Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-03T11:10:58.113Z Has data issue: false hasContentIssue false

23 - From the S-matrix to string theory

from Part IV - The string

Published online by Cambridge University Press:  05 May 2012

Yoichiro Nambu
Affiliation:
University of Chicago
Andrea Cappelli
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Florence
Elena Castellani
Affiliation:
Università degli Studi di Firenze, Italy
Filippo Colomo
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Florence
Paolo Di Vecchia
Affiliation:
Niels Bohr Institutet, Copenhagen and Nordita, Stockholm
Get access

Summary

String theory traces its origin to the Veneziano model of 1968. It also happens that the Weinberg–Salam model was born about the same time. The latter has led to the successful Standard Model. The descendants of the former, on the other hand, are still struggling to be relevant to the real world in spite of their enormous theoretical appeal. Indeed there exist two pathways in the development of theoretical particle physics since its beginnings in the Thirties. I will call them the quantum field theory and the S-matrix theory respectively. In its historical lineage, the Standard Model belongs to the former, whereas the superstring theory belongs to the latter. Even though the former has turned out to be the Royal Road of particle physics, this was not entirely clear before its final triumph, and the latter has also played very important contributing roles which continue to this day. The purpose of this note is to follow this other pathway and discuss the topics that have influenced my thoughts.

In the Thirties, when nuclear physics was developing, there were uncertainties in the minds of physicists about the efficacy of quantum field theory which was still in its early stages of development. For one thing, quantum field theory had inherited the self-energy difficulty from classical theory although the degree of divergence was found to be milder. For another, the unknown nature of nuclear forces and the much higher energy range involved than in atomic phenomena made people suspect that quantum mechanics might fail in dealing with nuclear phenomena, just as the classical theory failed with atomic phenomena.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×