Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:27:30.663Z Has data issue: false hasContentIssue false

3 - Perceptual Mechanisms of Anxiety and Its Disorders

from Section 1 - Basic Mechanisms in Fear and Anxiety

Published online by Cambridge University Press:  28 December 2018

Bunmi O. Olatunji
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, L. E., Pang, K., Gerhardt, G., & Rose, G. M. (1988). Modulation of the gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using a selective neurotoxin. Biological Psychiatry, 24, 179190.CrossRefGoogle ScholarPubMed
Adolphs, R. (2002a). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169177.Google Scholar
Adolphs, R. (2002b). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1, 2162.Google Scholar
Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18, 166172,Google Scholar
Åhs, F., Pissiota, A., Michelgård, Å., Frans, Ö., Furmark, T., Appel, L., & Fredrikson, M. (2009). Disentangling the web of fear: Amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Research: Neuroimaging 172, 103108.Google Scholar
Armstrong, T. & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32, 704723.Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14, 44674480.Google Scholar
Bach, D. R., Talmi, D., Hurlemann, R., Patin, A., & Dolan, R. J. (2011). Automatic relevance detection in the absence of a functional amygdala. Neuropsychologia, 49, 13021305.CrossRefGoogle ScholarPubMed
Baisley, S. K., Fallace, K. L., Rajbhandari, A. K., & Bakshi, V. P. (2012). Mutual independence of 5-HT(2) and alpha1 noradrenergic receptors in mediating deficits in sensorimotor gating. Psychopharmacology (Berl), 220, 465479.CrossRefGoogle ScholarPubMed
Bakin, J. S. & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536, 271286.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 1.Google Scholar
Barlow, D. H. (2002). Anxiety and Its Disorders. New York, NY: Guilford Press.Google Scholar
Barrett, L. F. & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society of London B Biological Science, 364, 13251334.Google Scholar
Beard, C. & Amir, N. (2010). Negative interpretation bias mediates the effect of social anxiety on state anxiety. Cognitive Therapy and Research, 34, 292296.Google Scholar
Beck, A. T. (1967). Depression: Clinical, Experimental, and Theoretical Aspects. Philadelphia, PA: University of Pennsylvania Press.Google Scholar
Beck, A. T. & Clark, D. A. (1997). An information processing model of anxiety: Automatic and strategic processes. Behaviour Research and Therapy, 35, 4958.Google Scholar
Beck, A. T., Emery, G., & Greenberg, R. (1985). Anxiety Disorders and Phobias: A Cognitive Approach. New York, NY: Basic Books, b58.Google Scholar
Bentin, S., Allison, T., Puce, A., Perez, A., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551565.CrossRefGoogle ScholarPubMed
Berridge, C. W. & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research. Brain Research Reviews, 42, 3384.CrossRefGoogle ScholarPubMed
Bollimunta, A., Chen, Y., Schroeder, C. E., & Ding, M. (2008). Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. Journal of Neuroscience, 28, 99769988.CrossRefGoogle ScholarPubMed
Brosch, T., Pourtois, G., & Sander, D. (2010). The perception and categorisation of emotional stimuli: A review. Cognition Emotion, 24, 377400.Google Scholar
Bruner, J. S. (1957). On perceptual readiness. Psychological Review, 64, 123.Google Scholar
Bruner, J. S., Postman, L., & Rodrigues, J. (1951). Expectation and the perception of color. American Journal of Psychology, 64, 216227.Google Scholar
Butler, G. & Mathews, A. (1983). Cognitive processes in anxiety. Advances in Behaviour Research and Therapy, 5, 5162.Google Scholar
Cambiaghi, M., Grosso, A., Likhtik, E., Mazziotti, R., Concina, G., Renna, A., Sacco, T., Gordon, J. A., & Sacchetti, B. (2016). Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. Journal of Neuroscience, 36, 16471659.Google Scholar
Campbell, A. W. (1905). Histological Studies on the Localisation of Cerebral Function. University Press. https://archive.org/details/histologicalstu00campgoogGoogle Scholar
Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17, 11141122.Google Scholar
Cisler, J. M. & Koster, E. H. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30, 203216.Google Scholar
Clancy, K., Ding, M., Bernat, E., Schmidt, N. B., & Li, W. (2017). Restless “rest”: Intrinsic sensory hyperactivity and disinhibition in posttraumatic stress disorder. Brain, 140(7), 20412050.Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181204.Google Scholar
Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.Google Scholar
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353375.Google Scholar
Diamond, D. M. & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behavioral Neuroscience, 98, 189.Google Scholar
Dunsmoor, J. E. & Paz, R. (2015). Fear generalization and anxiety: Behavioral and neural mechanisms. Biological Psychiatry, 78, 336343.CrossRefGoogle ScholarPubMed
Edmiston, E. K., McHugo, M., Dukic, M. S., Smith, S. D., Abou-Khalil, B., Eggers, E., & Zald, D. H. (2013). Enhanced visual cortical activation for emotional stimuli is preserved in patients with unilateral amygdala resection. Journal of Neuroscience, 33, 1102311031.Google Scholar
Eimer, M. (2000). The face-specific N170 component reflects late stages in the structural encoding of faces. Neuroreport, 11, 23192324.Google Scholar
Eimer, M. & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 1531.Google Scholar
Eldar, S., Yankelevitch, R., Lamy, D., & Bar-Haim, Y. (2010). Enhanced neural reactivity and selective attention to threat in anxiety. Biological Psychology, 85, 252257.Google Scholar
Etkin, A. & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488.Google Scholar
Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin & Review, 1, 429438.Google Scholar
Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face perception? Psychological Review, 105, 482.Google Scholar
Fodor, J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.Google Scholar
Forscher, E. C. & Li, W. (2012). Hemispheric asymmetry and visuo-olfactory integration in perceiving subthreshold (micro) fearful expressions. Journal of Neuroscience, 32, 21592165.Google Scholar
Forscher, E. C., Zheng, Y., Ke, Z., Folstein, J., & Li, W. (2016). Decomposing fear perception: A combination of psychophysics and neurometric modeling of fear perception. Neuropsychologia, 91, 254261.Google Scholar
Foxe, J. J. & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans: A framework for defining “early” visual processing. Experimental Brain Research, 142, 139150.Google Scholar
Foxe, J. J. & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154.Google Scholar
Friston, K. (2012). Prediction, perception and agency. International Journal of Psychophysiology, 83, 248252.Google Scholar
Galambos, R., Sheatz, G., & Vernier, V. G. (1955). Electrophysiological correlates of a conditioned response in cats. Science, 123, 376377.Google Scholar
Geyer, M. A., Krebs-Thomson, K., Braff, D. L., & Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology (Berl), 156, 117154.Google Scholar
Gluck, M. A. & Granger, R. (1993). Computational models of the neural bases of learning and memory. Annual Review of Neuroscience, 16, 667706.Google Scholar
Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585612.Google Scholar
Gomez Gonzalez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 4151.Google Scholar
Gray, J. A. & McNaughton, N. (2000). The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System. Oxford: Oxford University Press.Google Scholar
Grosso, A., Cambiaghi, M., Concina, G., Sacco, T., & Sacchetti, B. (2015a). Auditory cortex involvement in emotional learning and memory. Neuroscience, 299, 4555.Google Scholar
Grosso, A., Cambiaghi, M., Milano, L., Renna, A., Sacco, T., & Sacchetti, B. (2016). Region-and layer-specific activation of the higher order auditory cortex Te2 after remote retrieval of fear or appetitive memories. Cerebral Cortex, 27(6), 31403151. bhw159Google Scholar
Grosso, A., Cambiaghi, M., Renna, A., Milano, L., Merlo, G. R., Sacco, T., & Sacchetti, B. (2015b). The higher order auditory cortex is involved in the assignment of affective value to sensory stimuli. Nature Communications, 6.Google Scholar
Grupe, D. W. & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14, 488501.Google Scholar
Haberly, L. B. (1998). Olfactory Cortex. New York, NY: Oxford University Press.Google Scholar
Helfinstein, S. M., White, L. K., Bar-Haim, Y., & Fox, N. A. (2008). Affective primes suppress attention bias to threat in socially anxious individuals. Behaviour Research and Therapy, 46, 799810.CrossRefGoogle ScholarPubMed
Holmes, A., Nielsen, M. K, & Green, S. (2008). Effects of anxiety on the processing of fearful and happy faces: An event-related potential study. Biological Psychology, 77, 159173.Google Scholar
Hurley, L. M., Devilbiss, D. M., & Waterhouse, B. D. (2004.) A matter of focus: Monoaminergic modulation of stimulus coding in mammalian sensory networks. Current Opinion in Neurobiology, 14, 488495.Google Scholar
James, W. (1890). Principles of Psychology. New York, NY: Holt.Google Scholar
Javitt, D. C. (2009). When doors of perception close: Bottom-up models of disrupted cognition in schizophrenia. Annual Review of Clinical Psychology, 5, 249275.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766774.Google Scholar
Kapp, B. S., Whalen, P. J., Supple, W. F., & Pascoe, J. P. (1992). Amygdaloid contributions to conditioned arousal and sensory information processing. In Appleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (pp. 229254). New York, NY: Wiley-Liss.Google Scholar
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751761.Google Scholar
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Science, 16, 606617.Google Scholar
Kolassa, I.-T., Kolassa, S., Bergmann, S., Lauche, R., Dilger, S., Miltner, W. H. R., & Musial, F. (2009). Interpretive bias in social phobia: An ERP study with morphed emotional schematic faces. Cognition and Emotion, 23, 6995.Google Scholar
Kolassa, I.-T., Kolassa, S., Musial, F., & Miltner, W. H. (2007). Event-related potentials to schematic faces in social phobia. Cognition and Emotion, 21, 17211744.Google Scholar
Kolassa, I.-T. & Miltner, W. H. (2006). Psychophysiological correlates of face processing in social phobia. Brain Research, 1118, 130141.Google Scholar
Kraus, N. & Disterhoft, J. F. (1982). Response plasticity of single neurons in rabbit auditory association cortex during tone-signalled learning. Brain Research, 246, 205215.Google Scholar
Kreiman, G., Koch, C., & Fried, I. (2000). Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neuroscience, 3, 946953.Google Scholar
Krusemark, E. A. & Li, W. (2011). Do all threats work the same way? Divergent effects of fear and disgust on sensory perception and attention. Journal of Neuroscience, 31, 34293434.Google Scholar
Krusemark, E. A. & Li, W. (2012). Enhanced olfactory sensory perception of threat in anxiety: An event-related fMRI study. Chemosensory Perception, 5, 3745.Google Scholar
Krusemark, E. A. & Li, W. (2013). From early sensory specialization to later perceptual generalization: Dynamic temporal progression in perceiving individual threats. Journal of Neuroscience, 33, 587594.Google Scholar
Krusemark, E. A., Novak, L. R., Gitelman, D. R., & Li, W. (2013). When the sense of smell meets emotion: Anxiety-state-dependent olfactory processing and neural circuitry adaptation. Journal of Neuroscience, 33, 1532415332.CrossRefGoogle ScholarPubMed
Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: Dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32, 1418414192.Google Scholar
Kuraoka, K. & Nakamura, K. (2007). Responses of single neurons in monkey amygdala to facial and vocal emotions. Journal of Neurophysiology, 97, 13791387.Google Scholar
Kwon, J.-T., Jhang, J., Kim, H.-S., Lee, S., & Han, J.-H. (2012). Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear. Learning & Memory, 19, 487494.Google Scholar
Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N, Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35, 199210.CrossRefGoogle ScholarPubMed
Lang, P. J., Davis, M., & Ohman, A. (2000). Fear and anxiety: Animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61, 137159.Google Scholar
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653676.Google Scholar
LeDoux, J. E. (1995). Emotion: Clues from the Brain. Annual Review of Psychology, 46, 209235.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.Google Scholar
Lee, S. A., Kim, C.-Y., Shim, M., & Lee, S.-H. (2017). Gender differences in neural responses to perceptually invisible fearful face: An ERP study. Frontiers in Behavioral Neuroscience, 11.Google Scholar
Leipsic, P. F. O. (1901). Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet, 158, 10271030.Google Scholar
Leonard, C. M., Rolls, E. T., Wilson, F. A., & Baylis, G. C. (1985). Neurons in the amygdala of the monkey with responses selective for faces. Behavioural Brain Research, 15, 159176.Google Scholar
Leventhal, A. G., Rodieck, R. W., & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology, 237, 216226.Google Scholar
Li, W. (2014). Learning to smell danger: Acquired associative representation of threat in the olfactory cortex. Frontiers in Behavioral Neuroscience, 8, 98.Google Scholar
Li, W., Howard, J. D., Parrish, T. B., & Gottfried, J. A. (2008a). Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science, 319, 18421845.Google Scholar
Li, W., Zinbarg, R. E., Boehm, S. G., & Paller, K. A. (2008b). Neural and behavioral evidence for affective priming from unconsciously perceived emotional facial expressions and the influence of trait anxiety. Journal of Cognitive Neuroscience, 20, 95107.Google Scholar
Li, W., Zinbarg, R. E., & Paller, K. A. (2007). Trait anxiety modulates supraliminal and subliminal threat: Brain potential evidence for early and late processing influences. Cognitive, Affective, & Behavioral Neuroscience, 7, 2536.Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121143.Google Scholar
Lipka, J., Miltner, W. H., & Straube, T. (2011). Vigilance for threat interacts with amygdala responses to subliminal threat cues in specific phobia. Biological Psychiatry, 70, 472478.Google Scholar
Liu, Y., Lin, W., Xu, P., Zhang, D., & Luo, Y. (2015). Neural basis of disgust perception in racial prejudice. Human Brain Mapping, 36, 52755286.Google Scholar
Mangun, G. R., Hillyard, S. A., & Luck, S. L. (1993). Electrocortical Substrates of Visual Selective Attention. Cambridge, MA: MIT Press.Google Scholar
Mathews, A. & Mackintosh, B. (1998). A cognitive model of selective processing in anxiety. Cognitive Therapy and Research, 22, 539560.Google Scholar
Mathews, A. & Macleod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45, 2550.Google Scholar
Mathews, A. & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167195.CrossRefGoogle ScholarPubMed
McGann, J. P. (2015). Associative learning and sensory neuroplasticity: How does it happen and what is it good for? Learning & Memory, 22, 567576.CrossRefGoogle ScholarPubMed
McNally, R. J. (1995). Automaticity and the anxiety disorders. Behaviour Research and Therapy, 33, 747754.Google Scholar
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., Vuilleumier, P., Gil-Nagel, A., & Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 10411049.Google Scholar
Menon, V. & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214, 655667.Google Scholar
Michalowski, J. M., Melzig, C. A., Weike, A. I., Stockburger, J., Schupp, H. T., & Hamm, A. O. (2009). Brain dynamics in spider-phobic individuals exposed to phobia-relevant and other emotional stimuli. Emotion, 9, 306.Google Scholar
Michalowski, J. M., Pané-Farré, C. A., Löw, A., & Hamm, A. O. (2015). Brain dynamics of visual attention during anticipation and encoding of threat-and safe-cues in spider-phobic individuals. Social, Cognitive, & Affective Neuroscience, 10(9), 11771186. pnsv002Google Scholar
Michalowski, J. M., Weymar, M., & Hamm, A. O. (2014). Remembering the object you fear: Brain potentials during recognition of spiders in spider-fearful individuals. PloS One, 9, e109537.Google Scholar
Miskovic, V. & Keil, A. (2012). Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning. Psychophysiology, 49, 12301241.Google Scholar
Mitte, K. (2007). Anxiety and risky decision-making: The role of subjective probability and subjective costs of negative events. Personality and Individual Differences, 43, 243253.Google Scholar
Mogg, K. & Bradley, B. P. (1998). A cognitive-motivational analysis of anxiety. Behaviour Research and Therapy, 36, 809848.Google Scholar
Morris, J. S., DeGelder, B., Weiskrantz, L., & Dolan, R. J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 124, 12411252.Google Scholar
Morris, J. S. & Dolan, R. J. (2001). The Amygdale and Unconscious Fear Processing. Oxford: Oxford University Press.Google Scholar
Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467470.Google Scholar
Mueller, E. M., Hofmann, S. G., Santesso, D. L., Meuret, A. E., Bitran, S., & Pizzagalli, D. A. (2009). Electrophysiological evidence of attentional biases in social anxiety disorder. Psychological Medicine, 39, 11411152.Google Scholar
Mühlberger, A., Wieser, M. J., Herrmann, M. J., Weyers, P., Tröger, C., & Pauli, P. (2009). Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. Journal of Neural Transmission, 116, 735746.Google Scholar
Ohl, F. W. & Scheich, H. (2005). Learning-induced plasticity in animal and human auditory cortex. Current Opinion in Neurobiology, 15, 470477.Google Scholar
Ohman, A. (1993). Fear and anxiety as emotional phenomena: Clinical phenomenology, evolutionary perspectives, and information-processing mechanisms. In Lewis, M. & Haviland, J. M. (eds.), Handbook of Emotions (pp. 511536). New York, NY: Guilford Press.Google Scholar
Ohman, A. (2000). Fear and anxiety: Evolutionary cognitive and clinical perspectives. In Lewis, M. & Haviland, J. M. (eds.), Handbook of Emotions (2nd edn) (pp. 573593). New York, NY: Guilford Press.Google Scholar
Ohman, A. & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483.Google Scholar
Olofsson, J. K. & Polich, J. (2007). Affective visual event-related potentials: Arousal, repetition, and time-on-task. Biological Psychology, 75, 101108.Google Scholar
Ouimet, A. J., Gawronski, B., & Dozois, D. J. (2009). Cognitive vulnerability to anxiety: A review and an integrative model. Clinical Psychology Review, 29, 459470.Google Scholar
Oya, H., Kawasaki, H., Howard, M. A., 3rd, & Adolphs, R. (2002). Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. Journal of Neuroscience, 22, 95029512.Google Scholar
Palva, S. & Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. Trends in Neuroscience, 30, 150158.Google Scholar
Panksepp, J. (1982). Toward a general psychobiological theory of emotions. Behavioral and Brain Sciences, 5, 407422.Google Scholar
Paquette, V., Lévesque, J., Mensour, B., Leroux, J.-M., Beaudoin, G., Bourgouin, P., & Beauregard, M. (2003). “Change the mind and you change the brain”: Effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage, 18, 401409.Google Scholar
Park, H. R. P., Lim, V. K., Kirk, I. J., & Waldie, K. E. (2015). P50 sensory gating deficits in schizotypy. Personality and Individual Differences, 82, 142147.Google Scholar
Patel, R., Spreng, R. N., Shin, L. M., & Girard, T. A. (2012). Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Review, 36, 21302142.Google Scholar
Peschard, V., Philippot, P., Joassin, F., & Rossignol, M. (2013). The impact of the stimulus features and task instructions on facial processing in social anxiety: An ERP investigation. Biological Psychology, 93, 8896.Google Scholar
Pessoa, L. & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773783.Google Scholar
Pessoa, L., Japee, S., & Ungerleider, L. G. (2005). Visual awareness and the detection of fearful faces. Emotion, 5, 243247.Google Scholar
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23, 39903998.Google Scholar
Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Science USA, 99, 1145811463.Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 16, 331348.Google Scholar
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 2753.Google Scholar
Phelps, E. A. & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187.Google Scholar
Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., van der Meer, J., Abou-Khalil, B., Most, S. B., & Zald, D. H. (2011). Attentional capture by emotional stimuli is preserved in patients with amygdala lesions. Neuropsychologia, 49, 33143319.Google Scholar
Pizzagalli, D., Regard, M., & Lehmann, D. (1999). Rapid emotional face processing in the human right and left brain hemisphere: An ERP study. Neuroreport, 26912698.Google Scholar
Pourtois, G., Dan, E. S., Grandjean, D., Sander, D., & Vuilleumier, P. (2005). Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: Time course and topographic evoked-potentials mapping. Human Brain Mapping, 26, 6579.Google Scholar
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619633.Google Scholar
Puri, A. M., Wojciulik, E., & Ranganath, C. (2009). Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex. Brain Research, 1301, 8999.Google Scholar
Rauch, S. L., Shin, L. M., & Phelps, E. A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research – past, present, and future. Biological Psychiatry, 60, 376382.Google Scholar
Rossignol, M., Campanella, S., Bissot, C., & Philippot, P. (2013). Fear of negative evaluation and attentional bias for facial expressions: An event-related study. Brain and Cognition, 82, 344352.Google Scholar
Rossignol, M., Campanella, S., Maurage, P., Heeren, A., Falbo, L., & Philippot, P. (2012a). Enhanced perceptual responses during visual processing of facial stimuli in young socially anxious individuals. Neuroscience Letters, 526, 6873.Google Scholar
Rossignol, M., Philippot, P., Bissot, C., Rigoulot, S., & Campanella, S. (2012b). Electrophysiological correlates of enhanced perceptual processes and attentional capture by emotional faces in social anxiety. Brain Research, 1460, 5062.Google Scholar
Sabatinelli, D., Keil, A., Frank, D. W., & Lang, P. J. (2013). Emotional perception: Correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biological Psychology, 92, 513519.Google Scholar
Sacco, T. & Sacchetti, B. (2010). Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science, 329, 649656.Google Scholar
Sass, S. M., Heller, W., Stewart, J. L., Silton, R. L., Edgar, J. C., Fisher, J. E., & Miller, G. A. (2010). Time course of attentional bias in anxiety: Emotion and gender specificity. Psychophysiology, 47, 247259.Google Scholar
Schiller, P. H. & Tehovnik, E. J. (2001). Look and see: How the brain moves your eyes about. Progress in Brain Research, 134, 127142.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 23492356.CrossRefGoogle ScholarPubMed
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77, 406.Google Scholar
Shaw, J. C. (2003). The Brain’s Alpha Rhythms and the Mind. Amsterdam: Elsevier.Google Scholar
Sherin, J. E. & Nemeroff, C. B. (2011). Posttraumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues in Clinical Neuroscience, 13, 263278.Google Scholar
Shin, L. M. & Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 35, 169191.Google Scholar
Skinner, R., Rasco, L., Fitzgerald, J., Karson, C., Mathew, M., Williams, D. K., & Garcia-Rill, E. (1999). Reduced sensory gating of the P1 potential in rape victims and combat veterans with posttraumatic stress disorder. Depression and Anxiety, 9, 122130.Google Scholar
Southwick, S. M., Krystal, J. H., Bremner, J. D., Morgan, C. A., 3rd, Nicolaou, A. L., Nagy, L. M., Johnson, D. R., Heninger, G. R., & Charney, D. S. (1997). Noradrenergic and serotonergic function in posttraumatic stress disorder. Archives of General Psychiatry, 54, 749758.Google Scholar
Staugaard, S. R. (2010). Threatening faces and social anxiety: A literature review. Clinical Psychology Review, 30, 669690.Google Scholar
Stevenson, R. J. & Boakes, R. A. (2003). A mnemonic theory of odor perception. Psychological Review, 110, 340364.Google Scholar
Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences, 106, 1956919574.CrossRefGoogle ScholarPubMed
Straube, T., Mentzel, H. J., & Miltner, W. H. (2005). Common and distinct brain activation to threat and safety signals in social phobia. Neuropsychobiology, 52, 163168.Google Scholar
Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400, 869873.Google Scholar
Sussman, T. J., Jin, J., & Mohanty, A. (2016). Top-down and bottom-up factors in threat-related perception and attention in anxiety. Biological Psychology, 121, 160172.Google Scholar
Thoma, R. J., Hanlon, F. M., Moses, S. N., Edgar, J. C., Huang, M., Weisend, M. P., Irwin, J., Sherwood, A., Paulson, K., Bustillo, J., Adler, L. E., Miller, G. A., & Cañive, J. M. (2003). Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. American Journal of Psychiatry, 160, 15951605.Google Scholar
Thorpe, S. J. (2009). The speed of categorization in the human visual system. Neuron, 62, 168170.Google Scholar
Tooby, J. & Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J., Cosmides, L., & Tooby, J. (eds.), The Adapted Mind: Evolutionary Psychology and the Generation of Culture (pp. 19136). New York, NY: Oxford University Press.Google Scholar
Trautmann, S. A., Fehr, T., & Herrmann, M. (2009). Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Research, 1284, 100115.Google Scholar
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12, 12241225.Google Scholar
van Bockstaele, B., Verschuere, B., Tibboel, H., De Houwer, J., Crombez, G., & Koster, E. H. (2014). A review of current evidence for the causal impact of attentional bias on fear and anxiety. Psychological Bulletin, 140, 682721.Google Scholar
van Peer, J. M., Roelofs, K., Rotteveel, M., van Dijk, J. G., Spinhoven, P., & Ridderinkhof, K. R. (2007). The effects of cortisol administration on approach-avoidance behavior: An event-related potential study. Biological Psychology, 76, 135146.Google Scholar
van Peer, J. M., Spinhoven, P., van Dijk, J. G., & Roelofs, K. (2009). Cortisol-induced enhancement of emotional face processing in social phobia depends on symptom severity and motivational context. Biological Psychology, 81, 123130.Google Scholar
Venetacci, R., Johnstone, A., Kirkby, K. C., & Matthews, A. (2018). ERP correlates of attentional processing in spider fear: Evidence of threat-specific hypervigilance. Cognition and Emotion, 32(3), 437449.Google Scholar
Vlamings, P. H., Goffaux, V., & Kemner, C. (2009). Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information? Journal of Vision, 9(12), 113.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30, 829841.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624631.Google Scholar
Vuilleumier, P. & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45, 174194.Google Scholar
Walentowska, W. & Wronka, E. (2012). Trait anxiety and involuntary processing of facial emotions. International Journal of Psychophysiology, 85, 2736.Google Scholar
Wang, S., Tudusciuc, O., Mamelak, A. N., Ross, I. B., Adolphs, R., & Rutishauser, U. (2014). Neurons in the human amygdala selective for perceived emotion. Proceedings of the National Academy of Sciences, 111, E3110–E19.Google Scholar
Weinberg, A. & Hajcak, G. (2011). Electrocortical evidence for vigilance‐avoidance in generalized anxiety disorder. Psychophysiology, 48, 842851.Google Scholar
Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5, 279290.Google Scholar
Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning and Memory, 14, 116.Google Scholar
Weinberger, N. M., Hopkins, W., & Diamond, D. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience, 98, 171188.Google Scholar
Wieser, M. J., McTeague, L. M., & Keil, A. (2012). Competition effects of threatening faces in social anxiety. Emotion, 12, 1050.Google Scholar
Wieser, M. J. & Moscovitch, D. A. (2015). The effect of affective context on visuocortical processing of neutral faces in social anxiety. Frontiers in Psychology, 6, 1824.Google Scholar
Williams, J. M. G., Mathews, A., & MacLeod, C. (1996). The emotional Stroop task and psychopathology. Psychological Bulletin, 120, 3.Google Scholar
Williams, J. M. G, Watts, F. N., MacLeod, C., & Mathews, A. (1988). Cognitive Psychology and Emotional Disorders. Oxford: John Wiley & Sons.Google Scholar
Williams, J. M. G., Watts, F. N., MacLeod, C., & Mathews, A. (1997). Cognitive Psychology and Emotional Disorders (2nd edn). Oxford: John Wiley & Sons.Google Scholar
Wilson, D. A. & Stevenson, R. J. (2006). Learning to Smell: Olfactory Perception from Neurobiology to Behavior. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wilson, D. A. & Sullivan, R. M. (2011). Cortical processing of odor objects. Neuron, 72, 506519.Google Scholar
Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20, RC63.Google Scholar
You, Y. & Li, W. (2016). Parallel processing of general and specific threat during early stages of perception. Social, Cognitive, & Affective Neuroscience, 11, 395404.Google Scholar
Young, A. W., Rowland, D., Calder, A. J., Etcoff, N. L., Seth, A., & Perrett, D. I. (1997). Facial expression megamix: Tests of dimensional and category accounts of emotion recognition. Cognition, 63, 271313.Google Scholar
Zelano, C., Mohanty, A., & Gottfried, J. A. (2011). Olfactory predictive codes and stimulus templates in piriform cortex. Neuron, 72, 178187.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×