M. K., & Littlefield, T. R. (2018). Helmet treatment of infants with deformational brachycephaly. Global Pediatric Health, 5. https://doi.org/10.1177/2333794X18805618.Google Scholar
Kleijkers, S. H. M., van Montfoort, A. P. A., Smits, L. J. M., Viechtbauer, W., Roseboom, T. J., Nelissen, E. C., … Dumoulin, J. C. (2014). IVF culture medium affects post-natal weight in humans during the first 2 years of life. Human Reproduction, 29(4), 661669.Google Scholar
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28(47), 1217612182.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., … Gilmore, J. H. (2014). Impact of sex and gonadal steroids on neonatal brain structure. Cerebral Cortex, 24(10), 27212731.Google Scholar
Knittle, J. L., Timmers, K., Ginsberg-Fellner, F., Brown, R. E., & Katz, D. P. (1979). The growth of adipose tissue in children and adolescents: Cross-sectional and longitudinal studies of adipose cell number and size. Journal of Clinical Investigation, 63(2), 239246.Google Scholar
Kuczmarski, R. J., Ogden, C. L., Guo, S. S., Grummer-Strawn, L. M., Flegal, K. M., Mei, Z., … Johnson, C. L. (2002). 2000 CDC growth charts for the United States: methods and development. Vital and Health Statistics Series 11: Data from the National Health Survey, 246, 1190.Google Scholar
La Berge, A. F. (1991). Mothers and infants, nurses and nursing: Alfred Donné and the medicalization of child care in nineteenth-century France. Journal of the History of Medicine and Allied Sciences, 46(1), 2043.Google Scholar
Lam, S., Luerssen, T. G., Hadley, C., Daniels, B., Strickland, B. A., Brookshire, J., & Pan, I. W. (2017). The health belief model and factors associated with adherence to treatment recommendations for positional plagiocephaly. Journal of Neurosurgery Pediatrics, 19(3), 282288.Google Scholar
Lampl, M., & Johnson, M. L. (2011a). Infant growth in length follows prolonged sleep and increased naps. Sleep, 34(5), 641650.Google Scholar
Lampl, M., (2011b). Infant head circumference growth is saltatory and coupled to length growth. Early Human Development, 87(5), 361368.Google Scholar
Lampl, M., Mummert, A., & Schoen, M. (2016). Promoting healthy growth or feeding obesity? The need for evidence-based oversight of infant nutritional supplement claims. Healthcare, 4(4), 84. https://doi.org/10.3390/healthcare4040084Google Scholar
Lampl, M., & Schoen, M. (2017). How long bones grow children: Mechanistic paths to variation in human height growth. American Journal of Human Biology, 29(2), e22983.Google Scholar
Lampl, M., & Thompson, A. L. (2007). Growth chart curves do not describe individual growth biology. American Journal of Human Biology, 19(5), 643653.Google Scholar
Lampl, M., Veldhuis, J. D., & Johnson, M. L. (1992). Saltation and stasis: A model of human growth. Science, 258(5083), 801803.Google Scholar
Laughlin, J., Luerssen, T. G., Dias, M. S., & American Academy of Pediatrics Committee on Practice and Ambulatory Medicine (2011). Prevention and management of positional skull deformities in infants. Pediatrics, 128(6), 12361241.Google Scholar
Lee, H. S., Kim, S. J., & Kwon, J. -Y. (2018). Parents’ perspectives and clinical effectiveness of cranial-molding orthoses in infants with plagiocephaly. Annals of Rehabilitation Medicine, 42 5), 737747.Google Scholar
Lindley, A. A., Benson, J. E., Grimes, C., Cole, T. M., & Herman, A. A. (1999). The relationship in neonates between clinically measured head circumference and brain volume estimated from head CT-scans. Early Human Development, 56(1), 1729.Google Scholar
Lipira, A. B., Gordon, S., Darvann, T. A., Hermann, N. V., van Pelt, A. E., Naidoo, S. D., … Kane, A. A. (2010). Helmet versus active repositioning for plagiocephaly: A three-dimensional analysis. Pediatrics, 126(4), e936–945.Google Scholar
Livshits, G., Peter, I., Vainder, M., & Hauspie, R. (2000) Genetic analysis of growth curve parameters of body weight, height and head circumference. Annals Human Biology, 27(3):299312.Google Scholar
Martínez-Abadías, N., Esparza, M., Sjøvold, T., González-José, R., Santos, M., & Hernández, M. (2009). Heritability of human cranial dimensions: Comparing the evolvability of different cranial regions. Journal of Anatomy, 214(1), 1935.Google Scholar
Martini, M., Klausing, A., Lüchters, G., Heim, N., & Messing-Jünger, M. (2018). Head circumference: A useful single parameter for skull volume development in cranial growth analysis? Head & Face Medicine, 14(1), 3.Google Scholar
Martorell, R. (2017). Improved nutrition in the first 1000 days and adult human capital and health. American Journal of Human Biology, 29(2). doi: 10.1002/ajhb.22952.Google Scholar
McCammon, R. W. (1970). Human growth and development. Oxford: Charles C. Thomas.Google Scholar
Mehta, A., & Hindmarsh, P. C. (2002). The use of somatropin (recombinant growth hormone). in children of short stature. Paediatric Drugs, 4(1), 3747.Google Scholar
Mei, Z., Grummer-Strawn, L. M., Thompson, D., & Dietz, W. H. (2004). Shifts in percentiles of growth during early childhood: Analysis of longitudinal data from the California Child Health and Development Study. Pediatrics, 113(6), e617–627.Google Scholar
Montgomery, S., Bartley, M., & Wilkinson, R. (1997). Family conflict and slow growth. Archives of Disease in Childhood, 77(4), 326330.Google Scholar
Natale, V., & Rajagopalan, A. (2014). Worldwide variation in human growth and the World Health Organization growth standards: A systematic review. British Medical Journal: Open, 4(1), e003735.Google Scholar
Newell, K. M., & Wade, M. G. (2018). Physical growth, body scale, and perceptual-motor development. Advances in Child Development and Behavior, 55, 205243.Google Scholar
Obri, A., Khrimian, L., Karsenty, G., & Oury, F. (2018). Osteocalcin in the brain: From embryonic development to age-related decline in cognition. Nature Reviews. Endocrinology, 14(3), 174182.Google Scholar
Oury, F., Khrimian, L., Denny, C. A., Gardin, A., Chaouni, A., Goedden, N., … Karsenty, G. (2013). Maternal and offspring pools of osteocalcin influence brain development and functions. Cell, 155(1), 228241.Google Scholar
Persing, J., James, H., Swanson, J., Kattwinkel, J., & American Academy of Pediatrics Committee on Practice and Ambulatory Medicine (2003). Prevention and management of positional skull deformities in infants. Pediatrics, 112(1), 199202.Google Scholar
Pindrik, J., Ye, X., Ji, B.G., Pendleton, C., & Ahn, E. S. (2014). Anterior fontanelle closure and size in full-term children based on head computed tomography. Clinical Pediatrics, 53(12), 11491157.Google Scholar
Piven, J., Elison, J. T., & Zylka, M. J. (2018). Toward a conceptual framework for early brain and behavior development in autism. Molecular Psychiatry, 23(1), 165.Google Scholar
Pomeroy, E., Stock, J. T., Cole, T. J., O’Callaghan, M., & Wells, J. C. K. (2014). Relationships between neonatal weight, limb lengths, skinfold thicknesses, body breadths and circumferences in an Australian cohort. PLOS One, 9(8), e105108.Google Scholar
Ramanathan, C., Xu, H., Khan, S. K., Shen, Y., Gitis, P. J., Welsh, D. K., … Liu, A. C. (2014) Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet, 10(4), e1004244. doi:10.1371/journal.pgen.1004244.Google Scholar
Raymond, G. V., & Holmes, L. B. (1994). Head circumference standards in neonates. Journal of Child Neurology, 9(1), 6366.Google Scholar
Roche, A. F., & Guo, S. (1992). Development of reference data for increments in variables related to growth. American Journal of Human Biology, 4(3), 365371.Google Scholar
Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 18271879.Google Scholar
Roy, S. M., Fields, D. A., Mitchell, J. A., Hawkes, C. P., Kelly, A., Wu, G. D., … McCormack, S. E. (2019). Body mass index is a better indicator of body composition than weight-for-length at age 1 month. Journal of Pediatrics, 204, 7783.Google Scholar
Scerri, E. M. L., Thomas, M. G., Manica, A., Gunz, P., Stock, J. T., Stringer, C., … Chikhl, L. (2018). Did our species evolve in subdivided populations across Africa, and why does it matter? Trends in Ecology and Evolution, 33(8), 582594.Google Scholar
Schneider, K., Zernicke, R. F., Ulrich, B. D., Jensen, J. L., & Thelen, E. (1990). Understanding movement control in infants through the analysis of limb intersegmental dynamics. Journal of Motor Behavior, 22(4), 493520.Google Scholar
Smit, D. J. A., Luciano, M., Bartels, M., van Beijsterveldt, C. E. M., Wright, M. J., Hansell, N. K., … Boomsma, D. I. (2010). Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Research and Human Genetics, 13(4), 370380.Google Scholar
Smith, D. W., Truog, W., Rogers, J. E., Greitzer, L. J., Skinner, A. L., McCann, J. J., & Harvey, M. A. (1976). Shifting linear growth during infancy: Illustration of genetic factors in growth from fetal life through infancy. Journal of Pediatrics, 89(2), 225230.Google Scholar
Teager, S. J., Constantine, S., Lottering, N., & Anderson, P. J. (2018). Physiologic closure time of the metopic suture in South Australian infants from 3D CT scans. Child’s Nervous System, 35(2), 329335.Google Scholar
Treit, S., Zhou, D., Chudley, A. E., Andrew, G., Rasmussen, C., Nikkel, S. M., … Beaulieu, C. (2016). Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PloS One, 11(2), e0150370.Google Scholar
Tubbs, R. S., Salter, E. G., & Oakes, W.J. (2006). Artificial deformation of the human skull: A review. Clinical Anatomy, 19(4), 372377.Google Scholar
Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1864(2), 590600.Google Scholar
van der Linden, V. (2016). Description of 13 infants born during October 2015–January 2016 with congenital Zika virus infection without microcephaly at birth. Morbidity and Mortality Weekly Report, 65(47), 13431348.Google Scholar
van Dommelen, P., de Gunst, M. C., van der Vaart, A. W., & Boomsma, D. I. (2004). Genetic study of the height and weight process during infancy. Twin Research, 7(6), 607616.Google Scholar
van Dyck, L. I., & Morrow, E. M. (2017). Genetic control of postnatal human brain growth. Current Opinion in Neurology, 30(1), 114124.Google Scholar
van Vlimmeren, L. A., Engelbert, R. H., Pelsma, M., Groenewoud, H. M., Boere-Boonekamp, M. M., & van der Sanden, M. ( 2017). The course of skull deformation from birth to 5 years of age: A prospective cohort study. European Journal of Pediatrics, 176(1), 1121.Google Scholar
van Wijk, R. M., van Vlimmeren, L. A., Groothuis-Oudshoorn, C. G. M., van der Ploeg, C. P. B., Ijzerman, M. J., & Boore-Boonekamp, M. M. (2014). Helmet therapy in infants with positional skull deformation: Randomised controlled trial. British Medical Journal, 348, g2741.Google Scholar
Wagner, D. R. (2013). Ultrasound as a tool to assess body fat. Journal of Obesity, 2013, 19.Google Scholar
Weaver, D. D., & Christian, J. C. (1980). Familial variation of head size and adjustment for parental head circumference. Journal of Pediatrics, 96(6), 990994.Google Scholar
World Health Organization (2006). WHO child growth standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: WHO.Google Scholar
Wright, C. M., & Emond, A. (2015). Head growth and neurocognitive outcomes. Pediatrics, 135(6), e1393–1398.Google Scholar

References

Almas, A. N., Degnan, K. A., Radulescu, A., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2012). Effects of early intervention and the moderating effects of brain activity on institutionalized children’s social skills at age 8. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl. 2), 1722817231. https://doi.org/10.1073/pnas.1121256109Google Scholar
Baccarelli, A., & Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21(2), 243251.Google Scholar
Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4, Part B), 756773. https://doi.org/10.1016/j.shpsc.2013.06.001Google Scholar
Ben Maamar, M., Sadler-Riggleman, I., Beck, D., McBirney, M., Nilsson, E., Klukovich, R., … Skinner, M. K. (2018). Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 4(2), dvy010. https://doi.org/10.1093/eep/dvy010Google Scholar
Bernard, K., Frost, A., Bennett, C. B., & Lindhiem, O. (2017). Maltreatment and diurnal cortisol regulation: A meta-analysis. Psychoneuroendocrinology, 78, 5767. https://doi.org/10.1016/j.psyneuen.2017.01.005Google Scholar
Bowers, M. E., & Yehuda, R. (2016). Intergenerational transmission of stress in humans. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(1), 232244. https://doi.org/10.1038/npp.2015.247Google Scholar
Bowlby, J., & World Health Organization. (1952). Maternal care and mental health : A report prepared on behalf of the World Health Organization as a contribution to the United Nations programme for the welfare of homeless children (2nd ed.). Geneva: World Health Organization.Google Scholar
Braithwaite, E. C., Kundakovic, M., Ramchandani, P. G., Murphy, S. E., & Champagne, F. A. (2015). Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics, 10(5), 408417. https://doi.org/10.1080/15592294.2015.1039221Google Scholar
Brody, G. H., Yu, T., Chen, E., Beach, S. R. H., & Miller, G. E. (2016). Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57(5), 566574. https://doi.org/10.1111/jcpp.12495Google Scholar
Brown, A. S., Gyllenberg, D., Malm, H., McKeague, I. W., Hinkka-Yli-Salomäki, S., Artama, M., … Sourander, A. (2016). Association of selective serotonin reuptake inhibitor exposure during pregnancy with speech, scholastic, and motor disorders in offspring. JAMA Psychiatry, 73(11), 11631170. https://doi.org/10.1001/jamapsychiatry.2016.2594Google Scholar
Bush, N. R., Edgar, R. D., Park, M., MacIsaac, J. L., McEwen, L. M., Adler, N. E., … Boyce, W. T. (2018). The biological embedding of early-life socioeconomic status and family adversity in children’s genome-wide DNA methylation. Epigenomics, 10(11), 14451461. https://doi.org/10.2217/epi-2018-0042Google Scholar
Busso, D. S., McLaughlin, K. A., Brueck, S., Peverill, M., Gold, A. L., & Sheridan, M. A. (2017). Child abuse, neural structure, and adolescent psychopathology: A longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 56(4), 321–328.e1. https://doi.org/10.1016/j.jaac.2017.01.013Google Scholar
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 53355340.Google Scholar
Cecil, C. A. M., Walton, E., Smith, R. G., Viding, E., McCrory, E. J., Relton, C. L., … Barker, E. D. (2016). DNA methylation and substance-use risk: A prospective, genome-wide study spanning gestation to adolescence. Translational Psychiatry, 6(12), e976. https://doi.org/10.1038/tp.2016.247Google Scholar
Champagne, F. A. (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers in Neuroendocrinology, 29(3), 386397. https://doi.org/10.1016/j.yfrne.2008.03.003Google Scholar
Champagne, F. A. (2016). Epigenetic legacy of parental experiences: Dynamic and interactive pathways to inheritance. Development and Psychopathology, 28(4 Pt. 2), 12191228. https://doi.org/10.1017/S0954579416000808Google Scholar
Champagne, F. A., & Meaney, M. J. (2006). Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biological Psychiatry, 59(12), 12271235. https://doi.org/10.1016/j.biopsych.2005.10.016Google Scholar
Champagne, F. A., (2007). Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behavioral Neuroscience, 121(6), 13531363. https://doi.org/10.1037/0735-7044.121.6.1353Google Scholar
Champagne, F. A., Weaver, I. C. G., Diorio, J., Dymov, S., Szyf, M., & Meaney, M. J. (2006). Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology, 147(6), 29092915. https://doi.org/10.1210/en.2005-1119Google Scholar
Cheung, P., Allis, C. D., & Sassone-Corsi, P. (2000). Signaling to chromatin through histone modifications. Cell, 103(2), 263271.Google Scholar
Cicchetti, D., Hetzel, S., Rogosch, F. A., Handley, E. D., & Toth, S. L. (2016). Genome-wide DNA methylation in 1-year-old infants of mothers with major depressive disorder. Development and Psychopathology, 28(4 Pt. 2), 14131419. https://doi.org/10.1017/S0954579416000912Google Scholar
Cortessis, V. K., Thomas, D. C., Levine, A. J., Breton, C. V., Mack, T. M., Siegmund, K. D., … Laird, P. W. (2012). Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Human Genetics, 131(10), 15651589. https://doi.org/10.1007/s00439-012-1189-8Google Scholar
Curley, J. P., Mashoodh, R., & Champagne, F. A. (2011). Epigenetics and the origins of paternal effects. Hormones and Behavior, 59(3), 306314. https://doi.org/10.1016/j.yhbeh.2010.06.018Google Scholar
Danchin, É., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews. Genetics, 12(7), 475486. https://doi.org/10.1038/nrg3028Google Scholar
D’Elia, A. T. D., Matsuzaka, C. T., Neto, J. B. B., Mello, M. F., Juruena, M. F., & Mello, A. F. (2018). Childhood sexual abuse and indicators of immune activity: A systematic review. Frontiers in Psychiatry, 9, 354. https://doi.org/10.3389/fpsyt.2018.00354Google Scholar
Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 8996. https://doi.org/10.1038/nn.3594Google Scholar
Dupont, C., Armant, D. R., & Brenner, C. A. (2009). Epigenetics: Definition, mechanisms and clinical perspective. Seminars in Reproductive Medicine, 27(5), 351357. https://doi.org/10.1055/s-0029-1237423Google Scholar
Eddy, S. R. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919929. https://doi.org/10.1038/35103511Google Scholar
Fan, Y., Tian, C., Liu, Q., Zhen, X., Zhang, H., Zhou, L., … Zhu, M. (2018). Preconception paternal bisphenol A exposure induces sex-specific anxiety and depression behaviors in adult rats. PloS One, 13(2), e0192434. https://doi.org/10.1371/journal.pone.0192434Google Scholar
Fareri, D. S., Gabard-Durnam, L., Goff, B., Flannery, J., Gee, D. G., Lumian, D. S., … Tottenham, N. (2017). Altered ventral striatal-medial prefrontal cortex resting-state connectivity mediates adolescent social problems after early institutional care. Development and Psychopathology, 29(5), 18651876. https://doi.org/10.1017/S0954579417001456Google Scholar
Farrell, C., Doolin, K., O’ Leary, N., Jairaj, C., Roddy, D., Tozzi, L., … O’Keane, V. (2018). DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Research, 265, 341348. https://doi.org/10.1016/j.psychres.2018.04.064Google Scholar
Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews. Genetics, 13(2), 97109. https://doi.org/10.1038/nrg3142Google Scholar
Fiorito, G., Polidoro, S., Dugué, P. -A., Kivimaki, M., Ponzi, E., Matullo, G., … Vineis, P. (2017). Social adversity and epigenetic aging: A multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Scientific Reports, 7(1), 16266. https://doi.org/10.1038/s41598-017-16391-5Google Scholar
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286(5442), 11551158.Google Scholar
Franklin, T. B., Russig, H., Weiss, I. C., Gräff, J., Linder, N., Michalon, A., … Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68(5), 408415. https://doi.org/10.1016/j.biopsych.2010.05.036Google Scholar
Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., … Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667669. https://doi.org/10.1038/nn.3695Google Scholar
Garg, E., Chen, L., Nguyen, T. T. T., Pokhvisneva, I., Chen, L. M., Unternaehrer, E., … Mavan Study Team. (2018). The early care environment and DNA methylome variation in childhood. Development and Psychopathology, 30(3), 891903. https://doi.org/10.1017/S0954579418000627Google Scholar
Gould, K. L., Coventry, W. L., Olson, R. K., & Byrne, B. (2018). Gene–environment interactions in ADHD: The roles of SES and chaos. Journal of Abnormal Child Psychology, 46(2), 251263. https://doi.org/10.1007/s10802-017-0268-7Google Scholar
Guibert, S., & Weber, M. (2013). Functions of DNA methylation and hydroxymethylation in mammalian development. Current Topics in Developmental Biology, 104, 4783. https://doi.org/10.1016/B978-0-12-416027-9.00002-4Google Scholar
Gurnot, C., Martin-Subero, I., Mah, S. M., Weikum, W., Goodman, S. J., Brain, U., … Hensch, T. K. (2015). Prenatal antidepressant exposure associated with CYP2E1 DNA methylation change in neonates. Epigenetics, 10(5), 361372. https://doi.org/10.1080/15592294.2015.1026031Google Scholar
Hane, A. A., Henderson, H. A., Reeb-Sutherland, B. C., & Fox, N. A. (2010). Ordinary variations in human maternal caregiving in infancy and biobehavioral development in early childhood: A follow-up study. Developmental Psychobiology, 52(6), 558567. https://doi.org/10.1002/dev.20461Google Scholar
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 1704617049. https://doi.org/10.1073/pnas.0806560105Google Scholar
Hobel, C. J., Goldstein, A., & Barrett, E. S. (2008). Psychosocial stress and pregnancy outcome. Clinical Obstetrics and Gynecology, 51(2), 333348. https://doi.org/10.1097/GRF.0b013e31816f2709Google Scholar
Hodel, A. S., Hunt, R. H., Cowell, R. A., van den Heuvel, S. E., Gunnar, M. R., & Thomas, K. M. (2015). Duration of early adversity and structural brain development in post-institutionalized adolescents. NeuroImage, 105, 112119. https://doi.org/10.1016/j.neuroimage.2014.10.020Google Scholar
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115Google Scholar
Houtepen, L. C., Hardy, R., Maddock, J., Kuh, D., Anderson, E. L., Relton, C. L., … Howe, L. D. (2018). Childhood adversity and DNA methylation in two population-based cohorts. Translational Psychiatry, 8(1), 266. https://doi.org/10.1038/s41398-018-0307-3Google Scholar
Hu, F. B., Persky, V., Flay, B. R., Zelli, A., Cooksey, J., & Richardson, J. (1997). Prevalence of asthma and wheezing in public schoolchildren: Association with maternal smoking during pregnancy. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology, 79(1), 8084. https://doi.org/10.1016/S1081-1206(10)63090–6Google Scholar
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12(5), 432442. https://doi.org/10.1038/sj.mp.4001950Google Scholar
Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 10741080. https://doi.org/10.1126/science.1063127Google Scholar
Jones, P. A. (2012). Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484492.Google Scholar
Kertes, D. A., Bhatt, S. S., Kamin, H. S., Hughes, D. A., Rodney, N. C., & Mulligan, C. J. (2017). BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clinical Epigenetics, 9, 68. https://doi.org/10.1186/s13148-017-0367-xGoogle Scholar
Kundakovic, M., Gudsnuk, K., Herbstman, J. B., Tang, D., Perera, F. P., & Champagne, F. A. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences of the United States of America, 112(22), 68076813. https://doi.org/10.1073/pnas.1408355111Google Scholar
Labonté, B., Suderman, M., Maussion, G., Navaro, L., Yerko, V., Mahar, I., … Turecki, G. (2012). Genome-wide epigenetic regulation by early-life trauma. Archives of General Psychiatry, 69(7), 722731. https://doi.org/10.1001/archgenpsychiatry.2011.2287Google Scholar
Lawn, R. B., Anderson, E. L., Suderman, M., Simpkin, A. J., Gaunt, T. R., Teschendorff, A. E., … Howe, L. D. (2018). Psychosocial adversity and socioeconomic position during childhood and epigenetic age: Analysis of two prospective cohort studies. Human Molecular Genetics, 27(7), 13011308. https://doi.org/10.1093/hmg/ddy036Google Scholar
Lester, B. M., Marsit, C. J., Giarraputo, J., Hawes, K., LaGasse, L. L., & Padbury, J. F. (2015). Neurobehavior related to epigenetic differences in preterm infants. Epigenomics, 7(7), 11231136. https://doi.org/10.2217/epi.15.63Google Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3(8), 799806. https://doi.org/10.1038/77702Google Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., … Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 16591662.Google Scholar
Mashoodh, R., Habrylo, I. B., Gudsnuk, K. M., Pelle, G., & Champagne, F. A. (2018). Maternal modulation of paternal effects on offspring development. Proceedings. Biological Sciences, 285(1874). https://doi.org/10.1098/rspb.2018.0118Google Scholar
McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342348. https://doi.org/10.1038/nn.2270Google Scholar
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C. T., Hallett, M., Meaney, M. J., & Szyf, M. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PloS One, 6(2), e14739. https://doi.org/10.1371/journal.pone.0014739Google Scholar
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934. https://doi.org/10.1016/j.copsyc.2016.10.004Google Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81(1), 4179. https://doi.org/10.1111/j.1467-8624.2009.01381.xGoogle Scholar
Melchior, M., Hersi, R., van der Waerden, J., Larroque, B., Saurel-Cubizolles, M. -J., Chollet, A., … EDEN MotherChild Cohort Study Group. (2015). Maternal tobacco smoking in pregnancy and children’s socio-emotional development at age 5: The EDEN mother–child birth cohort study. European Psychiatry: The Journal of the Association of European Psychiatrists, 30(5), 562568. https://doi.org/10.1016/j.eurpsy.2015.03.005Google Scholar
Milaniak, I., Cecil, C. A. M., Barker, E. D., Relton, C. L., Gaunt, T. R., McArdle, W., & Jaffee, S. R. (2017). Variation in DNA methylation of the oxytocin receptor gene predicts children’s resilience to prenatal stress. Development and Psychopathology, 29(5), 16631674. https://doi.org/10.1017/S0954579417001316Google Scholar
Millard, S. J., Weston-Green, K., & Newell, K. A. (2017). The effects of maternal antidepressant use on offspring behaviour and brain development: Implications for risk of neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 80, 743765. https://doi.org/10.1016/j.neubiorev.2017.06.008Google Scholar
Miller, G. E., Yu, T., Chen, E., & Brody, G. H. (2015). Self-control forecasts better psychosocial outcomes but faster epigenetic aging in low-SES youth. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 1032510330. https://doi.org/10.1073/pnas.1505063112Google Scholar
Mitsuya, K., Parker, A. N., Liu, L., Ruan, J., Vissers, M. C. M., & Myatt, L. (2017). Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PloS One, 12(10), e0186115. https://doi.org/10.1371/journal.pone.0186115Google Scholar
Mohn, F., & Schübeler, D. (2009). Genetics and epigenetics: Stability and plasticity during cellular differentiation. Trends in Genetics: TIG, 25(3), 129136. https://doi.org/10.1016/j.tig.2008.12.005Google Scholar
Moisiadis, V. G., Constantinof, A., Kostaki, A., Szyf, M., & Matthews, S. G. (2017). Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Scientific Reports, 7(1), 11814. https://doi.org/10.1038/s41598-017-11635-wGoogle Scholar
Monk, C., Feng, T., Lee, S., Krupska, I., Champagne, F. A., & Tycko, B. (2016). Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. American Journal of Psychiatry, 173(7), 705713. https://doi.org/10.1176/appi.ajp.2015.15091171Google Scholar
Monk, C., Spicer, J., & Champagne, F. A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24(4), 13611376. https://doi.org/10.1017/S0954579412000764Google Scholar
Naumova, O. Y., Lee, M., Koposov, R., Szyf, M., Dozier, M., & Grigorenko, E. L. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24(1), 143155. https://doi.org/10.1017/S0954579411000605Google Scholar
Ng, S. -F., Lin, R. C. Y., Laybutt, D. R., Barres, R., Owens, J. A., & Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature, 467(7318), 963966. https://doi.org/10.1038/nature09491Google Scholar
Nigg, J., Nikolas, M., & Burt, S. A. (2010). Measured gene-by-environment interaction in relation to attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49(9), 863873. https://doi.org/10.1016/j.jaac.2010.01.025Google Scholar
Nilsson, E. E., Sadler-Riggleman, I., & Skinner, M. K. (2018). Environmentally induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 4(2), dvy016. https://doi.org/10.1093/eep/dvy016Google Scholar
Noble, D. (2015). Conrad Waddington and the origin of epigenetics. Journal of Experimental Biology, 218(6), 816818. https://doi.org/10.1242/jeb.120071Google Scholar
Non, A. L., Binder, A. M., Kubzansky, L. D., & Michels, K. B. (2014). Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics, 9(7), 964972. https://doi.org/10.4161/epi.28853Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3(2), 97106.Google Scholar
Papale, L. A., Seltzer, L. J., Madrid, A., Pollak, S. D., & Alisch, R. S. (2018). Differentially methylated genes in saliva are linked to childhood stress. Scientific Reports, 8(1), 10785. https://doi.org/10.1038/s41598-018-29107-0Google Scholar
Paquette, A. G., Houseman, E. A., Green, B. B., Lesseur, C., Armstrong, D. A., Lester, B., & Marsit, C. J. (2016). Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics, 11(8), 603613. https://doi.org/10.1080/15592294.2016.1195534Google Scholar
Paquette, A. G., Lester, B. M., Koestler, D. C., Lesseur, C., Armstrong, D. A., & Marsit, C. J. (2014). Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort. PloS One, 9(8), e104913. https://doi.org/10.1371/journal.pone.0104913Google Scholar
Parade, S. H., Parent, J., Rabemananjara, K., Seifer, R., Marsit, C. J., Yang, B. -Z., … Tyrka, A. R. (2017). Change in FK506 binding protein 5 (FKBP5) methylation over time among preschoolers with adversity. Development and Psychopathology, 29(5), 16271634. https://doi.org/10.1017/S0954579417001286Google Scholar
Parent, C. I., & Meaney, M. J. (2008). The influence of natural variations in maternal care on play fighting in the rat. Developmental Psychobiology, 50(8), 767776. https://doi.org/10.1002/dev.20342Google Scholar
Pauwels, S., Ghosh, M., Duca, R. C., Bekaert, B., Freson, K., Huybrechts, I., … Godderis, L. (2016). Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics, 12(1), 110. https://doi.org/10.1080/15592294.2016.1257450Google Scholar
Peña, C. J., Neugut, Y. D., & Champagne, F. A. (2013). Developmental timing of the effects of maternal care on gene expression and epigenetic regulation of hormone receptor levels in female rats. Endocrinology, 154(11), 43404351. https://doi.org/10.1210/en.2013-1595Google Scholar
Perera, F., Vishnevetsky, J., Herbstman, J. B., Calafat, A. M., Xiong, W., Rauh, V., & Wang, S. (2012). Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environmental Health Perspectives, 120(8), 11901194. https://doi.org/10.1289/ehp.1104492Google Scholar
Razin, A. (1998). CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO Journal, 17(17), 49054908. https://doi.org/10.1093/emboj/17.17.4905Google Scholar
Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210(4470), 604610.Google Scholar
Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S., & Bale, T. L. (2013). Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(21), 90039012. https://doi.org/10.1523/JNEUROSCI.0914-13.2013Google Scholar
Rogers, C. E., Lean, R. E., Wheelock, M. D., & Smyser, C. D. (2018). Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. Journal of Neurodevelopmental Disorders, 10(1), 38. https://doi.org/10.1186/s11689-018-9253-xGoogle Scholar
Schieve, L. A., Tian, L. H., Rankin, K., Kogan, M. D., Yeargin-Allsopp, M., Visser, S., & Rosenberg, D. (2016). Population impact of preterm birth and low birth weight on developmental disabilities in US children. Annals of Epidemiology, 26(4), 267274. https://doi.org/10.1016/j.annepidem.2016.02.012Google Scholar
Sharp, G. C., Salas, L. A., Monnereau, C., Allard, C., Yousefi, P., Everson, T. M., … Relton, C. L. (2017). Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the pregnancy and childhood epigenetics (PACE) consortium. Human Molecular Genetics, 26(20), 40674085. https://doi.org/10.1093/hmg/ddx290Google Scholar
Shorey-Kendrick, L. E., McEvoy, C. T., Ferguson, B., Burchard, J., Park, B. S., Gao, L., … Spindel, E. R. (2017). Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy. American Journal of Respiratory and Critical Care Medicine, 196(6), 745755. https://doi.org/10.1164/rccm.201610-2141OCGoogle Scholar
Simpkin, A. J., Hemani, G., Suderman, M., Gaunt, T. R., Lyttleton, O., Mcardle, W. L., … Smith, G. D. (2016). Prenatal and early life influences on epigenetic age in children: A study of mother–offspring pairs from two cohort studies. Human Molecular Genetics, 25(1), 191201. https://doi.org/10.1093/hmg/ddv456Google Scholar
Sonuga-Barke, E. J. S., Kennedy, M., Kumsta, R., Knights, N., Golm, D., Rutter, M., … Kreppner, J. (2017). Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: The young adult follow-up of the longitudinal English and Romanian Adoptees study. Lancet, 389(10078), 15391548. https://doi.org/10.1016/S0140-6736(17)30045-4Google Scholar
Stamoulis, C., Vanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2017). Neuronal networks in the developing brain are adversely modulated by early psychosocial neglect. Journal of Neurophysiology, 118(4), 22752288. https://doi.org/10.1152/jn.00014.2017Google Scholar
Staneva, A., Bogossian, F., Pritchard, M., & Wittkowski, A. (2015). The effects of maternal depression, anxiety, and perceived stress during pregnancy on preterm birth: A systematic review. Women and Birth: Journal of the Australian College of Midwives, 28(3), 179193. https://doi.org/10.1016/j.wombi.2015.02.003Google Scholar
Susser, E. S., & Lin, S. P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Archives of General Psychiatry, 49(12), 983988.Google Scholar
Talati, A., Wickramaratne, P. J., Wesselhoeft, R., & Weissman, M. M. (2017). Prenatal tobacco exposure, birthweight, and offspring psychopathology. Psychiatry Research, 252, 346352. https://doi.org/10.1016/j.psychres.2017.03.016Google Scholar
Torche, F., & Kleinhaus, K. (2012). Prenatal stress, gestational age and secondary sex ratio: The sex-specific effects of exposure to a natural disaster in early pregnancy. Human Reproduction, 27(2), 558567. https://doi.org/10.1093/humrep/der390Google Scholar
Troller-Renfree, S., McDermott, J. M., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2015). The effects of early foster care intervention on attention biases in previously institutionalized children in Romania. Developmental Science, 18(5), 713722. https://doi.org/10.1111/desc.12261Google Scholar
Tserga, A., Binder, A. M., & Michels, K. B. (2017). Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31(12), 51495158. https://doi.org/10.1096/fj.201601214RRGoogle Scholar
Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G., & Pierce, R. C. (2013). Epigenetic inheritance of a cocaine-resistance phenotype. Nature Neuroscience, 16(1), 4247. https://doi.org/10.1038/nn.3280Google Scholar
Waddington, C. H. (1940). Organisers & genes. Cambridge, UK: Cambridge University Press.Google Scholar
Wadhwa, P. D., Entringer, S., Buss, C., & Lu, M. C. (2011). The contribution of maternal stress to preterm birth: Issues and considerations. Clinics in Perinatology, 38(3), 351384. https://doi.org/10.1016/j.clp.2011.06.007Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847854. https://doi.org/10.1038/nn1276Google Scholar
Weinstock, M., Fride, E., & Hertzberg, R. (1988). Prenatal stress effects on functional development of the offspring. Progress in Brain Research, 73, 319331. https://doi.org/10.1016/S0079-6123(08)60513-0Google Scholar
Welch, M. G., Firestein, M. R., Austin, J., Hane, A. A., Stark, R. I., Hofer, M. A., … Myers, M. M. (2015). Family nurture intervention in the neonatal intensive care unit improves social-relatedness, attention, and neurodevelopment of preterm infants at 18 months in a randomized controlled trial. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 56(11), 12021211. https://doi.org/10.1111/jcpp.12405Google Scholar
Welch, M. G., Stark, R. I., Grieve, P. G., Ludwig, R. J., Isler, J. R., Barone, J. L., & Myers, M. M. (2017). Family nurture intervention in preterm infants increases early development of cortical activity and independence of regional power trajectories. Acta Paediatrica, 106(12), 19521960. https://doi.org/10.1111/apa.14050Google Scholar
Wilkinson, L. S., Davies, W., & Isles, A. R. (2007). Genomic imprinting effects on brain development and function. Nature Reviews. Neuroscience, 8(11), 832843. https://doi.org/10.1038/nrn2235Google Scholar
Wilson, R. D., Davies, G., Désilets, V., Reid, G. J., Summers, A., Wyatt, P., … Genetics Committee and Executive and Council of the Society of Obstetricians and Gynaecologists of Canada (2003). The use of folic acid for the prevention of neural tube defects and other congenital anomalies. Journal of Obstetrics and Gynaecology Canada, 25(11), 959973.Google Scholar
Winther, G., Eskelund, A., Bay-Richter, C., Elfving, B., Müller, H. K., Lund, S., & Wegener, G. (2019). Grandmaternal high-fat diet primed anxiety-like behaviour in the second-generation female offspring. Behavioural Brain Research, 359, 4755. https://doi.org/10.1016/j.bbr.2018.10.017Google Scholar

References

Balas, B., Westerlund, A., Hung, K., & Nelson III, C. A. (2011). Shape, color and the other-race effect in the infant brain. Developmental Science, 14(4), 892900. doi:10.1111/j.1467-7687.2011.01039.xGoogle Scholar
Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science, 344(6182), 424427. doi:10.1126/science.1247003Google Scholar
Barry, R. J., Clarke, A. R., McCarthy, R., Selikowitz, M., Rushby, J. A., & Ploskova, E. (2004). EEG differences in children as a function of resting-state arousal level. Clinical Neurophysiology, 115, 402408.Google Scholar
Bhatt, R., Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: Developmental changes in the use of different kinds of relational information. Child Development, 76(1), 169181.Google Scholar
Bick, J., & Nelson, C. A. (2017). Early experience and brain development. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1387. doi:10.1002/wcs.1387Google Scholar
Bick, J., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2018). Memory and executive functioning in 12-year-old children with a history of institutional rearing. Child Development, 89(2), 495508. doi:10.1111/cdev.12952Google Scholar
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Paediatric Supplement, 422, 2733.Google Scholar
Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13(7), 28012820. doi:10.1523/JNEUROSCI.13-07-02801.1993Google Scholar
Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebal Cortex, 21(1), 191199. doi:10.1093/cercor/bhq078Google Scholar
Cashon, C. H., & Holt, N. A. (2015). Developmental origins of the face inversion effect. In Janette, B. B. (Ed.), Advances in child development and behaviour (Vol. 48, pp. 117150). Philadelphia, PA: Elsevier.Google Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. -A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(2), 291307. doi:10.1093/brain/123.2.291Google Scholar
Conel, J. L. (1939–67). Postnatal development of the human cerebral cortex (Vols. 1–8). Cambridge, MA: Harvard University Press.Google Scholar
Conel, J. L. (1951). The postnatal development of the human cerebral cortex. Vol. 6: The cortex of the six-month infant. Cambridge, MA: Harvard University Press.Google Scholar
Conel, J. L. (1967). The postnatal development of the human cerebral cortex. Vol. 8: The cortex of the six-year-old child. Cambridge, MA: Harvard University Press.Google Scholar
Conte, S., & Richards, J. E. (2019). The development of face-sensitive cortical processing in early Infancy. Paper presented at the Society for Research in Child Development, Baltimore, MD.Google Scholar
Conte, S., Richards, J. E., Guy, M. W., Zieber, N., Xie, W., & Roberts, J.E. (2020). Face-sensitive brain responses in the first year of life. NeuroImage, 211, 116602. https://doi.org/10.1016/j.neuroimage.2020.116602Google Scholar
de Haan, M., Pascalis, O., & Johnson, M. H. (2002). Specialization of neural mechanisms underlying face recognition in human infants. Journal of Cognitive Neuroscience, 14(2), 199209. doi:10.1162/089892902317236849Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Travers, B. G., Adluru, N., Alexander, A. L., & Deoni, S. C. L. (2016). Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage, 132, 225237. doi:10.1016/j.neuroimage.2016.02.040Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., Walker, L., … Deoni, S. C. L. (2014). Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage, 84, 742752. doi:10.1016/j.neuroimage.2013.09.058Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., Walker, L., (2015). Estimating the age of healthy infants from quantitative myelin water fraction maps. Human Brain Mapping, 36(4), 12331244. doi:10.1002/hbm.22671Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Walker, L., Doernberg, E., … Deoni, S. C. L. (2015). Characterizing longitudinal white matter development during early childhood. Brain Structure & Function, 220(4), 19211933. doi:10.1007/s00429-014-0763-3Google Scholar
Dehaene, S., Le Clec’H, G., Poline, J.-B., Le Bihan, D., & Cohen, L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13(3), 321325.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Supplemental Info. Science, 330(6009), 13591364. doi:10.1126/science.1194140Google Scholar
Deoni, S. C. L., Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., & Jerskey, B. A. (2012). Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage, 63(3), 10381053. doi:10.1016/j.neuroimage.2012.07.037Google Scholar
Deoni, S. C. L., Dean, D. C., III, Remer, J., Dirks, H., & O’Muircheartaigh, J. (2015). Cortical maturation and myelination in healthy toddlers and young children. Neuroimage, 115, 147161. doi:10.1016/j.neuroimage.2015.04.058Google Scholar
Deoni, S. C. L., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., … Murphy, D. G. M. (2011). Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, 31(2), 784791. doi:10.1523/JNEUROSCI.2106–10.2011Google Scholar
Deoni, S. C. L., Peters, T. M., & Rutt, B. K. (2005). High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magnetic Resonance in Medicine, 53(1), 237241. doi:10.1002/mrm.20314Google Scholar
Deoni, S. C. L., Rutt, B. K., Arun, T., Pierpaoli, C., & Jones, D. K. (2008). Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magnetic Resonance in Medicine, 60(6), 13721387. doi:10.1002/mrm.21704Google Scholar
Deoni, S. C. L., Rutt, B. K., & Peters, T. M. (2003). Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magnetic Resonance in Medicine, 49(3), 515526. doi:10.1002/mrm.10407Google Scholar
Deoni, S. C. L., Rutt, B. K., (2006). Synthetic T1-weighted brain image generation with incorporated coil intensity correction using DESPOT1. Magnetic Resonance Imaging, 24(9), 12411248. doi:10.1016/j.mri.2006.03.015Google Scholar
DeSilva, J. M., & Lesnik, J. J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55(6), 10641074. https://doi.org/10.1016/j.jhevol.2008.07.008Google Scholar
Eimer, M., Gosling, A., Nicholas, S., & Kiss, M. (2011). The N170 component and its links to configural face processing: A rapid neural adaptation study. Brain Research, 1376, 7687. doi:10.1016/j.brainres.2010.12.046Google Scholar
Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 2840. doi:10.1111/j.1467-8624.2009.01380.xGoogle Scholar
Gao, C., Conte, S., Richards, J.E., Xie, W., & Hanayik, T. (2019). The neural sources of N170: Understanding timing of activation in face-selective areas. Psychophysiology, 56(6), e1336.Google Scholar
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539559.Google Scholar
Guy, M. W., Richards, J. E., Tonnsen, B. L., & Roberts, J. E. (2017). Neural correlates of face processing in etiologically-distinct 12-month-old infants at high risk of autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 6171. doi:10.1016/j.dcn.2017.03.002Google Scholar
Guy, M. W., Zieber, N., & Richards, J. E. (2016). The cortical development of specialized face processing in infancy. Child Development, 87(5), 15811600. doi:10.1111/cdev.12543Google Scholar
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 6573. https://doi.org/10.1016/j.tics.2008.11.003Google Scholar
Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169(9), 822829. doi:10.1001/jamapediatrics.2015.1475Google Scholar
Halit, H., de Haan, M., & Johnson, M. H. (2003). Cortical specialisation for face processing: Face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimage, 19(3), 11801193. doi:10.1016/S1053-8119(03)00076-4Google Scholar
Hanson, J. L., Chandra, A., Wolfe, B. L., & Pollak, S. D. (2011). Association between income and the hippocampus. PLoS One, 6(5), e18712. doi:10.1371/journal.pone.0018712Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Rudolph, K. D., Shirtcliff, E. A., Gee, J. C., … Pollak, S. D. (2012). Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. Journal of Neuroscience, 32(23), 79177925. doi:10.1523/JNEUROSCI.0307-12.2012Google Scholar
Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D. (2013). Family poverty affects the rate of human infant brain growth. PLoS One, 8(12), e80954. doi:10.1371/journal.pone.0080954Google Scholar
Hayden, A., Bhatt, R. S., Reed, A., Corbly, C. R., & Joseph, J. E. (2007). The development of expert face processing: are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 97(2), 8598. doi:10.1016/j.jecp.2007.01.004Google Scholar
Hoehl, S., & Peykarjou, S. (2012). The early development of face processing: What makes faces special? Neuroscience Bulletin, 28(6), 765788. doi:10.1007/s12264-012-1280-0Google Scholar
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517527.Google Scholar
Huttenlocher, P. R. (1994). Synaptogenesis, synapse elimination, and neural plasticity in human cerebral cortex. In Nelson, C. A. (Ed.), Threats to optimal development, the Minnesota symposia on child psychology (Vol. 27, pp. 3554). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167178. doi:10.1002/(SICI)1096–9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-ZGoogle Scholar
Jensen, S. K. G., Berens, A. E., & Nelson, C. A., III (2017). Effects of poverty on interacting biological systems underlying child development. Lancet Child & Adolescent Health, 1(3), 225239. doi:10.1016/S2352-4642(17)30024-XGoogle Scholar
Johnson, M. H., Griffin, R., Csibra, G., Halit, H., Farroni, T., de Haan, M., … Richards, J. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17(3), 599619. doi:10.1017/S0954579405050297Google Scholar
Johnson, M. H., & Morton, J. (1991). Biology and cognitive development: The case of face recognition. Oxford: Basil Blackwell.Google Scholar
Johnson, M. H., Senju, A., & Tomalski, P. (2014). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience Biobehaviour Review. doi:10.1016/j.neubiorev.2014.10.009Google Scholar
Johnson, S. B., Riis, J. L., & Noble, K. G. (2016). State of the art review: Poverty and the developing brain. Pediatrics, 137(4). doi:10.1542/peds.2015–3075Google Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311.Google Scholar
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21092128. doi:10.1098/rstb.2006.1934Google Scholar
Klingberg, T. (2008). White matter maturation and cognitive development during childhood. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 237244). Cambridge, MA: MIT Press.Google Scholar
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Science, 14(7), 317324. doi:10.1016/j.tics.2010.05.002Google Scholar
Kolb, B., & Fantie, B. (1989). Development of the child's brain and behavior. In Reynolds, C. R. & Fletcher-Janzen, E. (Eds.), Handbook of clinical child neuropsychology (pp. 1739). New York, NY: Plenum Press.Google Scholar
Kral, A. (2007). Unimodal and cross-modal plasticity in the “deaf” auditory cortex. International Journal of Audiology, 46(9), 479493.Google Scholar
Lebel, C., & Deoni, S. (2018). The development of brain white matter microstructure. Neuroimage, 182, 207218. https://doi.org/10.1016/j.neuroimage.2017.12.097Google Scholar
Leijser, L. M., Siddiqi, A., & Miller, S. P. (2018). Imaging evidence of the effect of socio-economic status on brain structure and development. Seminars in Pediatric Neurology, 27, 2634. doi: https://doi.org/10.1016/j.spen.2018.03.004Google Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Bapp, C., … Barch, D. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatrics, 167(12), 11351142. doi:10.1001/jamapediatrics.2013.3139Google Scholar
Lyall, A. E., Savadjiev, P., Shenton, M. E., & Kubicki, M. (2016). Insights into the brain: Neuroimaging of brain development and maturation. Journal of Neuroimaging in Psychiatry & Neurology, 1(1), 1019. doi:10.17756/jnpn.2016-003Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 11991208.Google Scholar
Marshall, P. J., Fox, N. A., & CoreGroup, T. B. (2004). A comparison of the electroencephalogram between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16(8), 13271338. doi:10.1162/0898929042304723Google Scholar
Marshall, P. J., Reeb, B. C., Fox, N. A., Nelson, C. A., III, & Zeanah, C. H. (2008). Effects of early intervention on EEG power and coherence in previously institutionalized children in Romania. Development and Psychopathology, 20(3), 861880. doi:10.1017/S0954579408000412Google Scholar
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(5), 6.Google Scholar
McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186(1), 190222. doi:10.1111/j.1749-6632.2009.05331.xGoogle Scholar
McLaughlin, K. A., Sheridan, M. A., & Nelson, C. A. (2017). Neglect as a violation of species-expectant experience: Neurodevelopmental consequences. Biological Psychiatry, 82(7), 462471. doi:10.1016/j.biopsych.2017.02.1096Google Scholar
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 63, 17431753.Google Scholar
Moulson, M. C., Westerlund, A., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). The effects of early experience on face recognition: An event-related potential study of institutionalized children in Romania. Child Development, 80(4), 10391056.Google Scholar
Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 12271233. doi:10.1162/0898929041920441Google Scholar
O’Hare, E. D., & Sowell, E. R. (2008). Imaging developmental changes in gray and white matter in the human brain. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 2338). Cambridge, MA: MIT Press.Google Scholar
O’Muircheartaigh, J., Dean, D. C., III, Ginestet, C. E., Walker, L., Waskiewicz, N., Lehman, K., … Deoni, S. C. L. (2014). White matter development and early cognition in babies and toddlers. Human Brain Mapping, 35(9), 44754487. doi:10.1002/hbm.22488Google Scholar
Parker, S. W., Nelson, C. A., & Group, T. B. E. I. P. C. (2005a). An event-related potential study of the impact of institutional rearing on face recognition. Development and Psychopathology, 17, 621639.Google Scholar
Parker, S. W., Nelson, C. A., (2005b). The impact of early institutional rearing on the ability to discriminate facial expressions of emotion: An event-related potential study. Child Development, 76(1), 5472. doi:10.1111/j.1467-8624.2005.00829.xGoogle Scholar
Pavlakis, A. E., Noble, K., Pavlakis, S. G., Ali, N., & Frank, Y. (2015). Brain imaging and electrophysiology biomarkers: Is there a role in poverty and education outcome research? Pediatric Neurology, 52(4), 383388. https://doi.org/10.1016/j.pediatrneurol.2014.11.005Google Scholar
Pollak, S. D., Nelson, C. A., Schlaak, M. F., Roeber, B. J., Wewerka, S. S., Wiik, K. L., … Gunnar, M. R. (2010). Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Development, 81(1), 224236. doi:10.1111/j.1467-8624.2009.01391.xGoogle Scholar
Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastián-Gallés, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66(3), 339343. doi:https://doi.org/10.1212/01.wnl.0000201049.66073.8dGoogle Scholar
Reinholz, J., & Pollmann, S. (2005). Differential activation of object-selective visual areas by passive viewing of pictures and words. Brain Research: Cognitive Brain Research, 24(3), 702714. doi:10.1016/j.cogbrainres.2005.04.009Google Scholar
Remer, J., Croteau-Chonka, E., Dean, D. C., III, D’Arpino, S., Dirks, H., Whiley, D., & Deoni, S. C. L. (2017). Quantifying cortical development in typically developing toddlers and young children, 1–6 years of age. Neuroimage, 153, 246261. https://doi.org/10.1016/j.neuroimage.2017.04.010Google Scholar
Richards, J. E., Guy, M., Zieber, N., Xie, W., & Roberts, J. E. (2016). Brain changes in response to faces in the first year. Poster presented at the International Conference on Infant Studies, New Orleans, LA.Google Scholar
Richards, J. E., Guy, M., Zieber, N., Xie, W., (2017). Brain changes in response to faces in the first year. Paper presented at the Society for Research in Child Development, Austin, TX.Google Scholar
Richards, J. E., Sanchez, C., Phillips-Meek, M., & Xie, W. (2016). A database of age-appropriate average MRI templates. Neuroimage, 124(Pt. B), 12541259. doi:10.1016/j.neuroimage.2015.04.055Google Scholar
Richards, J. E., & Xie, W. (2015). Brains for all the ages: Structural neurodevelopment in infants and children from a life-span perspective. In Benson, J. (Ed.), Advances in Child Development and Behaviour (Vol. 48, pp. 152). Philadelphia, PA: Elsevier.Google Scholar
Rosenberg, K., & Trevathan, W. (2002). Birth, obstetrics and human evolution. BJOG: An International Journal of Obstetrics and Gynaecology, 109(11), 11991206. https://doi.org/10.1016/S1470-0328(02)00410-XGoogle Scholar
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20(6), 676680. doi:10.1111/j.1467-9280.2009.02348.xGoogle Scholar
Scott, L. S., (2010). Experience-dependent neural specialization during infancy. Neuropsychologia, 48(6), 18571861. doi:10.1016/j.neuropsychologia.2010.02.008Google Scholar
Scott, L. S., & Nelson, C. A. (2006). Featural and configural face processing in adults and infants: A behavioral and electrophysiological investigation. Perception, 35(8), 11071128. doi:10.1068/p5493Google Scholar
Shankle, W. R., Romney, A. K., Landing, B. H., & Hara, J. (1998). Developmental patterns in the cytoarchitecture of the human cerebral cortex from birth to 6 years examined by correspondence analysis. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 40234028.Google Scholar
Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 1292712932. doi:10.1073/pnas.1200041109Google Scholar
Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969. doi:10.3389/fpsyg.2015.00969Google Scholar
Simion, F., Leo, I., Turati, C., Valenza, E., & Dalla Barba, B. (2007). How face specialization emerges in the first months of life. Progressive Brain Research, 164, 169185. doi:10.1016/S0079-6123(07)64009-6Google Scholar
Smyke, A. T., Zeanah, C. H., Fox, N. A., Nelson, C. A., & Guthrie, D. (2010). Placement in foster care enhances quality of attachment among young institutionalized children. Child Development, 81(1), 212223. doi:10.1111/j.1467-8624.2009.01390.xGoogle Scholar
Sowell, E. R., Thompson, P. M., & Toga, A. W. (2004). Mapping changes in the human cortex throughout the span of life. Neuroscientist, 10(4), 372392. doi:10.1177/1073858404263960Google Scholar
Spader, H. S., Ellermeier, A., O’Muircheartaigh, J., Dean, D. C., III, Dirks, H., Boxerman, J. L., … Deoni, S. C. L. (2013). Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurgical Focus, 34(4), e9. doi:10.3171/2013.1.FOCUS12426Google Scholar
Stiles, J. (2017). Principles of brain development. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2). doi:10.1002/wcs.1402Google Scholar
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327348. doi:10.1007/s11065-010-9148-4Google Scholar
Symms, M., Jager, H. R., Schmierer, K., & Yousry, T. A. (2004). A review of structural magnetic resonance neuroimaging. Journal of Neurology, Neurosurgery, and Psychiatry, 75(9), 12351244. doi:10.1136/jnnp.2003.032714Google Scholar
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148159. doi:10.1016/j.tins.2006.01.007Google Scholar
Uda, S., Matsui, M., Tanaka, C., Uematsu, A., Miura, K., Kawana, I., & Noguchi, K. (2015). Normal development of human brain white matter from infancy to early adulthood: A diffusion tensor imaging study. Journal of Developmental Neuroscience, 37(2), 182194. doi:10.1159/000373885Google Scholar
Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology, 79(Pt. 4), 471491.Google Scholar
Vanderwert, R. E., Marshall, P. J., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2010). Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PLoS One, 5(7), e11415. doi:10.1371/journal.pone.0011415Google Scholar
Vanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2016). Normalization of EEG activity among previously institutionalized children placed into foster care: A 12-year follow-up of the Bucharest Early Intervention Project. Developmental Cognitive Neuroscience, 17, 6875. https://doi.org/10.1016/j.dcn.2015.12.004Google Scholar
Vogel, M., Monesson, A., & Scott, L. S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359372. doi:10.1111/j.1467-7687.2012.01138.xGoogle Scholar
Xie, W., & Richards, J. E. (2016). Effects of interstimulus intervals on behavioral, heart rate, and event-related potential indices of infant engagement and sustained attention. Psychophysiology, 53(8), 11281142. doi:10.1111/psyp.12670Google Scholar
Zeanah, C. H., Nelson, C. A., Fox, N. A., Smyke, A. T., Marshall, P., Parker, S. W., & Koga, S. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Development and Psychopathology, 15(4), 885907.Google Scholar

References

Asperger, H. (1944). Die “Autistischen Psychopathen” im Kindesalter. Archiv für Psychiatrie und Nervenkrankheiten, 117, 76136.Google Scholar
Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. Journal of Autism and Developmental Disorders, 29(3), 213224.Google Scholar
Bedford, R., Elsabbagh, M., Gliga, T., Pickles, A., Senju, A., Charman, T., & Johnson, M. (2012). Precursors to social and communication difficulties in infants at-risk for autism: Gaze following and attentional engagement. Journal of Autism and Developmental Disorders, 42(10), 22082218. doi:10.1007/s10803-012-1450-yGoogle Scholar
Bedford, R., Jones, E. J., Johnson, M. H., Pickles, A., Charman, T., & Gliga, T. (2016). Sex differences in the association between infant markers and later autistic traits. Molecular Autism, 7(1), 21.Google Scholar
Blasi, A., Lloyd-Fox, S., Sethna, V., Brammer, M. J., Mercure, E., Murray, L., … Johnson, M. H. (2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122133.Google Scholar
Bölte, S., Tomalski, P., Marschik, P. B., Berggren, S., Norberg, J., Falck-Ytter, T., … Roeyers, H. (2016). Challenges and inequalities of opportunities in european psychiatry research. European Journal of Psychological Assessment, 34(4), 270277.Google Scholar
Braukmann, R., Lloyd-Fox, S., Blasi, A., Johnson, M. H., Bekkering, H., Buitelaar, J. K., & Hunnius, S. (2018). Diminished socially selective neural processing in 5-month-old infants at high familial risk of autism. European Journal of Neuroscience, 47(6), 720728.Google Scholar
Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum, L. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12(5), 433456. doi:10.1177/1362361308094500Google Scholar
Brisson, J., Warreyn, P., Serres, J., Foussier, S., & Adrien-Louis, J. (2012). Motor anticipation failure in infants with autism: A retrospective analysis of feeding situations. Autism, 16(4), 420429.Google Scholar
Bryson, S. E., Zwaigenbaum, L., Brian, J., Roberts, W., Szatmari, P., Rombough, V., & McDermott, C. (2007). A prospective case series of high-risk infants who developed autism. Journal of Autism and Developmental Disorders, 37(1), 1224. doi:10.1007/s10803-006-0328-2Google Scholar
Bussu, G., Jones, E. J., Charman, T., Johnson, M. H., Buitelaar, J., & Team, B. (2018). Prediction of autism at 3 years from behavioural and developmental measures in high-risk infants: A longitudinal cross-domain classifier analysis. Journal of Autism and Developmental Disorders, 48, 24182433.Google Scholar
Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74(3), 195203. doi:10.1016/j.biopsych.2012.11.022Google Scholar
Chawarska, K., Shic, F., Macari, S., Campbell, D. J., Brian, J., Landa, R., … Bryson, S. (2014). 18-month predictors of later outcomes in younger siblings of children with autism spectrum disorder: A baby siblings research consortium study. Journal of the American Academy of Child and Adolescent Psychiatry, 53(12), 13171327. doi:10.1016/j.jaac.2014.09.015Google Scholar
Clifford, S. M., Hudry, K., Elsabbagh, M., Charman, T., Johnson, M. H., & Team, B. (2013). Temperament in the first 2 years of life in infants at high-risk for autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(3), 673686.Google Scholar
Daluwatte, C., Miles, J., Sun, J., & Yao, G. (2015). Association between pupillary light reflex and sensory behaviors in children with autism spectrum disorders. Research in Developmental Disabilities, 37, 209215.Google Scholar
Dawson, G., Osterling, J., Meltzoff, A. N., & Kuhl, P. (2000). Case study of the development of an infant with autism from birth to two years of age. Journal of Applied Developmental Psychology, 21(3), 299313.Google Scholar
Ekberg, T. L., Falck-Ytter, T., Bölte, S., & Gredebäck, G. (2015). Reduced prospective motor control in 10-month-olds at risk for autism spectrum disorder. Clinical Psychological Science, 4(1), 129135. https://doi.org/10.1177/2167702615576697Google Scholar
Elison, J. T., Paterson, S. J., Wolff, J. J., Reznick, J. S., Sasson, N. J., Gu, H. B., … Network, I. (2013). White matter microstructure and atypical visual orienting in 7-month-olds at risk for autism. American Journal of Psychiatry, 170(8), 899908. doi:10.1176/appi.ajp.2012.12091150Google Scholar
Elsabbagh, M., Fernandes, J., Webb, S. J., Dawson, G., Charman, T., Johnson, M. H., & British Autism Study of Infant Siblings Team (2013). Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biological Psychiatry, 74(3), 189194. doi:10.1016/j.biopsych.2012.11.030Google Scholar
Elsabbagh, M., Gliga, T., Pickles, A., Hudry, K., Charman, T., Johnson, M. H., & Team, B. (2013). The development of face orienting mechanisms in infants at-risk for autism. Behavioural Brain Research, 251, 147154. doi:10.1016/j.bbr.2012.07.030Google Scholar
Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T., … Team, B. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Current Biology, 22(4), 338342. doi:10.1016/j.cub.2011.12.056Google Scholar
Estes, A., Zwaigenbaum, L., Gu, H., John, T. S., Paterson, S., Elison, J. T., … Schultz, R. T. (2015). Behavioral, cognitive, and adaptive development in infants with autism spectrum disorder in the first 2 years of life. Journal of Neurodevelopmental Disorders, 7(1), 24.Google Scholar
Falck-Ytter, T., Nyström, P., Gredebäck, G., Gliga, T., Bölte, S., & Team E (2018). Reduced orienting to audiovisual synchrony in infancy predicts autism diagnosis at 3 years of age. Journal of Child Psychology and Psychiatry, 59(8), 872880. doi:10.1111/jcpp.12863Google Scholar
Falck-Ytter, T., Rehnberg, E., & Bölte, S. (2013). Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism. Plos One, 8(7). doi:e6881610.1371/journal.pone.0068816Google Scholar
Flanagan, J. E., Landa, R., Bhat, A., & Bauman, M. (2012). Head lag in infants at risk for autism: A preliminary study. American Journal of Occupational Therapy, 66(5), 577585.Google Scholar
Gammer, I., Bedford, R., Elsabbagh, M., Garwood, H., Pasco, G., Tucker, L., … Team, B. (2015). Behavioural markers for autism in infancy: Scores on the Autism Observational Scale for infants in a prospective study of at-risk siblings. Infant Behavior and Development, 38, 107115.Google Scholar
Green, J., Pickles, A., Pasco, G., Bedford, R., Wan, M. W., Elsabbagh, M., … Cheung, C. (2017). Randomised trial of a parent-mediated intervention for infants at high risk for autism: Longitudinal outcomes to age 3 years. Journal of Child Psychology and Psychiatry, 58(12), 13301340.Google Scholar
Hallett, V., Ronald, A., Rijsdijk, F., & Happé, F. (2012). Disentangling the associations between autistic-like and internalizing traits: A community based twin study. Journal of Abnormal Child Psychology, 40(5), 815827.Google Scholar
Haartsen, R., Jones, E. J. H., Orekhova, E., Charman, T., & Johnson, M. H. (2019), Functional EEG connectivity in infants associates with later circumscribed interests in autism: A replication study. Translational Psychiatry, 9(1), 114.Google Scholar
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … Botteron, K. N. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348351.Google Scholar
Hendry, A., Jones, E. J., Bedford, R., Gliga, T., Charman, T., & Johnson, M. H. (2018). Developmental change in look durations predicts later effortful control in toddlers at familial risk for ASD. Journal of Neurodevelopmental Disorders, 10(1), 3.Google Scholar
Hogan, A. L., Caravella, K. E., Ezell, J., Rague, L., Hills, K., & Roberts, J. E. (2017). Autism spectrum disorder symptoms in infants with fragile X syndrome: A prospective case series. Journal of Autism and Developmental Disorders, 47(6), 16281644.Google Scholar
Hoshino, Y., Kumashiro, H., Yashima, Y., Tachibana, R., Watanabe, M., & Furukawa, H. (1982). Early symptoms of autistic children and its diagnostic significance. Psychiatry and Clinical Neurosciences, 36(4), 367374.Google Scholar
Hudry, K., Chandler, S., Bedford, R., Pasco, G., Gliga, T., Elsabbagh, M., … Charman, T. (2014). Early language profiles in infants at high-risk for autism spectrum disorders. Journal of Autism and Developmental Disorders, 44(1), 154167.Google Scholar
Ibanez, L. V., Grantz, C. J., & Messinger, D. S. (2013). The development of referential communication and autism symptomatology in high-risk infants. Infancy, 18(5), 687707. doi:10.1111/j.1532-7078.2012.00142.xGoogle Scholar
Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews Neurology, 10(2), 74.Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766774.Google Scholar
Johnson, M. H., Gliga, T., Jones, E., & Charman, T. (2014). Annual research review: Infant development, autism, and ADHD – early pathways to emerging disorders. Journal of Child Psychology and Psychiatry, 56(3), 228247. https://doi.org/10.1111/jcpp.12328Google Scholar
Johnson, M. H., Jones, E. J., & Gliga, T. (2015). Brain adaptation and alternative developmental trajectories. Development and Psychopathology, 27(2), 425442.Google Scholar
Jones, E. J. H., Dawson, G., Kelly, J., Estes, A., & Jane Webb, S. (2017). Parent-delivered early intervention in infants at risk for ASD: Effects on electrophysiological and habituation measures of social attention. Autism Research, 10(5), 961972.Google Scholar
Jones, E. J. H., Dawson, G., & Webb, S. (2017). Sensory hypersensitivity predicts enhanced attention capture by faces in the early development of ASD. Developmental Cognitive Neuroscience, 29, 1120.Google Scholar
Jones, E. J. H., Gliga, T., Bedford, R., Charman, T., & Johnson, M. H. (2014). Developmental pathways to autism: A review of prospective studies of infants at risk. Neuroscience and Biobehavioral Reviews, 39, 133. doi:10.1016/j.neubiorev.2013.12.001Google Scholar
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504(7480), 427. doi:10.1038/nature12715Google Scholar
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kas, M. J., Glennon, J. C., Buitelaar, J., Ey, E., Biemans, B., Crawley, J., … Talpos, J. (2014). Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: Current status and future perspectives. Psychopharmacology, 231(6), 11251146.Google Scholar
Keehn, B., Mueller, R. -A., & Townsend, J. (2013). Atypical attentional networks and the emergence of autism. Neuroscience and Biobehavioral Reviews, 37(2), 164183. doi:10.1016/j.neubiorev.2012.11.014Google Scholar
Kennedy, D. P., D’Onofrio, B. M., Quinn, P. D., Bölte, S., Lichtenstein, P., & Falck-Ytter, T. (2017). Genetic influence on eye movements to complex scenes at short timescales. Current Biology, 27(22), 35543560.Google Scholar
Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459(7244), 257261.Google Scholar
Kolesnik, A. M., Jones, E. J. H., Garg, S., Green, J., Charman, T., & Johnson, M. H. (2017). Early development of infants with neurofibromatosis type 1: A case series. Molecular Autism, 8(1), 62.Google Scholar
Landa, R., & Garrett-Mayer, E. (2006). Development in infants with autism spectrum disorders: A prospective study. Journal of Child Psychology and Psychiatry, 47(6), 629638.Google Scholar
Landa, R. J., Holman, K. C., & Garrett-Mayer, E. (2007). Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Archives of General Psychiatry, 64(7), 853864.Google Scholar
Lazenby, D. C., Sideridis, G. D., Huntington, N., Prante, M., Dale, P. S., Curtin, S., … Dobkins, K. (2016). Language differences at 12 months in infants who develop autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(3), 899909.Google Scholar
Leppa, V. M., Kravitz, S. N., Martin, C. L., Andrieux, J., Le Caignec, C., Martin-Coignard, D., … Cantor, R. M. (2016). Rare inherited and de novo CNVs reveal complex contributions to ASD risk in multiplex families. American Journal of Human Genetics, 99(3), 540554.Google Scholar
Lloyd-Fox, S., Begus, K., Halliday, D., Pirazzoli, L., Blasi, A., Papademetriou, M., … Moore, S. (2017). Cortical specialisation to social stimuli from the first days to the second year of life: A rural Gambian cohort. Developmental Cognitive Neuroscience, 25, 92104.Google Scholar
Lloyd-Fox, S., Blasi, A., Elwell, C. E., Charman, T., Murphy, D., & Johnson, M. H. (2013). Reduced neural sensitivity to social stimuli in infants at risk for autism. Proceedings of the Royal Society B: Biological Sciences, 280(1758), 9. doi:10.1098/rspb.2012.3026Google Scholar
Lloyd-Fox, S., Blasi, A., Pasco, G., Gliga, T., Jones, E., Murphy, D., … Johnson, M. (2017). Cortical responses before 6 months of life associate with later autism. European Journal of Neuroscience, 47(6), 736749.Google Scholar
Macari, S. L., Campbell, D., Gengoux, G. W., Saulnier, C. A., Klin, A. J., & Chawarska, K. (2012). Predicting developmental status from 12 to 24 months in infants at risk for autism spectrum disorder: A preliminary report. Journal of Autism and Developmental Disorders, 42(12), 26362647. doi:10.1007/s10803-012-1521-0Google Scholar
Mitchell, S., Brian, J., Zwaigenbaum, L., Roberts, W., Szatmari, P., Smith, I., & Bryson, S. (2006). Early language and communication development of infants later diagnosed with autism spectrum disorder. Journal of Developmental and Behavioral Pediatrics, 27(2), S69S78.Google Scholar
Molenhuis, R. T., de Visser, L., Bruining, H., & Kas, M. J. (2014). Enhancing the value of psychiatric mouse models: Differential expression of developmental behavioral and cognitive profiles in four inbred strains of mice. European Neuropsychopharmacology, 24(6), 945954.Google Scholar
Nyström, P., Gliga, T., Nilsson Jobs, E., Gredebäck, G., Charman, T., Johnson, M., … Falck-Ytter, T. (2018). Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood. Nature Communications, 9(1). doi:10.1038/s41467-018-03985-4Google Scholar
Orekhova, E. V., Elsabbagh, M., Jones, E. J., Dawson, G., Charman, T., & Johnson, M. H. (2014). EEG hyper-connectivity in high-risk infants is associated with later autism. Journal of Neurodevelopmental Disorders, 6(1), 40.Google Scholar
Ornitz, E. M., Guthrie, D., & Farley, A. H. (1977). The early development of autistic children. Journal of Autism and Childhood Schizophrenia, 7(3), 207229.Google Scholar
Ozonoff, S., Iosif, A. M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., … Young, G. S. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 256266. doi:10.1016/j.jaac.2009.11.009Google Scholar
Paul, R., Fuerst, Y., Ramsay, G., Chawarska, K., & Klin, A. (2011). Out of the mouths of babes: Vocal production in infant siblings of children with ASD. Journal of Child Psychology and Psychiatry, 52(5), 588598.Google Scholar
Ronald, A., Edelson, L. R., Asherson, P., & Saudino, K. J. (2010). Exploring the relationship between autistic-like traits and ADHD behaviors in early childhood: Findings from a community twin study of 2-year-olds. Journal of Abnormal Child Psychology, 38(2), 185196. doi:10.1007/s10802-009-9366-5Google Scholar
Ross, R. G., Hunter, S. K., Hoffman, M. C., McCarthy, L., Chambers, B. M., Law, A. J., … Freedman, R. (2016). Perinatal phosphatidylcholine supplementation and early childhood behavior problems: Evidence for CHRNA7 moderation. American Journal of Psychiatry, 173(5), 509516.Google Scholar
Rozga, A., Hutman, T., Young, G. S., Rogers, S. J., Ozonoff, S., Dapretto, M., & Sigman, M. (2011). Behavioral profiles of affected and unaffected siblings of children with autism: Contribution of measures of mother–infant interaction and nonverbal communication. Journal of Autism and Developmental Disorders, 41(3), 287301.Google Scholar
Sacrey, L. -A. R., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I. M., Roberts, W., … Novak, C. (2015). Can parents’ concerns predict autism spectrum disorder? A prospective study of high-risk siblings from 6 to 36 months of age. Journal of the American Academy of Child and Adolescent Psychiatry, 54(6), 470478.Google Scholar
Shen, M. D., Kim, S. H., McKinstry, R. C., Gu, H., Hazlett, H. C., Nordahl, C. W., … Swanson, M. R. (2017). Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism. Biological Psychiatry, 82(3), 186193.Google Scholar
Shen, M. D., Nordahl, C. W., Young, G. S., Wootton-Gorges, S. L., Lee, A., Liston, S. E., … Amaral, D. G. (2013). Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 136(9), 28252835.Google Scholar
Shephard, E., Bedford, R., Milosavljevic, B., Gliga, T., Jones, E. J. H., Pickles, A., … Bolton, P. (2019). Early developmental pathways to childhood symptoms of attention-deficit hyperactivity disorder, anxiety and autism spectrum disorder. Journal of Child Psychology and Psychiatry, 60(9), 963974.Google Scholar
St. John, T., Estes, A. M., Dager, S. R., Kostopoulos, P., Wolff, J. J., Pandey, J., … Botteron, K. (2016). Emerging executive functioning and motor development in infants at high and low risk for autism spectrum disorder. Frontiers in Psychology, 7, 1016.Google Scholar
Sullivan, M., Finelli, J., Marvin, A., Garrett-Mayer, E., Bauman, M., & Landa, R. (2007). Response to joint attention in toddlers at risk for autism spectrum disorder: A prospective study. Journal of Autism And Developmental Disorders, 37(1), 37.Google Scholar
Swanson, M. R., Shen, M. D., Wolff, J. J., Elison, J. T., Emerson, R. W., Styner, M. A., … Paterson, S. (2017). Subcortical brain and behavior phenotypes differentiate infants with autism versus language delay. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(8), 664672.Google Scholar
Thorup, E., Nystrom, P., Gredeback, G., Bölte, S., Falck-Ytter, T., & EASE Team (2018). Reduced alternating gaze during social interaction in infancy is associated with elevated symptoms of autism in toddlerhood. Journal of Abnormal Child Psychology, 46(7), 15471561.Google Scholar
Varcin, K. J., & Jeste, S. S. (2017). The emergence of autism spectrum disorder: Insights gained from studies of brain and behaviour in high-risk infants. Current Opinion in Psychiatry, 30(2), 8591.Google Scholar
Wan, M. W., Green, J., Elsabbagh, M., Johnson, M., Charman, T., & Plummer, F. (2013). Quality of interaction between at-risk infants and caregiver at 12–15 months is associated with 3-year autism outcome. Journal of Child Psychology and Psychiatry, 54(7), 763771.Google Scholar
Wass, S. V., Jones, E. J. H., Gliga, T., Smith, T. J., Charman, T., & Johnson, M. H. (2015). Shorter spontaneous fixation durations in infants with later emerging autism. Scientific Reports, 5, 8284. doi:10.1038/srep08284Google Scholar
Webb, S. J., Nalty, T., Munson, J., Brock, C., Abbott, R., & Dawson, G. (2007). Rate of head circumference growth as a function of autism diagnosis and history of autistic regression. Journal of Child Neurology, 22(10), 11821190.Google Scholar
West, K. L., Leezenbaum, N. B., Northrup, J. B., & Iverson, J. M. (2019). The relation between walking and language in infant siblings of children with autism spectrum disorder. Child Development, 90(3), e356e372.Google Scholar
Wolff, J. J., Jacob, S., & Elison, J. T. (2018). The journey to autism: Insights from neuroimaging studies of infants and toddlers. Development And Psychopathology, 30(2), 479495.Google Scholar
Wolff, J. J., Swanson, M. R., Elison, J. T., Gerig, G., Pruett, J. R., Styner, M. A., … Estes, A. M. (2017). Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecular Autism, 8(1), 8.Google Scholar
Yoder, P., Stone, W. L., Walden, T., & Malesa, E. (2009). Predicting social impairment and ASD diagnosis in younger siblings of children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 39(10), 13811391. doi:10.1007/s10803-009-0753-0Google Scholar
Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal Of Developmental Neuroscience, 23(2–3), 143152.Google Scholar
Zwaigenbaum, L., Thurm, A., Stone, W., Baranek, G., Bryson, S., Iverson, J., … Sigman, M. (2007). Studying the emergence of autism spectrum disorders in high-risk infants: Methodological and practical issues. Journal of Autism and Developmental Disorders, 37(3), 466480.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×