Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T03:57:37.565Z Has data issue: false hasContentIssue false

Section 1 - Basic Mechanisms in Fear and Anxiety

Published online by Cambridge University Press:  28 December 2018

Bunmi O. Olatunji
Affiliation:
Vanderbilt University, Tennessee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Acheson, D. T., Geyer, M. A., Baker, D. G., Nievergelt, C. M., Yurgil, K., & Risbrough, V. B. (2015). Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty Marines. Psychoneuroendocrinology, 51, 495505.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5. Washington, DC: American Psychiatric Association.Google Scholar
Arnaudova, I., Krypotos, A.-M., Effting, M., Boddez, Y., Kindt, M., & Beckers, T. (2013). Individual differences in discriminatory fear learning under conditions of ambiguity: A vulnerability factor for anxiety disorders. Frontiers in Psychology, 4, 298. doi: 10.3389/fpsyg.2013.00298Google Scholar
Baas, J. M., Grillon, C., Böcker, K. B., Brack, A. A., Morgan, C. A., Kenemans, L. J., & Verbaten, M. N. (2002). Benzodiazepines have no effect on fear-potentiated startle in humans. Psychopharmacology, 161, 233247. doi: 10.1007/s00213-002-1011-8Google Scholar
Baas, J. M., Nugent, M., Lissek, S., Pine, D. S., & Grillon, C. (2004). Fear conditioning in virtual reality contexts: A new tool for the study of anxiety. Biological Psychiatry, 55, 10561060. doi: 10.1016/j.biopsych.2004.02.024CrossRefGoogle Scholar
Bandarian-Balooch, S., Neumann, D. L., & Boschen, M. J. (2012). Extinction treatment in multiple contexts attenuates return ABC renewal in humans. Behaviour Research and Therapy, 50, 604609. doi: 10.1016/j.brat.2012.06.003CrossRefGoogle Scholar
Bauer, E. P. (2015). Serotonin in fear conditioning processes. Behavioural Brain Research, 277, 6877. doi: 10.1016/j.bbr.2014.07.028Google Scholar
Beckers, T., Krypotos, A.-M., Boddez, Y., Effting, M., & Kindt, M. (2013). What’s wrong with fear conditioning? Biological Psychology, 92, 9096. doi: 10.1016/j.biopsycho.2011.12.015Google Scholar
Blaya, C., Salum, G. A., Lima, M. S., Leistner-Segal, S., & Manfro, G. G. (2007). Lack of association between the serotonin transporter promotor polymorphism (5-HTTLPR) and panic disorder: A systematic review and meta-analysis. Behavioral and Brain Functions, 41. doi: 10.1186/1744-9081-3-41Google Scholar
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & Van Boxtel, A. (2005). Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42, 115.Google Scholar
Boddez, Y., Baeyens, F., Hermans, D., & Beckers, T. (2014). A fear conditioning approach to anxiety disorders: The added value of complex acquisition procedures. In Emmelkamp, P. & Ehring, T. (eds.), The Wiley Handbook of Anxiety Disorder (pp. 85103). New York, NY: Wiley-Blackwell.Google Scholar
Boddez, Y., Baeyens, F., Luyten, L., Vansteenwegen, D., Hermans, D., & Beckers, T. (2013). Rating data are underrated: Validity of US expectancy in human fear conditioning. Journal of Behavior Therapy and Experimental Psychiatry, 44, 201206. doi: 10.1016/j.jbtrp.2012.08.003Google Scholar
Boddez, Y., Bennett, M., Van Esch, S., & Beckers, T. (2017). Bending rules: The shape of the perceptual generalization gradient is sensitive to inference rules. Cognition & Emotion, 31, 14441452.Google Scholar
Boddez, Y., Vervliet, B., Baeyens, F., Lauwers, S., Hermans, D., & Beckers, T. (2012). Expectancy bias in a selective conditioning procedure: Trait anxiety increases the threat value of a blocked stimulus. Journal of Behavior Therapy and Experimental Psychiatry, 43, 832837. doi: 10.1016/j.jbtep.2011.11.005Google Scholar
Bouman, T. K. & Van Hout, W. J. P. J. (2006). CS-exposure werkt bij emetofobie. Gedragstherapie, 39, 127138.Google Scholar
Bouton, M. E. (2002). Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biological Psychiatry, 52, 976986.Google Scholar
Bouton, M. E. & Bolles, R. C. (1979). Contextual control of the extinction of conditioned fear. Learning and Motivation, 10, 445466.Google Scholar
Bouton, M. E., Mineka, S., & Barlow, D. H. (2001). A modern learning theory perspective on the etiology of panic disorders. Psychological Review, 108, 432.Google Scholar
Cameron, G., Roche, B., Schlund, M. W., & Dymond, S. (2016). Learned, instructed and observed pathways to fear and avoidance. Journal of Behavior Therapy and Experimental Psychiatry, 50, 106112. doi: 10.1016/j.jbtep.2015.06.003Google Scholar
Carleton, R. N. (2016). Into the unknown: A review and synthesis of contemporary models involving uncertainty. Journal of Anxiety Disorders, 39, 3043. doi: 10.1016/j.anxdis.2016.02.007Google Scholar
Chan, C. K. & Lovibond, P. F. (1996). Expectancy bias in trait anxiety. Journal of Abnormal Psychology, 105, 637647.Google Scholar
Chin, B., Nelson, B. D., Jackson, F., & Hajcak, G. (2016). Intolerance of uncertainty and startle potentiation in relation to different threat reinforcement rates. International Journal of Psychophysiology, 99, 7984. doi: 10.1016/j.ijpsycho.2015.11.006Google Scholar
Craske, M. G. & Barlow, D. H. (2008). Panic disorder and agoraphobia. In Barlow, D. H. (ed.), Clinical Handbook of Psychological Disorders (pp. 164). New York, NY: Guilford Press.Google Scholar
Craske, M. G., Glover, D., & DeCola, J. (1995). Predicted versus unpredicted panic attacks: Acute versus general stress. Journal of Abnormal Psychology, 104, 214223.Google Scholar
Craske, M. G. & Mystkowski, J. L. (2006). Exposure therapy and extinction: Clinical studies. In Craske, M. G., Hermans, D., & Vansteenwegen, D. (eds.), Fear and Learning: From Basic Processes to Clinical Implications (pp. 217233). Washington, DC: American Psychiatric Association.Google Scholar
Cusack, K., Jonas, D. E., Fomeris, C. A., Wines, C., Sonis, J., Middleton, J. C., …, Gaynes, B. N. (2016). Psychological treatments for adults with posttraumatic stress disorder: A systematic review and meta-analysis. Clinical Psychology Review, 43, 128141. doi: 10.1016/j.cpr.2015.10.003Google Scholar
Damsa, C., Kosel, M., & Moussally, J. (2009). Current status of brain imaging in anxiety disorders. Current Opinion in Psychiatry, 22, 96110. doi: 10.1097/YCO.0b013e328319bd10Google Scholar
Davey, G. C. (2017). A research pathway for experimental psychopathology: The role of external validity criteria. Psychopathology Review, 4, 129140.Google Scholar
Davey, G. C. L. & Matchett, G. (1994). Unconditioned stimulus rehearsal and the retention and enhancement of differential “fear” conditioning: Effects of trait and state anxiety. Journal of Abnormal Psychology, 103(4), 708718.CrossRefGoogle ScholarPubMed
De Houwer, J., Barnes-Holmes, D., & Moors, A. (2013). What is learning? On the nature and merits of a functional definition of learning. Psychonomic Bulletin & Review, 20, 631642. doi: 10.3758/s13423-013-0386-3Google Scholar
den Hollander, M., Meulders, A., Jakobs, M., & Vlaeyen, J. W. S. (2015). The effect of threat information on acquisition, extinction and reinstatement of experimentally conditioned fear of movement-related pain. Pain Medicine, 16, 23022315. doi: 10.1111/pme.12839Google Scholar
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., …, Sher, K. J. (2015). Candidate gene–environment interaction research reflections and recommendations. Perspectives on Psychological Science, 10, 3759. doi: 10.1177/1745691614556682Google Scholar
Duits, P., Cath, D. C., Lissek, S., Hox, J. J., Hamm, A. O., Engelhard, I. M., …, Baas, J. M. P. (2015). Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depression and Anxiety, 32, 239253. doi: 10.1002/da.22353Google Scholar
Duncan, L. E. & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049. doi: 10.1176/appi.ajp.2011.11020191Google Scholar
Dunsmoor, J. E., Martin, A., & LaBar, K. S. (2012). Role of conceptual knowledge in learning and retention of conditioned fear. Biological Psychology, 89, 300305. doi: 10.1016/j.biopsycho.2011.11.002Google Scholar
Dunsmoor, J. E. & Murphy, G. L. (2015). Categories, concepts, and conditioning: How humans generalize fear. Trends in Cognitive Sciences, 19, 7375. doi: 10.1016/j.tics.2014.12.003Google Scholar
Dymond, S., Dunsmoor, J. E., Vervliet, B., Roche, B., & Hermans, D. (2015). Fear generalization in humans: Systematic review and implications for anxiety disorder research. Behavior Therapy, 46, 561582.Google Scholar
Effting, M. & Kindt, M. (2007). Contextual control of human fear associations in a renewal paradigm. Behaviour Research and Therapy, 45, 20022018. doi: 10.1016/j.brat.2007.02.011Google Scholar
Engelhard, I. M., Van den Hout, M. A., & McNally, R. J. (2008). Memory consistency for traumatic events in Dutch soldiers deployed to Iraq. Memory, 16, 39.Google Scholar
Etkin, A. & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488. doi: 10.1176/appi.ajp.2007.07030504Google Scholar
Fonteyne, R., Vervliet, B., Hermans, D., Baeyens, F., & Vansteenwegen, D. (2009). Reducing chronic anxiety by making the threatening event predictable: An experimental approach. Behaviour Research and Therapy, 47, 830839. doi: 10.1016/j.brat.2009.06.011Google Scholar
Frijda, N. H. (1986). The Emotions. Cambridge: Cambridge University Press.Google Scholar
Ganzendam, F. J., Kamphuis, J. H., & Kindt, M. (2013). Deficient safety learning characterizes high trait anxious individuals. Biological Psychology, 92, 342352. doi: 10.1016/j.biopsycho.2012.11.006Google Scholar
Gentes, E. L. & Ruscio, A. M. (2011). A meta-analysis of the relation of intolerance of uncertainty to symptoms of generalized anxiety disorder, major depressive disorder, and obsessive-compulsive disorder. Clinical Psychology Review, 31, 923933. doi: 10.1016/j.cpr.2011.05.001Google Scholar
Gorman, J. M., Kent, J. M., Sullivan, G. M., & Coplan, J. D. (2000). Neuroanatomical hypothesis of panic disorder, revised. American Journal of Psychiatry, 157, 493505.Google Scholar
Grillon, C. (2002). Startle reactivity and anxiety disorders: Aversive conditioning, context, and neurobiology. Biological Psychiatry, 52, 958975.Google Scholar
Grillon, C. & Ameli, R. (2001). Conditioned inhibition of fear-potentiated startle and skin conductance in humans. Psychophysiology, 38, 807815.Google Scholar
Grillon, C. & Baas, J. (2003). A review of the modulation of the startle reflex by affective states and its application in psychiatry. Clinical Neurophysiology, 114, 15571579.CrossRefGoogle ScholarPubMed
Grillon, C., Baas, J., Lissek, S., Smith, K., & Milstein, J. (2004). Anxious responses to predictable and unpredictable aversive events. Behavioral Neuroscience, 118, 916924. doi: 10.1037/0735-7044.118.5.916Google Scholar
Grillon, C., Baas, J., Pine, D. S., Lissek, S., Lawley, M., Ellis, V., & Levine, J. (2006). The benzodiazepine alprazolam dissociates contextual fear from cued fear in humans as assessed by fear-potentiated startle. Biological Psychiatry, 60, 760766. doi: 10.1016/biopsych.2005.11.027Google Scholar
Grillon, C. & Davis, M. (1997). Fear-potentiated startle conditioning in humans: Explicit and contextual cue conditioning following paired versus unpaired training. Psychophysiology, 34, 451458. doi: 10.1111/j.1469-8986.1997.tb02389.xGoogle Scholar
Guthrie, R. M. & Bryant, R. A. (2006). Extinction learning before trauma and subsequent posttraumatic stress. Psychosomatic Medicine, 68, 307311.Google Scholar
Haaker, J., Golkar, A., Hermans, D., & Lonsdorf, T. B. (2014). A review on human reinstatement studies: An overview and methodological challenges. Learning and Memory, 21, 424440. doi: 10.1101/lm.036053.114CrossRefGoogle ScholarPubMed
Haddad, A. D. M., Pritchett, D., Lissek, S., & Lau, J. Y. F. (2012). Trait anxiety and fear responses to safety cues: Stimulus generalization of sensitization? Journal of Psychopathology and Behavioral Assessment, 34, 323331. doi: 10.1007/s10862-012-9284-7Google Scholar
Hedge, C., Powell, G., & Sumner, P., (2017). The reliability paradox: Why robust cognitive tasks do produce reliable individual differences. Behavior Research Methods, 50(3), 11661186. doi: 10.3758/s13428-017-0935-1Google Scholar
Hermans, D., Baeyens, F., & Vervliet, B. (2013). Generalization of acquired emotional responses. In Robinson, M. D., Watkins, E. R., & Harmon-Jones, E. (eds.), Handbook of Cognition and Emotion (pp. 117134). New York, NY: Guilford Press.Google Scholar
Hermans, D., Craske, M. G., Mineka, S., & Lovibond, P. F. (2006). Extinction in human fear conditioning. Biological Psychiatry, 60, 361368. doi: 10.1016/j.biopsych.2005.10.006Google Scholar
Hermans, D., Dirickx, T., Vansteenwegen, D., Baeyens, F., Van den Bergh, O., & Eelen, P. (2005). Reinstatement of fear responses in human aversive conditioning. Behavior Research and Therapy, 43, 533551. doi: 10.1016/j.brat.2004.03.013Google Scholar
Hodgson, R., & Rachman, S. (1974). Desynchrony in measures of fear. Behaviour Research and Therapy, 12, 319326.Google Scholar
Huff, N. C., Hernandez, J. A., Blanding, N. Q., & LaBar, K. S. (2009). Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behavioral Neuroscience, 123, 834843. doi: 10.1037/a0016511Google Scholar
Ipser, J. C., Singh, L., & Stein, D. J. (2013). Meta-analysis of functional brain imaging in specific phobia. Psychiatry and Clinical Neurosciences, 67, 311322. doi: 10.1111/pcn.12055Google Scholar
Joos, E., Vansteenwegen, D., & Hermans, D. (2012). Post-acquisition repetitive thought in fear conditioning: An experimental investigation of the effect of CS-US rehearsal. Journal of Behavior Therapy and Experimental Psychiatry, 43, 737744. doi: 10.1016/j.btep.2011.10.011Google Scholar
Joos, E., Vansteenwegen, D., Vervliet, B., & Hermans, D. (2013). Repeated activation of a CS-US-contingency results in sustained conditioned responding. Frontiers in Psychology, 4. doi: 10.3389/fpsyg.2013.00305Google Scholar
Kalish, H. (1969). Stimulus generalization. In Marx, M. (ed.), Learning: Processes (pp. 205297). Oxford: Macmillan.Google Scholar
Kent, G. (1997). Dental phobias. In Davey, G. C. (ed.), Phobias: A Handbook of Theory, Research and Treatment (pp. 107127). Chichester: Wiley.Google Scholar
Kent, J. M. & Rauch, S. L. (2003). Neurocircuitry of anxiety disorders. Current Psychiatry Reports, 5, 266273.Google Scholar
Kindt, M., & Soeter, M. (2014). Fear inhibition in high trait anxiety. PLoS ONE, 9, e86462. doi: 10.1371/journal.pone.0086462Google Scholar
Klucken, T., Alexander, N., Schweckendiek, J., et al. (2013) Individual differences in neural correlates of fear conditioning as a function of 5-HTTLPR and stressful life events. Social, Cognitive and Affective Neuroscience, 8, 318325.CrossRefGoogle ScholarPubMed
Krypotos, A.-M., Arnaudova, I., Effting, M., Kindt, M., & Beckers, T. (2015). Effects of approach-avoidance training on the extinction and return of fear responses. PLoS ONE, 10, e0131581. doi: 10.1371/journal.pone.0131581Google Scholar
Krypotos, A.-M., Effting, M., Arnaudova, I., Kindt, M., & Beckers, T. (2014). Avoided by association: Acquisition, extinction, and renewal of avoidance tendencies towards conditioned fear stimuli. Clinical Psychological Science, 2, 336343. doi: 10.1177/2167702613503139Google Scholar
Lang, P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology, 16, 495512.Google Scholar
Leibold, N. K., Viechtbauer, W., Goossens, L., De Cort, K., Griez, E. J., Myin-Germeys, I., & Steinbusch, H. W. M. (2013). Carbon dioxide inhalation as a human experimental model of panic: The relationship between emotions and cardiovascular physiology. Biological Psychology, 94, 331340. doi: 10.1016/j.biopsycho.2013.06.004Google Scholar
Lenaert, B., Boddez, Y., Griffith, J. W., Vervliet, B., Schruers, K., & Hermans, D. (2014). Aversive learning and generalization predict subclinical levels of anxiety: A six-month longitudinal study. Journal of Anxiety Disorders, 28, 747753. doi: 10.1016/j.anxdis.2014CrossRefGoogle ScholarPubMed
Lenaert, B., Boddez, Y., Vervliet, B., Schruers, K., & Hermans, D. (2015). Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients. Frontiers in Psychology, 6, 889. doi: 10.3389/fpsyg.2015.00889Google Scholar
Lenaert, B., Boddez, Y., Vlaeyen, J., & Van Heugten, C. (2018). Learning to feel tired: A learning trajectory towards chronic fatigue. Behaviour Research and Therapy, 100, 5466.Google Scholar
Leuchs, L., Schneider, M., Czisch, M., & Spoormaker, V. I. (2017). Neural correlated of pupil dilation during human fear learning. NeuroImage, 147, 186197. doi: 10.1016/j.neuroimage.2016.11.072Google Scholar
Lipp, O. V. (2006). Human fear learning: Contemporary procedures and measurement. In Craske, M. G., Hermans, D., & Vansteenwegen, D. (eds.), Fear and Learning: From Basic Processes to Clinical Implications (pp. 3752). Washington, DC: American Psychological Association.Google Scholar
Lissek, S., Biggs, A. L., Rabin, S. J., Cornwell, B. R., Alvarez, R. P., Pine, D. S., & Grillon, C. (2008). Generalization of conditioned fear-potentiated startle in humans: Experimental validation and clinical relevance. Behaviour Research and Therapy, 46, 678687. doi: 10.1016/j.brat.2008.02.005Google Scholar
Lissek, S., & Grillon, C. (2012). Learning models of PTSD. In Beck, J. G., & Sloan, D. M. (eds.), The Oxford Handbook of Traumatic Stress Disorders. New York, NY: Oxford University Press.Google Scholar
Lissek, S., Kaczkurkin, A. N., Rabin, S., Geraci, M., Pine, D. S., & Grillon, C. (2014). Generalized anxiety disorder is associated with overgeneralization of classically conditioned fear. Biological Psychiatry, 75, 909956. doi: 10.1016/j.biopsych.2013.07.025Google Scholar
Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: A meta-analysis. Behaviour Research and Therapy, 43, 13911424.Google Scholar
Lissek, S., Rabin, S., Heller, R. E., Lukenbaugh, D., Geraci, M., Pine, D. S., & Grillon, C. (2010). Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. American Journal of Psychiatry, 167, 4755. doi: 10.1176/appi.ajp.2009.09030410Google Scholar
Lissek, S., Rabin, S. J., McDowell, D. J., Dvir, S., Bradford, D. E., Geraci, M., …, & Grillon, C. (2009). Impaired discriminative fear-conditioning resulting from elevated fear responding to learned safety cues among individuals with panic disorder. Behaviour Research and Therapy, 47, 111118. doi: 10.1016/j.brat.2008.10.017Google Scholar
Lommen, M. J., Engelhard, I. M., Sijbrandij, M., Van den Hout, M. A., & Hermans, D. (2013). Pre-trauma individual differences in extinction learning predict posttraumatic stress. Behaviour Research and Therapy, 51, 6367.Google Scholar
Lonsdorf, T. B. & Baas, J. M P. (2015). Genetics in experimental psychopathology: From laboratory models to therapygenetics. Where do we go from here?Psychopathology Review, 4(2), 169188.Google Scholar
Lonsdorf, T. B. & Kalisch, R. (2011).A review on experimental and clinical genetic association studies on fear conditioning, extinction and cognitive-behavioral treatment. Translational Psychiatry, 1, e41. doi: 10.1038/tp.2011.36Google Scholar
Lonsdorf, T. B. & Merz, C. J. (2017). More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans – biological, experiential, temperamental factors, and methodological pitfalls. Neuroscience & Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2017.07.007Google Scholar
Lonsdorf, T. B., Rück, C., Bergström, J., Andersson, G., Öhman, A., Schalling, M., & Lindefors, N. (2009). The symptomatic profile of panic disorder is shaped by the 5-HTTLPR polymorphism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 14791483. doi: 10.1016/j.pnpbp.2009.08.004Google Scholar
Lonsdorf, T., Weike, A., Nikamo, P., Schalling, M., Hamm, A., & Öhman, A. (2009). Genetic gating of human fear learning and extinction: Possible implication for gene-environment interaction in anxiety disorder. Psychological Science, 20, 198206. doi: 10.1111/j.1467-9280.2009.02280.xGoogle Scholar
Lovibond, P. F., Mitchell, C. J., Minard, E., Brady, A., & Menzies, R. G. (2009). Safety behaviours preserve threat beliefs: Protection from extinction of human fear conditioning by an avoidance response. Behaviour Research and Therapy, 47, 716720. doi: 10.1080/17470210701503229Google Scholar
Lubow, R. E. & Moore, A. U. (1959). Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus. Journal of Comparative and Physiological Psychology, 52, 415419. doi: 10.1037/h0046700Google Scholar
Luyten, L., Vansteenwegen, D., Van Kuyck, K., & Nuttin, B. (2011). Contextual conditioning in rats as an animal model for generalized anxiety disorder. Cognitive, Affective, & Behavioral Neuroscience, 11, 228244. doi: 10.3758/s13415-011-0021-6Google Scholar
Mallan, K. M., Sax, J., & Lipp, O. V. (2009). Verbal instruction abolishes fear conditioned to racial out-group faces. Journal of Experimental Social Psychology, 45, 13031307. doi: 10.1016/j.jesp.2009.08.001Google Scholar
Manufò, M. R., Freimer, N. B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., … Flint, J. (2009). 5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 150B, 271281. doi: 10.1002/ajmg.b.30808Google Scholar
Maren, S. (2008). Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: Caution and caveats. European Journal of Neuroscience, 28, 16611666. doi: 10.1111/j.1460-9568.2008.06485.xGoogle Scholar
McEvoy, P. M. & Mahoney, A. E. J. (2012). To be sure, to be sure: Intolerance of uncertainty mediates symptoms of various anxiety disorders and depression. Behavior Therapy, 43, 533545. doi: 10.1016/j.beth.2011.02.007Google Scholar
Merckelbach, H., Van den Hout, M. A., Hoekstra, R., & de Ruiter, C. (1989). Conditioning experiences and phobias. Behaviour Research and Therapy, 27, 657662. doi: 10.1016/0005-7967(89)90149-6Google Scholar
Meulders, A., Mampaey, J., Boddez, Y., Blanco, F., Vansteenwegen, D., & Baeyens, F. (2013). Offset-control attenuates context conditioning induced by US-unpredictability in a human conditioned suppression paradigm. Psychologica Belgica, 53, 3956. doi: 10.5334/pb-53-1-39Google Scholar
Mineka, S., Cook, M., & Miller, S. (1984). Fear conditioned with escapable and inescapable shock: Effects of a feedback stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 10, 307323.Google Scholar
Mineka, S. & Zinbarg, R. (2006). A contemporary learning theory perspective on the etiology of anxiety disorders. American Psychologist, 61, 1026. doi: 10.1037/0003-066X.61.1.10Google Scholar
Miu, A. C., Vulturar, R., Chis, A., Ungureanu, L., & Gross, J. J. (2013). Reappraisal as a mediator in the link between 5-HTTLPR and social anxiety symptoms. Emotion, 13, 10121022. doi: 10.1037/a0033383Google Scholar
Mystkowski, J. L., Craske, M. G., & Echiverri, A. M. (2002). Treatment context and return of fear in spider phobia. Behavior Therapy, 33, 399416.CrossRefGoogle Scholar
Mystkowski, J. L., Craske, M. G., Echiverri, A. M., & Labus, J. S. (2006). Mental reinstatement of context and return of fear in spider-fearful participants. Behavior Therapy, 37, 4960. doi: 10.1016/j.beth.2005.04.001Google Scholar
Nelson, B. D., Weinberg, A., Pawluk, J., Gawlowska, M., & Proudfit, G. H. (2015). An event-related potential investigation of fear generalization and intolerance of uncertainty. Behavior Therapy, 46, 661670. doi: 10.1016/j.beth.2014.09.010Google Scholar
Norrholm, S. D., Vervliet, B., Jovanovic, T., Boshoven, W., Myers, K. M., Davis, M., …, & Duncan, E. J. (2008). Timing of extinction relative to acquisition: A parametric analysis of fear extinction in humans. Behavioral Neuroscience, 122, 10161030. doi: 10.1037/a0012604Google Scholar
Offidani, E., Guidi, J., Tomba, E., & Fava, G. A. (2013). Efficacy and tolerability of benzodiazepines versus antidepressants in anxiety disorders: A systematic review and meta-analysis. Psychotherapy and Psychosomatics, 82, 355362. doi: 10.1159/000353198Google Scholar
Olatunji, B. O., Tomarken, A., Wentworth, B., & Fritzsche, L. (2017). Effects of exposure in single and multiple contexts on fear renewal: The moderating role of threat-specific and nonspecific emotionality. Journal of Behavior Therapy and Experimental Psychiatry, 54, 270277. doi: 10.1016/j.jbtep.2016.09.004Google Scholar
Olsson, A., Nearing, K. I., & Phelps, E. A. (2007). Learning fear by observing other: The neural systems of social fear transmission. Social Cognitive and Affective Neuroscience, 2, 311. doi: 10.1093/scan/nsm005Google Scholar
Olsson, A. & Phelps, E. A. (2004). Learned fear of “unseen” faces after Pavlovian, observational, and instructed fear. Psychological Science, 15, 822828. doi: 10.1111/j.0956-7976.2004.00762.xGoogle Scholar
Öst, L.-G., Havnen, A., Hansen, B., & Kvale, G. (2015). Cognitive behavioral treatment of obsessive-compulsive disorder: A systematic review and meta-analysis of studies published 1993–2014. Clinical Psychology Review, 40, 156169. doi: 10.1016/j.cpr.2015.06.003Google Scholar
Öst, L.-G. & Hugdahl, K. (1981). Acquisition of phobias and anxiety response patterns in clinical patients. Behaviour Research and Therapy, 19, 439447.Google Scholar
Pavlov, I. P. (1927). Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. London: Oxford University Press.Google Scholar
Phelps, E. A., Connor, K. J. O., Gatenby, J. C., Gore, J. C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437441. doi: 10.1038/86110Google Scholar
Pittig, A., Brand, M., Pawlikowski, M., & Alpers, G. W. (2014). The cost of fear: Avoidant decision making in a spider gambling task. Journal of Anxiety Disorders, 28, 326334. doi: 10.1016/j.anxdis.2014.03.001Google Scholar
Poulton, R. & Menzies, R. (2002). Non-associative fear acquisition: A review of the evidence from retrospective and longitudinal research. Behaviour Research and Therapy, 40, 127149.Google Scholar
Rachman, S. J. (1977). The conditioning theory of fear acquisition: A critical examination. Behaviour Research and Therapy, 15, 375387. doi: 10.1016/0005-7967(77)90041-9Google Scholar
Rachman, S. J. (1989). The return of fear: Review and prospect. Clinical Psychology Review, 9, 147168. doi: 10.1016/0272-7358(89)90025-1Google Scholar
Rau, V., DeCola, J. P., & Fanselow, M. S. (2005). Stress-induced enhancement of fear learning: An animal model of posttraumatic stress disorder. Neuroscience and Biobehavioral Reviews, 29, 12071223. doi: 10.1016/j.neubiorev.2005.04.010CrossRefGoogle ScholarPubMed
Rescorla, R. A. (1974). Effect of inflation of the unconditioned stimulus value following conditioning. Journal of Comparative and Physiological Psychology, 86, 101106.Google Scholar
Rinck, M. & Becker, E. S. (2006). Spider fearful individuals attend to threat, then quickly avoid it: Evidence from eye movements. Journal of Abnormal Psychology, 115, 231238. doi: 10.1037/0021-843X.115.2.231Google Scholar
Rodriguez, B. I., Craske, M. G., Mineka, S., & Hladek, D. (1999). Context-specificity of relapse: Effects of therapist and environmental context on return of fear. Behaviour Research and Therapy, 37, 845862.Google Scholar
Scheveneels, S., Boddez, Y., Vervliet, B., & Hermans, D. (2016). The validity of laboratory-based treatment research: Bridging the gap between fear extinction and exposure treatment. Behaviour Research and Therapy, 86, 8794. doi: 10.1016/j.brat.2016.08.015Google Scholar
Schroijen, M. & Pappens, M. (2015). Generalization of fear to respiratory sensations. Behavior Therapy, 46, 611626. doi: 10.1016/j.beth.2015.05.004Google Scholar
Sehlmeyer, C., Schöning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., & Konrad, C. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PLoS ONE, 4, e5865. doi: 10.1371/journal.pone.0005865Google Scholar
Shin, L. M. & Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology Reviews, 35, 169191. doi: 10.1038/npp.2009.83Google Scholar
Sijbrandij, M., Engelhard, I. M., Lommen, M. J., Leer, A., & Baas, J. M. (2013). Impaired fear inhibition learning predicts the persistence of symptoms of posttraumatic stress disorder (PTSD). Journal of Psychiatric Research, 47, 19911997.Google Scholar
Tabor, H. K., Risch, N. J., & Myers, R. M. (2002). Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nature Reviews. Genetics, 3, 391397. doi: 10.1038/nrg796Google Scholar
Torrents-Rodas, D., Fullana, M. A., Bonillo, A., Caseras, X., Andión, O., & Torrubia, R. (2013). No effect of trait anxiety on differential fear conditioning or fear generalization. Biological Psychology, 92, 185190. doi: 10.1016/j.biopsycho.2012.10.006Google Scholar
Van Gucht, D., Vansteenwegen, D., Van den Bergh, O., & Beckers, T. (2008). Conditioned craving cues elicit an automatic approach tendency. Behaviour Research and Therapy, 46, 11601169.Google Scholar
Van Meurs, B., Wiggert, N., Wicker, I., & Lissek, S. (2014). Maladaptive behavioral consequences of conditioned fear generalization: A pronounced, yet sparsely studied feature of anxiety pathology. Behaviour Research and Therapy, 57, 2937. doi: 10.1016/j.brat.2014.03.009Google Scholar
Vansteenwegen, D., Vervliet, B., Hermans, D., Thewissen, R., & Eelen, P. (2007). Verbal, behavioural and physiological assessment of the generalization of exposure-based fear reduction in a spider-anxious population. Behavioural Research and Therapy, 45, 291300. doi: 10.1016/j.brat.2006.03.008Google Scholar
Vasey, M. W., Harbaugh, C. N., Buffington, A. G., Jones, C. R., & Fazio, R. H. (2012). Predicting return of fear following exposure therapy with an implicit measure of attitudes. Behaviour Research and Therapy, 50, 767774. doi: 10.1016/j.brat.2012.08.007Google Scholar
Vervliet, B., Baeyens, F., Van den Bergh, O., & Hermans, D. (2013). Extinction, generalization, and return of fear: A critical review of renewal research in humans. Biological Psychology, 92, 5158. doi: 10.1016/j.biopsycho.2012.01.006Google Scholar
Vervliet, B., Craske, M. G., & Hermans, D. (2013). Fear extinction and relapse: State of the art. Annual Review of Clinical Psychology, 9, 215248. doi: 10.1146/annurev-clinpsy-050212-185542Google Scholar
Vervliet, B. & Indekeu, E. (2015). Low-cost avoidance behaviors are resistant to fear extinction in humans. Frontiers in Behavioral Neuroscience, 9. doi: 10.3389/fnbeh.2015.00351.Google Scholar
Vervliet, B. & Raes, F. (2013). Criteria of validity in experimental psychopathology: Application to models of anxiety and depression. Psychological Medicine, 43, 22412244. doi: 10.1017/S0033291712002267Google Scholar
Vervoort, E., Vervliet, B., Bennett, M., & Baeyens, F. (2014). Generalization of human fear acquisition and extinction within a novel arbitrary stimulus category. PLoS ONE, 9(5): e96569. https://doi.org/10.1371/journal.pone.0096569Google Scholar
Waters, A., LeBeau, R., & Craske, M. (2017). Experimental psychopathology and clinical psychology: An integrative model. Psychopathology Review, 4, 112128. doi: 10.5127/pr.038015Google Scholar
Watson, J. B. & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology, 3, 114.Google Scholar
Wendt, J., Neubert, J., Lindner, K., Ernst, F. D., Homuth, G., Weike, A. I., Hamm, A. O. (2014). Genetic influences on the acquisition and inhibition of fear. International Journal of Psychophysiology, 98, 499505. doi: 10.1016/j.ijpsycho.2014.10.007Google Scholar
Wolitzky-Taylor, K. B., Horowitz, J. D., Powers, M. B., & Telch, M. J. (2008). Psychological approaches in the treatment of specific phobias: A meta-analysis. Clinical Psychology Review, 28, 10211037. doi: 10.1016/j.cpr.2008.02.007Google Scholar

References

Abend, R., de Voogd, L., Salemink, E., Wiers, R.W., Pérez-Edgar, K., Fitzgerald, A., White, L. K., Salum, G. A., He, J., Silverman, W. K., Pettit, J. W., Pine, D.S., & Bar-Haim, Y. (2018). Association between attention bias to threat and anxiety symptoms in children and adolescents. Depression and Anxiety, 35(3), 229238.Google Scholar
Algom, D., Chajut, E., & Lev, S. (2004). A rational look at the emotional Stroop phenomenon: A generic slowdown, not a Stroop effect. Journal of Experimental Psychology: General, 133, 323338.Google Scholar
Amir, N., Beard, C., Burns, M., & Bomyea, J. (2009). Attention modification program in individuals with generalized anxiety disorder. Journal of Abnormal Psychology, 118, 2833.Google Scholar
Anderson, A. K. (2005). Affective influences on the attentional dynamics supporting awareness. Journal of Experimental Psychology: General, 134, 258281.Google Scholar
Armstrong, T. & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A metaanalytic review and synthesis. Clinical Psychology Review, 32, 704723.Google Scholar
Baert, S., Koster, E. H. W., & De Raedt, R. (2011). Modification of information-processing biases in emotional disorders: Clinically relevant developments in experimental psychopathology. International Journal of Cognitive Therapy, 4, 205219.Google Scholar
Bannerman, R. L., Milders, M., De Gelder, B., & Sahraie, A. (2008). Influence of emotional facial expressions on binocular rivalry. Ophthalmic and Physiological Optics, 28(4), 317326.Google Scholar
Bannerman, R. L., Milders, M., & Sahraie, A. (2009). Processing emotional stimuli: Comparison of saccadic and manual choice-reaction times. Cognition & Emotion, 23, 930954.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 124.Google Scholar
Beck, A. T., Emery, G., & Greenberg, R. L. (1985). Anxiety Disorders and Phobias: A Cognitive Perspective. New York, NY: Basic Books.Google Scholar
Bernstein, A. & Zvielli, A. (2014). Attention feedback awareness and control training (A-FACT): Experimental test of a novel intervention paradigm targeting attentional bias. Behaviour Research and Therapy, 55, 1826.Google Scholar
Biederman, J., Rosenbaum, J. F., Bolducmurphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., & Kagan, J. (1993). A 3-year follow-up of children with and without behavioural-inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 32, 814821.Google Scholar
Bower, G. H. (1981). Mood and memory. American Psychologist, 36, 129148.Google Scholar
Bower, G. H. (1987). Commentary on mood and memory. Behaviour Research and Therapy, 25, 443455.Google Scholar
Bradley, B. P., Mogg, K., & Millar, N. H. (2000). Covert and overt orienting of attention to emotional faces in anxiety. Cognition & Emotion, 14(6), 789808.Google Scholar
Cisler, J. M. & Koster, E. H. W. (2010). Mechanisms underlying attentional biases towards threat: An integrative review. Clinical Psychology Review, 30, 203216.Google Scholar
Clark, D. M. (1999). Anxiety disorders: Why they persist and how to treat them. Behaviour Research and Therapy, 37, S5S27.Google Scholar
Cole, C., Zapp, D. J., Fettig, N. B., & Pérez-Edgar, K. (2016). Impact of attention biases to threat and effortful control on individual variations in negative affect and social withdrawal in very young children. Journal of Experimental Child Psychology, 141, 210221.Google Scholar
Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.Google Scholar
Cristea, I. A., Kok, R. N., & Cuijpers, P. (2015) Efficacy of cognitive bias modification interventions in anxiety and depression: Meta-analysis. British Journal of Psychiatry, 206, 716.Google Scholar
Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13, 2835.Google Scholar
De Ruiter, C. & Brosschot, J. F. (1994). The emotional Stroop interference effect in anxiety: Attentional bias or cognitive avoidance?Behaviour Research and Therapy, 32, 315319.Google Scholar
Derryberry, D. & Reed, M. A. (2002). Anxiety-related attentional biases and their regulation by attentional control. Journal of Abnormal Psychology, 111, 225236.Google Scholar
Eysenck, M. W. (1992). Anxiety: The Cognitive Perspective. Hove, UK: Erlbaum Ltd.Google Scholar
Eysenck, M. W. (1997). Anxiety and Cognition: A Unified Theory. Hove, UK: Erlbaum Ltd.Google Scholar
Eysenck, M. W. & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & Emotion, 6, 409434.Google Scholar
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336353.Google Scholar
Fox, E., Cahill, S., & Zougkou, K. (2010). Preconscious processing biases predict emotional reactivity to stress. Biological Psychiatry, 67, 371377.Google Scholar
Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology: General, 130(4), 681700.Google Scholar
Hallion, L. S., & Ruscio, A. M. (2011). A meta-analysis of the effect of cognitive bias modification on anxiety and depression. Psychological Bulletin, 137, 940958.Google Scholar
Hermans, D., Vansteenwegen, D., & Eelen, P. (1999). Eye movement registration as a continuous index of attention deployment: Data from a group of spider anxious students. Cognition & Emotion, 13, 419434.Google Scholar
Holender, D. (1986). Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: A survey and appraisal. Behavioral and Brain Sciences, 9, 123.Google Scholar
Horstmann, G. (2007). Preattentive face processing: What do visual search experiments with schematic faces tell us? Visual Cognition, 15, 799833.Google Scholar
Iacoviello, B. M., Wu, G., Abend, R., Murrough, J. W., Feder, A., Fruchter, E., Levinstein, Y., Wald, I., Bailey, C. R., Pine, D. S., Neumeister, A., Bar-Haim, Y., & Charney, D. S. (2014). Attention bias variability and symptoms of posttraumatic stress disorder. Journal of Traumatic Stress, 27, 18.Google Scholar
Koster, E. H. W. & Bernstein, A. (2015). Introduction to the special issue on cognitive bias modification: Taking a step back to move forward? Journal of Behavior Therapy and Experimental Psychiatry, 49, 14.Google Scholar
Koster, E. H. W., Fox, E., & MacLeod, C. (2009). Introduction of the special section on cognitive bias modification. Journal of Abnormal Psychology, 118, 14.Google Scholar
Kruijt, A. W., Field, A. P., & Fox, E. (2016). Capturing dynamics of biased attention: Are new attention variability measures the way forward? PLOS One, 11, e0166600.Google Scholar
Lazarov, A., Marom, S., Yahalom, N., Pine, D. S., Hermesh, H., & Bar-Haim, Y. (2017). Attention bias modification augments cognitive-behavioral group therapy for social anxiety disorder: A randomized controlled trial. Psychological Medicine, 19. doi: 10.1017/S003329171700366X.Google Scholar
Lazarov, A., Pine, D. S., & Bar-Haim, Y. (2017). Gaze-contingent music reward treatment for social anxiety disorder: A randomized controlled trial. American Journal of Psychiatry, 174, 649656.Google Scholar
Lonigan, C. J., Vasey, M. W., Phillips, B. M., & Hazen, R. A. (2004). Temperament, anxiety, and the processing of threat-relevant stimuli. Journal of Clinical Child and Adolescent Psychology, 33, 820.Google Scholar
Macleod, C., & Hagan, R. (1992). Individual differences in the selective processing of threatening information, and emotional responses to a stressful life event. Behaviour Research and Therapy, 30, 151161.Google Scholar
MacLeod, C. & Mathews, A. (1988). Anxiety and the allocation of attention to threat. Quarterly Journal of Experimental Psychology, 40A, 653670.Google Scholar
MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 1520.Google Scholar
MacLeod, C. & Rutherford, E. M. (1992). Anxiety and the selective processing of emotional information: Mediating roles of awareness, trait and state variables, and personal relevance of stimulus materials. Behaviour Research and Therapy, 30, 479491.Google Scholar
MacLeod, C., Rutherford, E., Campbell, L., Ebsworthy, G., & Holker, L. (2001). Selective attention and emotional vulnerability: Assessing the causal basis of their association through the experimental manipulation of attentional bias. Journal of Abnormal Psychology, 111, 107123.Google Scholar
Mathews, A. & MacLeod, C. (1985). Selective processing of threat cues in anxiety states. Behaviour Research and Therapy, 23, 563569.Google Scholar
Mathews, A. & MacLeod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45, 2550.Google Scholar
Mogg, K. & Bradley, B. P. (1998). A cognitive-motivational analysis of anxiety. Behaviour Research and Therapy, 36, 809848.Google Scholar
Mogg, K., & Bradley, B. P. (2016). Anxiety and attention to threat: Cognitive mechanisms and treatment with attention bias modification. Behaviour Research and Therapy, 87, 76108.Google Scholar
Mogg, K., Bradley, B. P., Dixon, C., Fisher, S., Twelftree, H., & McWilliams, A. (2000). Trait anxiety, defensiveness and selective processing of threat: An investigation using two measures of attentional bias. Personality and Individual Differences, 28, 10631077.Google Scholar
Mogg, K., Holmes, A., Garner, M., & Bradley, B. P. (2008). Effects of threat cues on attentional shifting, disengagement and response slowing in anxious individuals. Behaviour Research and Therapy, 46, 656667.Google Scholar
Mogg, K., Mathews, A., & Weinman, J. (1987). Memory bias in clinical anxiety. Journal of Abnormal Psychology, 96, 9498.Google Scholar
Mogoase, C., David, D., & Koster, E. H. W. (2014). Clinical efficacy of attentional bias modification procedures: An updated meta-analysis. Journal of Clinical Psychology, 70, 11331157.Google Scholar
Öhman, A., Flykt, A., & Lundqvist, D. (2000). Unconscious emotion: Evolutionary perspectives, psychophysiological data, and neuropsychological mechanisms. In Lane, R. D. & Nadel, L. (eds.), Cognitive Neuroscience of Emotion (pp. 296327). New York, NY: Oxford University Press.Google Scholar
Parkinson, L. & Rachman, S. (1981). Intrusive thoughts: The effects of an uncontrived stress. Advances in Behaviour Research and Therapy, 3, 111118.Google Scholar
Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2010). Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal. Emotion, 10, 349357.Google Scholar
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 325.Google Scholar
Price, R. B., Greven, I. M., Koster, E. H. W., Siegle, G. J., & De Raedt, R. (2016). A novel attention training paradigm based on operant conditioning of eye gaze: Preliminary findings. Emotion, 16, 110116.Google Scholar
Rapee, R., Macleod, C., Carpenter, L., Gaston, J., Frei, J., Peters, L., & Baillie, A. (2013). Integrating cognitive bias modification into a standard cognitive behavioural treatment package for social phobia: A randomized controlled trial. Behaviour Research and Therapy, 51, 207215.Google Scholar
Rinck, M., Kwakkenbos, L., Dotsch, R., Wigboldus, D., & Becker, E. S. (2010). Attentional and behavioral responses of spider fearfuls to virtual spiders. Cognition & Emotion, 24, 11991206.Google Scholar
Rodebaugh, T. L., Sculin, R. B., Langer, J. K., Dixon, D. J., Huppert, J. D., Bernstein, A., Zvielli, A., & Lenze, E. J. (2016). Unreliability as a threat to understanding psychopathology: The dot-probe task as cautionary tale. Journal of Abnormal Psychology, 125(6). 840851.Google Scholar
Rothbart, M. K. & Bates, J. E. (2006). Temperament. In Damon, W., Lerner, R., & Eisenberg, N. (eds.), Handbook of Child Psychology: vol. 3. Social, Emotional, and Personality Development (6th edn, pp. 99166). New York, NY: Wiley.Google Scholar
Rudaizky, D., Basanovic, J., & Macleod, C. (2014). Biased attentional engagement with, and disengagement from, negative information: Independent cognitive pathways to anxiety vulnerability? Cognition & Emotion, 28, 245259.Google Scholar
Sanchez, A., Everaert, J., & Koster, E. H. W. (2016). Attention training through gaze-contingent feedback: Effects on reappraisal and negative emotions. Emotion, 16.Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662.Google Scholar
Tobon, J. I., Ouimet, A. J., & Dozois, D. J. A. (2011). Attentional bias in anxiety disorders following cognitive behavioral treatment. Journal of Cognitive Psychotherapy, 25, 114129.Google Scholar
Van Bockstaele, B., Verschuere, B., Crombez, G., De Houwer, J., Tibboel, H., & Koster, E. H. W. (2014). A review of current evidence for the causal impact of attentional bias on fear and anxiety. Psychological Bulletin, 140, 682721.Google Scholar
Van den Hout, M., Tenney, N., Huygens, K., Merckelbach, H., & Kindt, M. (1995). Responding to subliminal threat cues is related to trait anxiety and emotional vulnerability: S successful replication of MacLeod and Hagan (1992). Behaviour Research and Therapy, 33, 451454.Google Scholar
Vogt, J., Houwer, J., Crombez, G., & Van Damme, S. (2013) Competing for attentional priority: Temporary goals versus threats. Emotion, 13, 587598.Google Scholar
Weierich, M. R., Treat, T. A., & Hollingworth, A. (2008). Theories and measurement of visual attentional processing in anxiety. Cognition & Emotion, 22(6), 9851018.Google Scholar
Wells, A. & Matthews, G. (1994). Attention and Emotion: A Clinical Perspective. Hove, UK: Erlbaum Ltd.Google Scholar
White, L. K., Henderson, H. A., Walker, O. L., Leibenluft, E., Pine, D.S., Degnan, K. A., Pérez-Edgar, K., Shechner, T., Bar-Haim, Y., Fox, N. A. (2017). Developmental relations among behavioral inhibition, anxiety, and attention bias to threat and positive information. Child Development, 88, 141155.Google Scholar
Williams, J. M. G., Watts, F. N., MacLeod, C., & Mathews, A. (1988). Cognitive Psychology and Emotional Disorders. Chichester, UK: Wiley.Google Scholar
Williams, J. M. G., Mathews, A., & MacLeod, C. (1996). The emotional Stroop task and psychopathology. Psychological Bulletin, 120, 324.Google Scholar
Wilson, E. & Macleod, C. (2003). Contrasting two accounts of anxiety-linked attentional bias: Selective attention to varying levels of stimulus threat intensity. Journal of Abnormal Psychology, 112, 212218.Google Scholar
Zvielli, A., Bernstein, A., & Koster, E. H. W. (2015). Temporal dynamics of attentional bias. Clinical Psychological Science, 3, 772788.Google Scholar

References

Adler, L. E., Pang, K., Gerhardt, G., & Rose, G. M. (1988). Modulation of the gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using a selective neurotoxin. Biological Psychiatry, 24, 179190.Google Scholar
Adolphs, R. (2002a). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169177.Google Scholar
Adolphs, R. (2002b). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1, 2162.Google Scholar
Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18, 166172,Google Scholar
Åhs, F., Pissiota, A., Michelgård, Å., Frans, Ö., Furmark, T., Appel, L., & Fredrikson, M. (2009). Disentangling the web of fear: Amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Research: Neuroimaging 172, 103108.Google Scholar
Armstrong, T. & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32, 704723.Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14, 44674480.Google Scholar
Bach, D. R., Talmi, D., Hurlemann, R., Patin, A., & Dolan, R. J. (2011). Automatic relevance detection in the absence of a functional amygdala. Neuropsychologia, 49, 13021305.Google Scholar
Baisley, S. K., Fallace, K. L., Rajbhandari, A. K., & Bakshi, V. P. (2012). Mutual independence of 5-HT(2) and alpha1 noradrenergic receptors in mediating deficits in sensorimotor gating. Psychopharmacology (Berl), 220, 465479.Google Scholar
Bakin, J. S. & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536, 271286.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 1.Google Scholar
Barlow, D. H. (2002). Anxiety and Its Disorders. New York, NY: Guilford Press.Google Scholar
Barrett, L. F. & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society of London B Biological Science, 364, 13251334.Google Scholar
Beard, C. & Amir, N. (2010). Negative interpretation bias mediates the effect of social anxiety on state anxiety. Cognitive Therapy and Research, 34, 292296.Google Scholar
Beck, A. T. (1967). Depression: Clinical, Experimental, and Theoretical Aspects. Philadelphia, PA: University of Pennsylvania Press.Google Scholar
Beck, A. T. & Clark, D. A. (1997). An information processing model of anxiety: Automatic and strategic processes. Behaviour Research and Therapy, 35, 4958.Google Scholar
Beck, A. T., Emery, G., & Greenberg, R. (1985). Anxiety Disorders and Phobias: A Cognitive Approach. New York, NY: Basic Books, b58.Google Scholar
Bentin, S., Allison, T., Puce, A., Perez, A., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551565.Google Scholar
Berridge, C. W. & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research. Brain Research Reviews, 42, 3384.Google Scholar
Bollimunta, A., Chen, Y., Schroeder, C. E., & Ding, M. (2008). Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. Journal of Neuroscience, 28, 99769988.Google Scholar
Brosch, T., Pourtois, G., & Sander, D. (2010). The perception and categorisation of emotional stimuli: A review. Cognition Emotion, 24, 377400.Google Scholar
Bruner, J. S. (1957). On perceptual readiness. Psychological Review, 64, 123.Google Scholar
Bruner, J. S., Postman, L., & Rodrigues, J. (1951). Expectation and the perception of color. American Journal of Psychology, 64, 216227.Google Scholar
Butler, G. & Mathews, A. (1983). Cognitive processes in anxiety. Advances in Behaviour Research and Therapy, 5, 5162.Google Scholar
Cambiaghi, M., Grosso, A., Likhtik, E., Mazziotti, R., Concina, G., Renna, A., Sacco, T., Gordon, J. A., & Sacchetti, B. (2016). Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. Journal of Neuroscience, 36, 16471659.Google Scholar
Campbell, A. W. (1905). Histological Studies on the Localisation of Cerebral Function. University Press. https://archive.org/details/histologicalstu00campgoogGoogle Scholar
Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17, 11141122.Google Scholar
Cisler, J. M. & Koster, E. H. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30, 203216.Google Scholar
Clancy, K., Ding, M., Bernat, E., Schmidt, N. B., & Li, W. (2017). Restless “rest”: Intrinsic sensory hyperactivity and disinhibition in posttraumatic stress disorder. Brain, 140(7), 20412050.Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181204.Google Scholar
Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.Google Scholar
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353375.Google Scholar
Diamond, D. M. & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behavioral Neuroscience, 98, 189.Google Scholar
Dunsmoor, J. E. & Paz, R. (2015). Fear generalization and anxiety: Behavioral and neural mechanisms. Biological Psychiatry, 78, 336343.Google Scholar
Edmiston, E. K., McHugo, M., Dukic, M. S., Smith, S. D., Abou-Khalil, B., Eggers, E., & Zald, D. H. (2013). Enhanced visual cortical activation for emotional stimuli is preserved in patients with unilateral amygdala resection. Journal of Neuroscience, 33, 1102311031.Google Scholar
Eimer, M. (2000). The face-specific N170 component reflects late stages in the structural encoding of faces. Neuroreport, 11, 23192324.Google Scholar
Eimer, M. & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 1531.Google Scholar
Eldar, S., Yankelevitch, R., Lamy, D., & Bar-Haim, Y. (2010). Enhanced neural reactivity and selective attention to threat in anxiety. Biological Psychology, 85, 252257.Google Scholar
Etkin, A. & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488.Google Scholar
Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin & Review, 1, 429438.Google Scholar
Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face perception? Psychological Review, 105, 482.Google Scholar
Fodor, J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.Google Scholar
Forscher, E. C. & Li, W. (2012). Hemispheric asymmetry and visuo-olfactory integration in perceiving subthreshold (micro) fearful expressions. Journal of Neuroscience, 32, 21592165.Google Scholar
Forscher, E. C., Zheng, Y., Ke, Z., Folstein, J., & Li, W. (2016). Decomposing fear perception: A combination of psychophysics and neurometric modeling of fear perception. Neuropsychologia, 91, 254261.Google Scholar
Foxe, J. J. & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans: A framework for defining “early” visual processing. Experimental Brain Research, 142, 139150.Google Scholar
Foxe, J. J. & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154.Google Scholar
Friston, K. (2012). Prediction, perception and agency. International Journal of Psychophysiology, 83, 248252.Google Scholar
Galambos, R., Sheatz, G., & Vernier, V. G. (1955). Electrophysiological correlates of a conditioned response in cats. Science, 123, 376377.Google Scholar
Geyer, M. A., Krebs-Thomson, K., Braff, D. L., & Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology (Berl), 156, 117154.Google Scholar
Gluck, M. A. & Granger, R. (1993). Computational models of the neural bases of learning and memory. Annual Review of Neuroscience, 16, 667706.Google Scholar
Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585612.Google Scholar
Gomez Gonzalez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 4151.Google Scholar
Gray, J. A. & McNaughton, N. (2000). The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System. Oxford: Oxford University Press.Google Scholar
Grosso, A., Cambiaghi, M., Concina, G., Sacco, T., & Sacchetti, B. (2015a). Auditory cortex involvement in emotional learning and memory. Neuroscience, 299, 4555.Google Scholar
Grosso, A., Cambiaghi, M., Milano, L., Renna, A., Sacco, T., & Sacchetti, B. (2016). Region-and layer-specific activation of the higher order auditory cortex Te2 after remote retrieval of fear or appetitive memories. Cerebral Cortex, 27(6), 31403151. bhw159Google Scholar
Grosso, A., Cambiaghi, M., Renna, A., Milano, L., Merlo, G. R., Sacco, T., & Sacchetti, B. (2015b). The higher order auditory cortex is involved in the assignment of affective value to sensory stimuli. Nature Communications, 6.Google Scholar
Grupe, D. W. & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14, 488501.Google Scholar
Haberly, L. B. (1998). Olfactory Cortex. New York, NY: Oxford University Press.Google Scholar
Helfinstein, S. M., White, L. K., Bar-Haim, Y., & Fox, N. A. (2008). Affective primes suppress attention bias to threat in socially anxious individuals. Behaviour Research and Therapy, 46, 799810.Google Scholar
Holmes, A., Nielsen, M. K, & Green, S. (2008). Effects of anxiety on the processing of fearful and happy faces: An event-related potential study. Biological Psychology, 77, 159173.Google Scholar
Hurley, L. M., Devilbiss, D. M., & Waterhouse, B. D. (2004.) A matter of focus: Monoaminergic modulation of stimulus coding in mammalian sensory networks. Current Opinion in Neurobiology, 14, 488495.Google Scholar
James, W. (1890). Principles of Psychology. New York, NY: Holt.Google Scholar
Javitt, D. C. (2009). When doors of perception close: Bottom-up models of disrupted cognition in schizophrenia. Annual Review of Clinical Psychology, 5, 249275.Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766774.Google Scholar
Kapp, B. S., Whalen, P. J., Supple, W. F., & Pascoe, J. P. (1992). Amygdaloid contributions to conditioned arousal and sensory information processing. In Appleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (pp. 229254). New York, NY: Wiley-Liss.Google Scholar
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751761.Google Scholar
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Science, 16, 606617.Google Scholar
Kolassa, I.-T., Kolassa, S., Bergmann, S., Lauche, R., Dilger, S., Miltner, W. H. R., & Musial, F. (2009). Interpretive bias in social phobia: An ERP study with morphed emotional schematic faces. Cognition and Emotion, 23, 6995.Google Scholar
Kolassa, I.-T., Kolassa, S., Musial, F., & Miltner, W. H. (2007). Event-related potentials to schematic faces in social phobia. Cognition and Emotion, 21, 17211744.Google Scholar
Kolassa, I.-T. & Miltner, W. H. (2006). Psychophysiological correlates of face processing in social phobia. Brain Research, 1118, 130141.Google Scholar
Kraus, N. & Disterhoft, J. F. (1982). Response plasticity of single neurons in rabbit auditory association cortex during tone-signalled learning. Brain Research, 246, 205215.Google Scholar
Kreiman, G., Koch, C., & Fried, I. (2000). Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neuroscience, 3, 946953.Google Scholar
Krusemark, E. A. & Li, W. (2011). Do all threats work the same way? Divergent effects of fear and disgust on sensory perception and attention. Journal of Neuroscience, 31, 34293434.Google Scholar
Krusemark, E. A. & Li, W. (2012). Enhanced olfactory sensory perception of threat in anxiety: An event-related fMRI study. Chemosensory Perception, 5, 3745.Google Scholar
Krusemark, E. A. & Li, W. (2013). From early sensory specialization to later perceptual generalization: Dynamic temporal progression in perceiving individual threats. Journal of Neuroscience, 33, 587594.Google Scholar
Krusemark, E. A., Novak, L. R., Gitelman, D. R., & Li, W. (2013). When the sense of smell meets emotion: Anxiety-state-dependent olfactory processing and neural circuitry adaptation. Journal of Neuroscience, 33, 1532415332.Google Scholar
Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: Dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32, 1418414192.Google Scholar
Kuraoka, K. & Nakamura, K. (2007). Responses of single neurons in monkey amygdala to facial and vocal emotions. Journal of Neurophysiology, 97, 13791387.Google Scholar
Kwon, J.-T., Jhang, J., Kim, H.-S., Lee, S., & Han, J.-H. (2012). Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear. Learning & Memory, 19, 487494.Google Scholar
Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N, Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35, 199210.Google Scholar
Lang, P. J., Davis, M., & Ohman, A. (2000). Fear and anxiety: Animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61, 137159.Google Scholar
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653676.Google Scholar
LeDoux, J. E. (1995). Emotion: Clues from the Brain. Annual Review of Psychology, 46, 209235.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.Google Scholar
Lee, S. A., Kim, C.-Y., Shim, M., & Lee, S.-H. (2017). Gender differences in neural responses to perceptually invisible fearful face: An ERP study. Frontiers in Behavioral Neuroscience, 11.Google Scholar
Leipsic, P. F. O. (1901). Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet, 158, 10271030.Google Scholar
Leonard, C. M., Rolls, E. T., Wilson, F. A., & Baylis, G. C. (1985). Neurons in the amygdala of the monkey with responses selective for faces. Behavioural Brain Research, 15, 159176.Google Scholar
Leventhal, A. G., Rodieck, R. W., & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology, 237, 216226.Google Scholar
Li, W. (2014). Learning to smell danger: Acquired associative representation of threat in the olfactory cortex. Frontiers in Behavioral Neuroscience, 8, 98.Google Scholar
Li, W., Howard, J. D., Parrish, T. B., & Gottfried, J. A. (2008a). Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science, 319, 18421845.Google Scholar
Li, W., Zinbarg, R. E., Boehm, S. G., & Paller, K. A. (2008b). Neural and behavioral evidence for affective priming from unconsciously perceived emotional facial expressions and the influence of trait anxiety. Journal of Cognitive Neuroscience, 20, 95107.Google Scholar
Li, W., Zinbarg, R. E., & Paller, K. A. (2007). Trait anxiety modulates supraliminal and subliminal threat: Brain potential evidence for early and late processing influences. Cognitive, Affective, & Behavioral Neuroscience, 7, 2536.Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121143.Google Scholar
Lipka, J., Miltner, W. H., & Straube, T. (2011). Vigilance for threat interacts with amygdala responses to subliminal threat cues in specific phobia. Biological Psychiatry, 70, 472478.Google Scholar
Liu, Y., Lin, W., Xu, P., Zhang, D., & Luo, Y. (2015). Neural basis of disgust perception in racial prejudice. Human Brain Mapping, 36, 52755286.Google Scholar
Mangun, G. R., Hillyard, S. A., & Luck, S. L. (1993). Electrocortical Substrates of Visual Selective Attention. Cambridge, MA: MIT Press.Google Scholar
Mathews, A. & Mackintosh, B. (1998). A cognitive model of selective processing in anxiety. Cognitive Therapy and Research, 22, 539560.Google Scholar
Mathews, A. & Macleod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45, 2550.Google Scholar
Mathews, A. & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167195.Google Scholar
McGann, J. P. (2015). Associative learning and sensory neuroplasticity: How does it happen and what is it good for? Learning & Memory, 22, 567576.Google Scholar
McNally, R. J. (1995). Automaticity and the anxiety disorders. Behaviour Research and Therapy, 33, 747754.Google Scholar
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., Vuilleumier, P., Gil-Nagel, A., & Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 10411049.Google Scholar
Menon, V. & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214, 655667.Google Scholar
Michalowski, J. M., Melzig, C. A., Weike, A. I., Stockburger, J., Schupp, H. T., & Hamm, A. O. (2009). Brain dynamics in spider-phobic individuals exposed to phobia-relevant and other emotional stimuli. Emotion, 9, 306.Google Scholar
Michalowski, J. M., Pané-Farré, C. A., Löw, A., & Hamm, A. O. (2015). Brain dynamics of visual attention during anticipation and encoding of threat-and safe-cues in spider-phobic individuals. Social, Cognitive, & Affective Neuroscience, 10(9), 11771186. pnsv002Google Scholar
Michalowski, J. M., Weymar, M., & Hamm, A. O. (2014). Remembering the object you fear: Brain potentials during recognition of spiders in spider-fearful individuals. PloS One, 9, e109537.Google Scholar
Miskovic, V. & Keil, A. (2012). Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning. Psychophysiology, 49, 12301241.Google Scholar
Mitte, K. (2007). Anxiety and risky decision-making: The role of subjective probability and subjective costs of negative events. Personality and Individual Differences, 43, 243253.Google Scholar
Mogg, K. & Bradley, B. P. (1998). A cognitive-motivational analysis of anxiety. Behaviour Research and Therapy, 36, 809848.Google Scholar
Morris, J. S., DeGelder, B., Weiskrantz, L., & Dolan, R. J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 124, 12411252.Google Scholar
Morris, J. S. & Dolan, R. J. (2001). The Amygdale and Unconscious Fear Processing. Oxford: Oxford University Press.Google Scholar
Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467470.Google Scholar
Mueller, E. M., Hofmann, S. G., Santesso, D. L., Meuret, A. E., Bitran, S., & Pizzagalli, D. A. (2009). Electrophysiological evidence of attentional biases in social anxiety disorder. Psychological Medicine, 39, 11411152.Google Scholar
Mühlberger, A., Wieser, M. J., Herrmann, M. J., Weyers, P., Tröger, C., & Pauli, P. (2009). Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. Journal of Neural Transmission, 116, 735746.Google Scholar
Ohl, F. W. & Scheich, H. (2005). Learning-induced plasticity in animal and human auditory cortex. Current Opinion in Neurobiology, 15, 470477.Google Scholar
Ohman, A. (1993). Fear and anxiety as emotional phenomena: Clinical phenomenology, evolutionary perspectives, and information-processing mechanisms. In Lewis, M. & Haviland, J. M. (eds.), Handbook of Emotions (pp. 511536). New York, NY: Guilford Press.Google Scholar
Ohman, A. (2000). Fear and anxiety: Evolutionary cognitive and clinical perspectives. In Lewis, M. & Haviland, J. M. (eds.), Handbook of Emotions (2nd edn) (pp. 573593). New York, NY: Guilford Press.Google Scholar
Ohman, A. & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483.Google Scholar
Olofsson, J. K. & Polich, J. (2007). Affective visual event-related potentials: Arousal, repetition, and time-on-task. Biological Psychology, 75, 101108.Google Scholar
Ouimet, A. J., Gawronski, B., & Dozois, D. J. (2009). Cognitive vulnerability to anxiety: A review and an integrative model. Clinical Psychology Review, 29, 459470.Google Scholar
Oya, H., Kawasaki, H., Howard, M. A., 3rd, & Adolphs, R. (2002). Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. Journal of Neuroscience, 22, 95029512.Google Scholar
Palva, S. & Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. Trends in Neuroscience, 30, 150158.Google Scholar
Panksepp, J. (1982). Toward a general psychobiological theory of emotions. Behavioral and Brain Sciences, 5, 407422.Google Scholar
Paquette, V., Lévesque, J., Mensour, B., Leroux, J.-M., Beaudoin, G., Bourgouin, P., & Beauregard, M. (2003). “Change the mind and you change the brain”: Effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage, 18, 401409.Google Scholar
Park, H. R. P., Lim, V. K., Kirk, I. J., & Waldie, K. E. (2015). P50 sensory gating deficits in schizotypy. Personality and Individual Differences, 82, 142147.Google Scholar
Patel, R., Spreng, R. N., Shin, L. M., & Girard, T. A. (2012). Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Review, 36, 21302142.Google Scholar
Peschard, V., Philippot, P., Joassin, F., & Rossignol, M. (2013). The impact of the stimulus features and task instructions on facial processing in social anxiety: An ERP investigation. Biological Psychology, 93, 8896.Google Scholar
Pessoa, L. & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773783.Google Scholar
Pessoa, L., Japee, S., & Ungerleider, L. G. (2005). Visual awareness and the detection of fearful faces. Emotion, 5, 243247.Google Scholar
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23, 39903998.Google Scholar
Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Science USA, 99, 1145811463.Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 16, 331348.Google Scholar
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 2753.Google Scholar
Phelps, E. A. & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187.Google Scholar
Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., van der Meer, J., Abou-Khalil, B., Most, S. B., & Zald, D. H. (2011). Attentional capture by emotional stimuli is preserved in patients with amygdala lesions. Neuropsychologia, 49, 33143319.Google Scholar
Pizzagalli, D., Regard, M., & Lehmann, D. (1999). Rapid emotional face processing in the human right and left brain hemisphere: An ERP study. Neuroreport, 26912698.Google Scholar
Pourtois, G., Dan, E. S., Grandjean, D., Sander, D., & Vuilleumier, P. (2005). Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: Time course and topographic evoked-potentials mapping. Human Brain Mapping, 26, 6579.Google Scholar
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619633.Google Scholar
Puri, A. M., Wojciulik, E., & Ranganath, C. (2009). Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex. Brain Research, 1301, 8999.Google Scholar
Rauch, S. L., Shin, L. M., & Phelps, E. A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research – past, present, and future. Biological Psychiatry, 60, 376382.Google Scholar
Rossignol, M., Campanella, S., Bissot, C., & Philippot, P. (2013). Fear of negative evaluation and attentional bias for facial expressions: An event-related study. Brain and Cognition, 82, 344352.Google Scholar
Rossignol, M., Campanella, S., Maurage, P., Heeren, A., Falbo, L., & Philippot, P. (2012a). Enhanced perceptual responses during visual processing of facial stimuli in young socially anxious individuals. Neuroscience Letters, 526, 6873.Google Scholar
Rossignol, M., Philippot, P., Bissot, C., Rigoulot, S., & Campanella, S. (2012b). Electrophysiological correlates of enhanced perceptual processes and attentional capture by emotional faces in social anxiety. Brain Research, 1460, 5062.Google Scholar
Sabatinelli, D., Keil, A., Frank, D. W., & Lang, P. J. (2013). Emotional perception: Correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biological Psychology, 92, 513519.Google Scholar
Sacco, T. & Sacchetti, B. (2010). Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science, 329, 649656.Google Scholar
Sass, S. M., Heller, W., Stewart, J. L., Silton, R. L., Edgar, J. C., Fisher, J. E., & Miller, G. A. (2010). Time course of attentional bias in anxiety: Emotion and gender specificity. Psychophysiology, 47, 247259.Google Scholar
Schiller, P. H. & Tehovnik, E. J. (2001). Look and see: How the brain moves your eyes about. Progress in Brain Research, 134, 127142.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 23492356.Google Scholar
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77, 406.Google Scholar
Shaw, J. C. (2003). The Brain’s Alpha Rhythms and the Mind. Amsterdam: Elsevier.Google Scholar
Sherin, J. E. & Nemeroff, C. B. (2011). Posttraumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues in Clinical Neuroscience, 13, 263278.Google Scholar
Shin, L. M. & Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 35, 169191.Google Scholar
Skinner, R., Rasco, L., Fitzgerald, J., Karson, C., Mathew, M., Williams, D. K., & Garcia-Rill, E. (1999). Reduced sensory gating of the P1 potential in rape victims and combat veterans with posttraumatic stress disorder. Depression and Anxiety, 9, 122130.Google Scholar
Southwick, S. M., Krystal, J. H., Bremner, J. D., Morgan, C. A., 3rd, Nicolaou, A. L., Nagy, L. M., Johnson, D. R., Heninger, G. R., & Charney, D. S. (1997). Noradrenergic and serotonergic function in posttraumatic stress disorder. Archives of General Psychiatry, 54, 749758.Google Scholar
Staugaard, S. R. (2010). Threatening faces and social anxiety: A literature review. Clinical Psychology Review, 30, 669690.Google Scholar
Stevenson, R. J. & Boakes, R. A. (2003). A mnemonic theory of odor perception. Psychological Review, 110, 340364.Google Scholar
Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences, 106, 1956919574.Google Scholar
Straube, T., Mentzel, H. J., & Miltner, W. H. (2005). Common and distinct brain activation to threat and safety signals in social phobia. Neuropsychobiology, 52, 163168.Google Scholar
Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400, 869873.Google Scholar
Sussman, T. J., Jin, J., & Mohanty, A. (2016). Top-down and bottom-up factors in threat-related perception and attention in anxiety. Biological Psychology, 121, 160172.Google Scholar
Thoma, R. J., Hanlon, F. M., Moses, S. N., Edgar, J. C., Huang, M., Weisend, M. P., Irwin, J., Sherwood, A., Paulson, K., Bustillo, J., Adler, L. E., Miller, G. A., & Cañive, J. M. (2003). Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. American Journal of Psychiatry, 160, 15951605.Google Scholar
Thorpe, S. J. (2009). The speed of categorization in the human visual system. Neuron, 62, 168170.Google Scholar
Tooby, J. & Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J., Cosmides, L., & Tooby, J. (eds.), The Adapted Mind: Evolutionary Psychology and the Generation of Culture (pp. 19136). New York, NY: Oxford University Press.Google Scholar
Trautmann, S. A., Fehr, T., & Herrmann, M. (2009). Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Research, 1284, 100115.Google Scholar
Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12, 12241225.Google Scholar
van Bockstaele, B., Verschuere, B., Tibboel, H., De Houwer, J., Crombez, G., & Koster, E. H. (2014). A review of current evidence for the causal impact of attentional bias on fear and anxiety. Psychological Bulletin, 140, 682721.Google Scholar
van Peer, J. M., Roelofs, K., Rotteveel, M., van Dijk, J. G., Spinhoven, P., & Ridderinkhof, K. R. (2007). The effects of cortisol administration on approach-avoidance behavior: An event-related potential study. Biological Psychology, 76, 135146.Google Scholar
van Peer, J. M., Spinhoven, P., van Dijk, J. G., & Roelofs, K. (2009). Cortisol-induced enhancement of emotional face processing in social phobia depends on symptom severity and motivational context. Biological Psychology, 81, 123130.Google Scholar
Venetacci, R., Johnstone, A., Kirkby, K. C., & Matthews, A. (2018). ERP correlates of attentional processing in spider fear: Evidence of threat-specific hypervigilance. Cognition and Emotion, 32(3), 437449.Google Scholar
Vlamings, P. H., Goffaux, V., & Kemner, C. (2009). Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information? Journal of Vision, 9(12), 113.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30, 829841.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624631.Google Scholar
Vuilleumier, P. & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45, 174194.Google Scholar
Walentowska, W. & Wronka, E. (2012). Trait anxiety and involuntary processing of facial emotions. International Journal of Psychophysiology, 85, 2736.Google Scholar
Wang, S., Tudusciuc, O., Mamelak, A. N., Ross, I. B., Adolphs, R., & Rutishauser, U. (2014). Neurons in the human amygdala selective for perceived emotion. Proceedings of the National Academy of Sciences, 111, E3110–E19.Google Scholar
Weinberg, A. & Hajcak, G. (2011). Electrocortical evidence for vigilance‐avoidance in generalized anxiety disorder. Psychophysiology, 48, 842851.Google Scholar
Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5, 279290.Google Scholar
Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning and Memory, 14, 116.Google Scholar
Weinberger, N. M., Hopkins, W., & Diamond, D. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience, 98, 171188.Google Scholar
Wieser, M. J., McTeague, L. M., & Keil, A. (2012). Competition effects of threatening faces in social anxiety. Emotion, 12, 1050.Google Scholar
Wieser, M. J. & Moscovitch, D. A. (2015). The effect of affective context on visuocortical processing of neutral faces in social anxiety. Frontiers in Psychology, 6, 1824.Google Scholar
Williams, J. M. G., Mathews, A., & MacLeod, C. (1996). The emotional Stroop task and psychopathology. Psychological Bulletin, 120, 3.Google Scholar
Williams, J. M. G, Watts, F. N., MacLeod, C., & Mathews, A. (1988). Cognitive Psychology and Emotional Disorders. Oxford: John Wiley & Sons.Google Scholar
Williams, J. M. G., Watts, F. N., MacLeod, C., & Mathews, A. (1997). Cognitive Psychology and Emotional Disorders (2nd edn). Oxford: John Wiley & Sons.Google Scholar
Wilson, D. A. & Stevenson, R. J. (2006). Learning to Smell: Olfactory Perception from Neurobiology to Behavior. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wilson, D. A. & Sullivan, R. M. (2011). Cortical processing of odor objects. Neuron, 72, 506519.Google Scholar
Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20, RC63.Google Scholar
You, Y. & Li, W. (2016). Parallel processing of general and specific threat during early stages of perception. Social, Cognitive, & Affective Neuroscience, 11, 395404.Google Scholar
Young, A. W., Rowland, D., Calder, A. J., Etcoff, N. L., Seth, A., & Perrett, D. I. (1997). Facial expression megamix: Tests of dimensional and category accounts of emotion recognition. Cognition, 63, 271313.Google Scholar
Zelano, C., Mohanty, A., & Gottfried, J. A. (2011). Olfactory predictive codes and stimulus templates in piriform cortex. Neuron, 72, 178187.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×