Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-12T00:39:41.626Z Has data issue: false hasContentIssue false

7 - Aquatic Bryophytes under Ultraviolet Radiation

Published online by Cambridge University Press:  05 October 2012

Javier Martínez-Abaigar
Affiliation:
Universidad de La Rioja, Spain
Encarnación Núñez-Olivera
Affiliation:
Universidad de La Rioja, Spain
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Introduction

Ultraviolet radiation (UVR) has many effects on photosynthetic organisms. It is a minority component (about 6%) of solar radiation in comparison with the dominant visible/photosynthetic and infrared bands. However, UVR is a natural environmental factor that has been involved in the appearance of diverse adaptive changes in organisms through the development of life on Earth (Cockell & Knowland 1999). UVR induces a number of biological processes in all living organisms, including humans, and many of them are harmful. In this respect, among the three wavelength categories into which UVR is divided by the CIE (Commission Internationale d'Eclairage), the most damaging UV-C (< 280 nm) is not relevant at the present time because of its complete absorption by stratospheric oxygen and ozone, but both UV-B (280–315 nm) and UV-A (315–400 nm) penetrate the biosphere and have significant biological effects. These effects are highly dependent on wavelength, and different biological weighting functions have been conceived to calculate the biologically effective UV (UVBE). UVBE encompasses UV-A and UV-B. However, given the logarithmic increase in effectiveness with decreasing wavelength, UVBE is dominated by UV-B, especially at shorter wavelengths. Therefore, most studies on the effects of UVR have dealt with UV-B. This has been especially true since the discovery of the anthropogenic stratospheric ozone reduction, because UV-B (and not UV-A) is absorbed by stratospheric ozone, and thus ozone reduction leads to an increase in surface UV-B levels.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, D. J., Nogués, S. & Baker, N. R. (1998). Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? Journal of Experimental Botany 49: 1775–88.Google Scholar
Arróniz-Crespo, M., Núñez-Olivera, E., Martínez-Abaigar, J. & Tomás, R. (2004). A survey of the distribution of UV-absorbing compounds in aquatic bryophytes from a mountain stream. Bryologist 107: 202–8.Google Scholar
Arróniz-Crespo, M., Núñez-Olivera, E., Martínez-Abaigar, J., et al. (2006). Physiological changes and UV protection in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia along an altitudinal gradient of UV-B radiation. Functional Plant Biology 33: 1025–36.Google Scholar
Arróniz-Crespo, M., Núñez-Olivera, E. & Martínez-Abaigar, J. (2008a). Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation. Environmental Pollution 151: 8–16.Google Scholar
Arróniz-Crespo, M., Phoenix, G., Núñez-Olivera, E. & Martínez-Abaigar, J. (2008b). Age-specific physiological responses to UV radiation in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Cryptogamie Bryologie 29: 115–26.Google Scholar
Ballaré, C. L., Rousseaux, M. C., Searles, P. S., et al. (2001). Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress. Journal of Photochemistry and Photobiology B: Biology 62: 67–77.Google Scholar
Barsig, M., Schneider, K. & Gehrke, C. (1998). Effects of UV-B radiation on fine structure, carbohydrates, and pigments in Polytrichum commune. Bryologist 101: 357–65.Google Scholar
Björn, L. O. & McKenzie, R. L. (2007). Attempts to probe the ozone layer and the ultraviolet-B levels of the past. Ambio 36: 366–71.Google Scholar
Björn, L. O., Callaghan, T. V., Gehrke, C., et al. (1998). The problem of ozone depletion in northern Europe. Ambio 27: 275–9.Google Scholar
Blokker, P., Boelen, P., Broekman, R. & Rozema, J. (2006). The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy. Plant Ecology 182: 197–207.Google Scholar
Boelen, P., Boer, M. K., Bakker, N. V. J. & Rozema, J. (2006). Outdoor studies on the effects of solar UV-B on bryophytes: overview and methodology. Plant Ecology 182: 137–52.Google Scholar
Caldwell, M. M., Bornman, J. F., Ballaré, C. L., Flint, S. D. & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical and Photobiological Sciences 6: 252–66.Google Scholar
Clarke, L. J. & Robinson, S. A. (2008). Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytologist 179: 776–83.Google Scholar
Cockell, C. S. & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Review 74: 311–45.Google Scholar
Conde-Álvarez, R. M., Pérez-Rodríguez, E., Altamirano, M., et al. (2002). Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. Aquatic Botany 73: 47–61.Google Scholar
Csintalan, Z., Tuba, Z., Takács, Z. & Laitat, E. (2001). Responses of nine bryophyte and one lichen species from different microhabitats to elevated UV-B radiation. Photosynthetica 39: 317–20.Google Scholar
Day, T. A. & Neale, P. J. (2002). Effects of UV-B radiation on terrestrial and aquatic primary producers. Annual Review of Ecology and Systematics 33: 371–96.Google Scholar
DeEll, J. R. & Toivonen, P. M. A. (2003). Practical Applications of Chlorophyll Fluorescence in Plant Biology. Boston, MA: Kluwer.CrossRef
Dunn, J. L. & Robinson, S. A. (2006). Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. Global Change Biology 12: 2282–96.Google Scholar
Flint, S. D., Ryel, R. J. & Caldwell, M. M. (2003). Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agricultural and Forest Meteorology 120: 177–89.Google Scholar
Frost, P. C., Larson, J. H., Kinsman, L. E., Lamberti, G. A. & Bridgham, S. D. (2005). Attenuation of ultraviolet radiation in streams of northern Michigan. Journal of the North American Benthological Society 24: 246–55.Google Scholar
Gehrke, C. (1998). Effects of enhanced UV-B radiation on production related properties of a Sphagnum fuscum dominated subarctic bog. Functional Ecology 12: 940–7.Google Scholar
Gehrke, C. (1999). Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80: 1844–51.Google Scholar
Gehrke, C., Johanson, U., Gwynn-Jones, D.et al. (1996). Effects of enhanced ultraviolet-B radiation on terrestrial subarctic ecosystems and implications for interactions with increased atmospheric CO2. Ecological Bulletins 45: 192–203.Google Scholar
Gimeno, C. & Puche, F. (1999). Chlorophyll content and morphological changes in cellular structure of Rhynchostegium riparioides (Hew.) Card. (Brachytheciaceae, Musci) and Fontinalis hypnoides Hartm. (Fontinalaceae, Musci) in response to water pollution and transplant containers on Palancia river (East Spain). Nova Hedwigia 68: 197–216.Google Scholar
Glime, J. M. (1992). Effects of pollutants on aquatic species. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 333–61. Oxford: Clarendon Press.
Glime, J. M. & Keen, R. E. (1984). The importance of bryophytes in a man-centered world. Journal of the Hattori Botanical Laboratory 55: 133–46.Google Scholar
Green, T. G. A., Schroeter, B. & Seppelt, R. D. (2000). Effect of temperature, light and ambient UV on the photosynthesis of the moss Bryum argenteum Hedw. in continental Antarctica. In Antarctic Ecosystems: Models for Wider Ecological Understanding, ed. Davison, W., Howard-Williams, C. & Broady, P., pp. 165–70. Christchurch: The Caxton Press.
Green, T. G. A., Kulle, D., Pannewitz, S., Sancho, L. G. & Schroeter, B. (2005). UV-A protection in mosses growing in continental Antarctica. Polar Biology 28: 822–7.Google Scholar
Häder, D. P., Kumar, H. D., Smith, R. C. & Worrest, R. C. (2007). Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences 6: 267–85.Google Scholar
Harris, E. S. J. (2009). Phylogenetic and environmental lability of flavonoids in a medicinal moss. Biochemical Systematics and Ecology 37: 180–92.Google Scholar
Hooijmaijers, C. A. M. & Gould, K. S. (2007). Photoprotective pigments in red and green gametophytes of two New Zealand liverworts. New Zealand Journal of Botany 45: 451–61.Google Scholar
Hughes, K. A., Scherer, K., Svenoe, T.et al. (2006). Tundra plants protect the soil surface from UV. Soil Biology and Biochemistry 38: 1488–90.Google Scholar
Huiskes, A. H. L., Lud, D., Moerdijk-Poortvliet, T. C. W. & Rozema, J. (1999). Impact of UV-B radiation on Antarctic terrestrial vegetation. In Stratospheric Ozone Depletion: The Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems, ed. Rozema, J., pp. 313–37. Leiden: Backhuys Publishers.
Huiskes, A. H. L., Lud, D. & Moerdijk-Poortvliet, T. C. W. (2001). Field research on the effects of UV-B filters on terrestrial Antarctic vegetation. Plant Ecology 154: 77–86.Google Scholar
Huttunen, S., Kinnunen, H. & Laakso, K. (1998). Impact of increased UV-B on plant ecosystems. Chemosphere 36: 829–33.Google Scholar
Huttunen, S., Lappalainen, N. M. & Turunen, J. (2005a). UV-absorbing compounds in subarctic herbarium bryophytes. Environmental Pollution 133: 303–14.Google Scholar
Huttunen, S., Taipale, T., Lappalainen, N. M.et al. (2005b). Environmental specimen bank samples of Pleurozium schreberi and Hylocomium splendens as indicators of the radiation environment at the surface. Environmental Pollution 133: 315–26.Google Scholar
Ihle, C. (1997). Degradation and release from the thylakoid membrane of Photosystem II subunits after UV-B irradiation of the liverwort Conocephalum conicum. Photosynthesis Research 54: 73–8.Google Scholar
Ihle, C. & Laasch, H. (1996). Inhibition of photosystem II by UV-B radiation and the conditions for recovery in the liverwort Conocephalum conicum Dum. Botanica Acta 109: 199–205.Google Scholar
Jansen, M. A. K., Gaba, V. & Greenberg, B. M. (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Sciences 3: 131–5.Google Scholar
Johanson, U., Gehrke, C., Björn, L. O., Callaghan, T. V. & Sonesson, M. (1995). The effects of enhanced UV-B radiation on a subarctic heath ecosystem. Ambio 24: 106–11.Google Scholar
Kato-Noguchi, H. & Kobayashi, K. (2009). Jasmonic acid, protein phosphatase inhibitor, metals and UV-irradiation increased momilactone A and B concentrations in the moss Hypnum plumaeforme. Journal of Plant Physiology 166: 1118–22.Google Scholar
Kelly, D. J., Bothwell, M. L. & Schindler, D. W. (2003). Effects of solar ultraviolet radiation on stream benthic communities: an intersite comparison. Ecology 84: 2724–40.Google Scholar
Lappalainen, N. M., Huttunen, S. & Suokanerva, H. (2008). Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biology 14: 321–33.Google Scholar
Lewis Smith, R. I. (1999). Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. Journal of Vegetation Science 10: 231–42.Google Scholar
Lomax, B. H., Fraser, W. T., Sephton, M. A.et al. (2008). Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience 1: 592–6.Google Scholar
Lovelock, C. E. & Robinson, S. A. (2002). Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell & Environment 25: 1239–50.Google Scholar
Lud, D., Moerdijk, T. C. W., Poll, W. H., Buma, A. G. J. & Huiskes, A. H. L. (2002). DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation. Plant, Cell & Environment 25: 1579–89.Google Scholar
Lud, D., Schlensog, M., Schroeter, B. & Huiskes, A. H. L. (2003). The influence of UV-B radiation on light-dependent photosynthetic performance in Sanionia uncinata (Hedw.) Loeske in Antarctica. Polar Biology 26: 225–32.Google Scholar
Markham, K. R., Franke, A., Given, D. R. & Brownsey, P. (1990). Historical Antarctic ozone level trends from herbarium specimen flavonoids. Bulletin de Liaison du Groupe Polyphenols 15: 230–5.Google Scholar
Markham, K. R., Ryan, K. G., Bloor, S. J. & Mitchell, K. A. (1998). An increase in the luteolin:apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry 48: 791–4.Google Scholar
Martínez-Abaigar, J. & Núñez-Olivera, E. (1998). Ecophysiology of photosynthetic pigments in aquatic bryophytes. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 277–92. Leeds: Maney Publishing and the British Bryological Society.
Martínez-Abaigar, J., Núñez-Olivera, E., Beaucourt, N.et al. (2003). Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. Journal of Bryology 25: 17–30.Google Scholar
Martínez-Abaigar, J., Núñez-Olivera, E., Tomás, R.et al. (2004). Daños macroscópicos y microscópicos causados por un aumento de la radiación ultravioleta-B en dos briófitos acuáticos del Parque Natural de Sierra Cebollera (La Rioja, norte de España). Zubía 22: 143–63.Google Scholar
Martínez-Abaigar, J., Otero, S., Tomas, R. & Núñez-Olivera, E. (2008). High-level phosphate addition does not modify UV effects in two aquatic bryophytes. Bryologist 111: 444–54.Google Scholar
Martínez-Abaigar, J., Otero, S., Tomas, R. & Núñez-Olivera, E. (2009). Effects of enhanced ultraviolet radiation on six aquatic bryophytes. Cryptogamie-Bryologie 30: 157–75.Google Scholar
Maxwell, K. & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659–68.Google Scholar
McKenzie, R. L., Björn, L. O., Bais, A. & Ilyasd, M. (2003). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochemical and Photobiological Sciences 2: 5–15.Google Scholar
McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O. & Hyas, M. (2007). Changes in biologically-active ultraviolet radiation reaching the Earth's surface. Photochemical and Photobiological Sciences 6: 218–31.Google Scholar
Montiel, P., Smith, A. & Keiller, D. (1999). Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Research 18: 229–35.Google Scholar
Newsham, K. K. (2003). UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis. Oecologia 135: 327–31.Google Scholar
Newsham, K. K., Hodgson, D. A., Murray, A. W. A., Peat, H. J. & Lewis Smith, R. I. (2002). Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biology 8: 972–83.Google Scholar
Newsham, K. K., Geissler, P., Nicolson, M., Peat, H. J. & Lewis-Smith, R. I. (2005). Sequential reduction of UV-B radiation in the field alters the pigmentation of an Antarctic leafy liverwort. Environmental and Experimental Botany 54: 22–32.Google Scholar
Newsham, K. K., & Robinson, S. A. (2009). Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biology 15: 2574–89.Google Scholar
Niemi, R., Martikainen, P. J., Silvola, J.et al. (2002a). Elevated UV-B radiation alters fluxes of methane and carbon dioxide in peatland microcosms. Global Change Biology 8: 361–71.Google Scholar
Niemi, R., Martikainen, P. J., Silvola, J.et al. (2002b). Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. New Phytologist 156: 509–15.Google Scholar
Norval, M., Cullen, A. P., Gruijl, F. R., et al. (2007). The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochemical and Photobiological Sciences 6: 232–51.Google Scholar
Núñez-Olivera, E., Martínez-Abaigar, J., Tomás, R., Beaucourt, N. & Arróniz-Crespo, M. (2004). Influence of temperature on the effects of artificially enhanced UV-B radiation on aquatic bryophytes under laboratory conditions. Photosynthetica 42: 201–12.Google Scholar
Núñez-Olivera, E., Arróniz-Crespo, M., Martínez-Abaigar, J., Tomás, R. & Beaucourt, N. (2005). Assessing the UV-B tolerance of sun and shade samples of two aquatic bryophytes using short-term tests. Bryologist 108: 435–48.Google Scholar
Núñez-Olivera, E., Otero, S., Tomás, R. & Martínez-Abaigar, J. (2009). Seasonal variations in UV-absorbing compounds and physiological characteristics in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia over a three-year period. Physiologia Plantarum 136: 73–85.Google Scholar
Otero, S., Núñez-Olivera, E., Martínez-Abaigar, J.et al. (2006). Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Photochemical and Photobiological Sciences 5: 760–9.Google Scholar
Otero, S., Cezón, K., Martínez-Abaigar, J. & Núñez-Olivera, E. (2008). Ultraviolet-absorbing capacity of aquatic bryophytes from Tierra del Fuego (Argentina). Journal of Bryology 30: 290–6.Google Scholar
Otero, S., Núñez-Olivera, E., Martínez-Abaigar, J., Tomás, R. & Huttunen, S. (2009). Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort. Environmental Pollution 157: 2335–44.Google Scholar
Phoenix, G. K., Gwynn-Jones, D., Callaghan, T. V., Sleep, D. & Lee, J. A. (2001). Effects of global change on a sub-Arctic heath: effects of enhanced UV-B radiation and increased summer precipitation. Journal of Ecology 89: 256–67.Google Scholar
Post, A. & Vesk, M. (1992). Photosynthesis, pigments, and chloroplast ultrastructure of an Antarctic liverwort from sun-exposed and shaded sites. Canadian Journal of Botany 70: 2259–64.Google Scholar
Prasad, S. M., Dwivedi, R., Zeeshan, M. & Singh, R. (2004). UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiologiae Plantarum 26: 423–30.Google Scholar
Qiu, Y. L., Li, L., Wang, B.et al. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the United States of America 103: 15511–16.Google Scholar
Rader, R. B. & Belish, T. A. (1997a). Effects of ambient and enhanced UV-B radiation on periphyton in a mountain stream. Journal of Freshwater Ecology 12: 615–28.Google Scholar
Rader, R. B. & Belish, T. A. (1997b). Short-term effects of ambient and enhanced UV-B on moss (Fontinalis neomexicana) in a mountain stream. Journal of Freshwater Ecology 12: 395–403.Google Scholar
Robinson, S. A., Turnbull, J. D. & Lovelock, C. E. (2005). Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Global Change Biology 11: 476–89.Google Scholar
Robson, T. M., Pancotto, V. A., Flint, S. D., et al. (2003). Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytologist 160: 379–89.Google Scholar
Robson, T. M., Pancotto, V. A., Ballaré, C. L.et al. (2004). Reduction of solar UV-B mediates changes in the Sphagnum capitulum microenvironment and the peatland microfungal community. Oecologia 140: 480–90.Google Scholar
Rozema, J., Noordijk, A. J., Broekman, R. A., et al. (2001). (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B. A new proxy for the reconstruction of past solar UV-B? Plant Ecology 154: 11–26.Google Scholar
Rozema, J., Björn, L. O., Bornman, J. F., et al. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology 66: 2–12.Google Scholar
Rozema, J., Boelen, P., Solheim, B., et al. (2006). Stratospheric ozone depletion: high arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field. Plant Ecology 182: 121–35.Google Scholar
Ruhland, C. T., Xiong, F. S., Clark, W. D. & Day, T. A. (2005). The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica. Photochemistry and Photobiology 81: 1086–93.Google Scholar
Ryan, K. G., Burne, A. & Seppelt, R. D. (2009). Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Global Change Biology 15: 1694–702.Google Scholar
Schipperges, B. & Gehrke, C. (1996). Photosynthetic characteristics of subarctic mosses and lichens. Ecological Bulletins 45: 121–6.Google Scholar
Searles, P. S., Flint, S. D., Díaz, S. B.et al. (1999). Solar ultraviolet-B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina. Global Change Biology 5: 225–34.Google Scholar
Searles, P. S., Flint, S. D. & Caldwell, M. M. (2001a). A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127: 1–10.Google Scholar
Searles, P. S., Kropp, B. R., Flint, S. D. & Caldwell, M. M. (2001b). Influence of solar UV-B radiation on peatland microbial communities of southern Argentina. New Phytologist 152: 213–21.Google Scholar
Searles, P. S., Flint, S. D., Díaz, S. B.et al. (2002). Plant response to solar ultraviolet-B radiation in a southern South American Sphagnum peatland. Journal of Ecology 90: 704–13.Google Scholar
Seckmeyer, G., Pissulla, D., Glandorf, M., et al. (2008). Variability of UV irradiance in Europe. Photochemistry and Photobiology 84: 172–9.Google Scholar
Snell, K. R. S., Convey, P. & Newsham, K. K. (2007). Metabolic recovery of the Antarctic liverwort Cephaloziella varians during spring snowmelt. Polar Biology 30: 1115–22.Google Scholar
Snell, K. R. S., Kokubun, T., Griffiths, H.et al. (2009). Quantifying the metabolic cost to an Antarctic liverwort of responding to an abrupt increase in UVB radiation exposure. Global Change Biology 15: 2563–73.Google Scholar
Sonesson, M., Callaghan, T. V. & Carlsson, B. A. (1996). Effects of enhanced ultraviolet radiation and carbon dioxide concentration on the moss Hylocomium splendens. Global Change Biology 2: 67–73.Google Scholar
Sonesson, M., Carlsson, B. A., Callaghan, T. V., et al. (2002). Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change. Oikos 99: 151–60.Google Scholar
Sroka, Z. (2005). Antioxidative and antiradical properties of plant phenolics. Zeitschrift für Naturforschung Section C – Journal of Biosciences 60: 833–43.Google Scholar
Taipale, T. & Huttunen, S. (2002). Moss flavonoids and their ultrastructural localization under enhanced UV-B radiation. Polar Record 38: 211–18.Google Scholar
Takács, Z., Csintalan, Z., Sass, L.et al. (1999). UV-B tolerance of bryophyte species with different degrees of desiccation tolerance. Journal of Photochemistry and Photobiology B: Biology 48: 210–15.Google Scholar
Turnbull, J. D. & Robinson, S. A. (2009). Accumulation of DNA damage in Antarctic mosses: correlations with ultraviolet-B radiation, temperature and turf water content vary among species. Global Change Biology 15: 319–29.Google Scholar
Turnbull, J. D., Leslie, S. J. & Robinson, S. A. (2009). Desiccation protects two Antarctic mosses from ultraviolet-B induced DNA damage. Functional Plant Biology 36: 214–21.Google Scholar
Vitt, D. H. & Glime, J. M. (1984). The structural adaptations of aquatic Musci. Lindbergia 10: 95–110.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×