Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T02:47:27.007Z Has data issue: false hasContentIssue false

15 - Multi-trophic interactions and biodiversity: beetles, ants, caterpillars and plants

Published online by Cambridge University Press:  25 August 2009

Deborah. K. Letourneau
Affiliation:
University of California, Santa Cruz
Lee. A. Dyer
Affiliation:
Tulane University
David Burslem
Affiliation:
University of Aberdeen
Michelle Pinard
Affiliation:
University of Aberdeen
Sue Hartley
Affiliation:
University of Sussex
Get access

Summary

Biodiversity as a process

Biodiversity is dynamic, with species richness and composition changing over time and space in response to ecological, evolutionary and physical processes (e.g. Todd et al. 2002; Prieto et al. 2001; Hart et al. 1989; Menge et al. 1983). The scale of changes in biodiversity can be large, such as changes in geological time from plate tectonics (e.g. Crame 2001), variable, such as expected from global climate change, or as small as those responding to localized disturbance or heterogeneity (e.g. Clark et al. 1982; Louton et al. 1996; Jansen 1997). At each of these scales, biodiversity can be conceptualized as a process responsive to particular biotic and abiotic factors rather than as a static attribute of a particular location. The role of biotic interactions in maintaining biodiversity in tropical ecosystems, then, can be elucidated by studies that show how biotic factors can singly or in combination, directly or indirectly, change biological diversity in those systems. Using a model system in Costa Rica we will highlight indirect trophic interactions that cause changes in biodiversity within a rainforest food web.

Whereas theoretical studies in ecology and evolution are often on the mark with respect to their appreciation of dynamic processes, their application in efforts to conserve biodiversity has been subject to shortcuts. Specifically, over the last century, many conservation efforts have focused on saving particular species at certain locations. Broader goals now target particular habitats and hotspots of endemism.

Type
Chapter
Information
Biotic Interactions in the Tropics
Their Role in the Maintenance of Species Diversity
, pp. 366 - 385
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atlegrim, O. 1989. Exclusion of birds from bilberry stands: impact on insect larval density and damage to the bilberry. Oecologia 79: 136–139CrossRefGoogle ScholarPubMed
Brehm, G. & Fiedler, K.. 2003. Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. Journal of Biogeography 30: 431–440CrossRefGoogle Scholar
Brett, M. T. & Goldman, C. R.. 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences 93: 7723–7726CrossRefGoogle ScholarPubMed
Brewer, S. W., Rejmanek, M., Johnstone, E. E. & Caro, T. M.. 1997. Top-down control in tropical forests. Biotropica 29: 364–367CrossRefGoogle Scholar
Burger, W. 1971. Flora Costaricensis. Fieldiana Botany 35: 1–227Google Scholar
Carpenter, S. C., T. M. Frost, J. F. Kitchell et al. 1990. Patterns of primary production and herbivory in 25 North American lake ecosystems. In , J. Cole, , S. Findlay & , G. Lovett, eds., Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories. New York: Springer-Verlag, pp. 67–96Google Scholar
Carpenter, S. R. & J. F. Kitchell. 1993. The Trophic Cascade in Lakes. New York: Cambridge University Press
Carter, P. E. & Rypstra, A. L.. 1995. Top-down effects in soybean agroecosystems: spider density affects herbivore damage. Oikos 72: 433–439CrossRefGoogle Scholar
Chalcraft, D. R. & Resetarits, W. J.. 2003. Predator identity and ecological impacts: functional redundancy or functional diversity?Ecology 84: 2407–2418CrossRefGoogle Scholar
Clark, D. B., Guayasamin, C., Pazmino, O., Donoso, C. & Devillacis, Y. P.. 1982. The tramp ant Wasmannia auropunctata – autecology and effects on ant diversity and distribution on Santa Cruz Island, Galapagos. Biotropica 14: 196–207CrossRefGoogle Scholar
Covich, A. 1976. Recent changes in molluscan species-diversity of a large tropical lake (Lago de Peten, Guatemala). Limnology and Oceanography 21: 51–59CrossRefGoogle Scholar
Crame, J. A. 2001. Taxonomic diversity gradients through geological time. Diversity & Distributions 7: 175–189CrossRefGoogle Scholar
Dirzo, R. & Miranda, A.. 1990. Contemporary neotropical defaunation and forest structure, function and diversity – a sequel to John Terborgh. Conservation Biology 4: 444–447CrossRefGoogle Scholar
Duffy, J. E. 2002. Biodiversity and ecosystem function: the consumer connection. Oikos 99: 201–219CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J. & Martinez, N. D.. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters 5: 558–567CrossRefGoogle Scholar
Dyer, L. A., Gentry, G. & Tobler, M. A.. 2004. Fitness consequences of herbivory: impacts on asexual reproduction of tropical rainforest understorey plants. Biotropica 36: 68–73Google Scholar
Dyer, L. A. & Letourneau, D.. 2003. Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecology Letters 6: 60–68CrossRefGoogle Scholar
Dyer, L. A. & Letourneau, D. K.. 1999a. Relative strengths of top-down and bottom-up forces in a tropical forest community. Oecologia 119: 265–274CrossRefGoogle Scholar
Dyer, L. A. & Letourneau, D. K.. 1999b. Trophic cascades in a complex terrestrial community. Proceedings of the National Academy of Sciences 96: 5072–5076CrossRefGoogle Scholar
Dyer, L. A. & Stireman, J. O.. 2003. Community-wide trophic cascades and other indirect interactions in an agricultural community. Basic and Applied Ecology 4: 423–432CrossRefGoogle Scholar
Estes, J. A. 1995. Top-level carnivores and ecosystem effects: questions and approaches. In , C. G. Jones & , J. H. Lawton, eds., Linking Species and Ecosystems. New York: Chapman & Hall, pp. 151–158Google Scholar
Fischer, R. C., Richter, A., Wanek, W. & Mayer, V.. 2002. Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia 133: 186–192CrossRefGoogle ScholarPubMed
Fretwell, S. D. 1977. The regulation of plant communites by food chains exploiting them. Perspectives in Biology and Medicine 20: 169–185CrossRefGoogle Scholar
German, N. L. & Chacon de Ulloa, P.. 1997. Diversity of understorey insects and insectivorous birds in disturbed tropical rainforest habitats. Caldasia 19: 507–520Google Scholar
Ghazoul, J. & McLeish, M.. 2001. Reproductive ecology of tropical forest trees in logged and fragmented habitats in Thailand and Costa Rica. Plant Ecology 153: 335–345CrossRefGoogle Scholar
Glasser, J. W. 1979. Role of predation in shaping and maintaining the structure of communities. American Naturalist 113: 631–641CrossRefGoogle Scholar
Hairston, N. G., Smith, F. E. & Slobodkin, L. B.. 1960. Community structure, population control, and competition. American Naturalist 94: 421–424CrossRefGoogle Scholar
Halaj, J. & Wise, D. H.. 2001. Terrestrial trophic cascades: how much do they trickle?American Naturalist 157: 262–281CrossRefGoogle ScholarPubMed
Hart, T. B., Hart, J. A. & Murphy, P. G.. 1989. Monodominant and species-rich forests of the humid tropics – causes for their co-occurrence. American Naturalist 133: 613–633CrossRefGoogle Scholar
Hixon, M. A. & Brostoff, W. N.. 1996. Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecological Monographs 66: 67–90CrossRefGoogle Scholar
Hunter, M. D. 2001. Multiple approaches to estimating the relative importance of top-down and bottom-up forces on insect populations: experiments, life tables, and time-series analysis. Basic and Applied Ecology 2: 295–309CrossRefGoogle Scholar
Hunter, M. D. & Price, P. W.. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73: 724–732Google Scholar
Jansen, A. 1997. Terrestrial invertebrate community structure as an indicator of the success of a tropical rainforest restoration project. Restoration Ecology 5: 115–124CrossRefGoogle Scholar
Kauffman, J. B., Sanford, R. L., Cummings, D. L., Salcedo, I. H. & Sampaio, E. V. S. B.. 1993. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74: 140–151CrossRefGoogle Scholar
Kohn, A. J. & Leviten, P. J.. 1976. Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25: 199–210CrossRefGoogle ScholarPubMed
Leibold, M. A. 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist 147: 784–812CrossRefGoogle Scholar
Letourneau, D. K. 1983. Passive aggression: an alternative hypothesis for the Piper–Pheidole association. Oecologia 60: 122–126CrossRefGoogle ScholarPubMed
Letourneau, D. K. 1990. Code of ant–plant mutualism broken by parasite. Science 248: 215–217CrossRefGoogle ScholarPubMed
Letourneau, D. K. 1998. Ants, stem-borers, and fungal pathogens: experimental tests of a fitness advantage in Piper ant-plants. Ecology 79: 593–603CrossRefGoogle Scholar
Letourneau, D. K. & Dyer, L. A.. 1998a. Experimental test in lowland tropical forest shows top-down effects through four trophic levels. Ecology 79: 1678–1687CrossRefGoogle Scholar
Letourneau, D. K. & Dyer, L. A.. 1998b. Density patterns of Piper ant-plants and associated arthropods: top predator cascades in a terrestrial system?Biotropica 30: 162–169CrossRefGoogle Scholar
Letourneau, D. K., Dyer, L. A. & Vega, G. C. 2004. Indirect effects of a top predator on a rain forest understorey plant community. Ecology 85: 2144–2152CrossRefGoogle Scholar
Ley, J. A., Halliday, I. A., Tobin, A. J., Garrett, R. N. & Gribble, N. A.. 2002. Ecosystem effects of fishing closures in mangrove estuaries of tropical Australia. Marine Ecology: Progress Series 245: 223–238CrossRefGoogle Scholar
Lindeman, R. L. 1942. The trophic–dynamic aspect of ecology. Ecology 23: 399–418CrossRefGoogle Scholar
Louton, J., Gelhaus, J. & Bouchard, R.. 1996. The aquatic macrofauna of water-filled bamboo (Poaceae: Bambusoideae: Guadua) internodes in a Peruvian lowland tropical forest. Biotropica 28: 228–242CrossRefGoogle Scholar
Marquis, R. J. 1991. Herbivore fauna of Piper (Piperaceae) in a Costa Rican wet forest: diversity, specificity, and impact. In , P. W. Price, , T. M. Lewinsohn, , G. W. Fernandes & , W. W. Benson, eds., Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. New York: John Wiley & Sons, pp. 179–208Google Scholar
Marquis, R. J. & Whelan, C. J.. 1994. Insectivorous birds increase growth of white oak through consumption of leaf chewing insects. Ecology 75: 2007–2014CrossRefGoogle Scholar
Menge, B. A., Ashkenas, L. R. & Matson, A.. 1983. Use of artificial holes in studying community-development in cryptic marine habitats in a tropical rocky intertidal region. Marine Biology 77: 129–142CrossRefGoogle Scholar
Micheli, F., G. A. Polis, P. Dee Boersma et al. 1989. Human alteration of food webs. In M. E. Soulé & K. A. Kohm, eds., Research Priorities for Conservation Biology. Washington, DC: Island Press
Oksanen, L. 1991. Trophic levels and trophic dynamics: a consensus emerging?Trends in Ecology and Evolution 6: 58–60CrossRefGoogle ScholarPubMed
Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100: 65–76CrossRefGoogle Scholar
Paine, R. T. 2002. Trophic control of production in a rocky intertidal community. Science 296: 736–739CrossRefGoogle Scholar
Persson, L. 1999. Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85: 385–397CrossRefGoogle Scholar
Polis, G. A. & Strong, D. R.. 1996. Food web complexity and community dynamics. American Naturalist 147: 813–846CrossRefGoogle Scholar
Power, M. E. 2000. What enables trophic cascades? Commentary on Polis et al.Trends in Ecology and Evolution 15: 443–444CrossRefGoogle ScholarPubMed
Prieto, A. S., Ruiz, L. J., Garcia, N. & Alvarez, M.. 2001. Mollusc diversity in an Arca zebra (Mollusca: Bivalvia) community, Chacopata, Sucre, Venezuela. Revista de Biologia Tropical 49: 591–598Google Scholar
Rathcke, B. J. & Price, P. W.. 1976. Anomalous diversity of tropical ichneumonid parasitoids: a predation hypothesis. American Naturalist 110: 889–893Google Scholar
Risch, S. J., , M. McClure, , J. Vandermeer & , S. Waltz. 1977. Mutualism between three species of tropicalPiper (Piperaceae) and their ant inhabitants. 98: 433–444Google Scholar
Risch, S. J. & Rickson, F. R.. 1981. Mutualism in which ants must be present before plants produce food bodies. Nature 291: 149–150CrossRefGoogle Scholar
Roldan, A. I. & Simonetti, J. A.. 2001. Plant–mammal interactions in tropical Bolivian forests with different hunting pressures. Conservation Biology 15: 617–623CrossRefGoogle Scholar
Rosenheim, J. A., Wilhoit, L. R. & Armer, C. A.. 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96: 439–449CrossRefGoogle ScholarPubMed
Saiz, F., Yates, L., Nunez, C., Daza, M., Varas, M. E. & Vivar, C.. 2000. Biodiversity of the canopy arthropods associated to vegetation of the north of Chile, II region. Revista Chilena de Historia Natural 73: 671–692Google Scholar
Schmitz, O. J. 1992. Exploitation in model food chains with mechanistic consumer-resource dynamics. Theoretical Population Biology 41: 161–181CrossRefGoogle Scholar
Schmitz, O. J. 1994. Resource edibility and trophic exploitation in an old-field food web. Proceedings of the National Academy of Sciences 91: 5364–5367CrossRefGoogle Scholar
Schmitz, O. J. 2003. Top predator control of plant biodiversity and productivity in an old-field ecosystem. Ecology Letters 6: 156–163CrossRefGoogle Scholar
Schmitz, O. J., Hamback, P. A. & Beckerman, A. P.. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist 155: 141–153CrossRefGoogle ScholarPubMed
Schmitz, O. J. & Sokol-Hessner, L.. 2002. Linearity in the aggregate effects of multiple predators in a food web. Ecology Letters 5: 168–172CrossRefGoogle Scholar
Schoener, T. W. & Spiller, D. A.. 1996. Devastation of prey diversity by experimentally introduced predators in the field. Nature 381: 691–694CrossRefGoogle Scholar
Schulze, C. H., Linsenmair, K. E. & Fiedler, K.. 2001. Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology 153: 133–152CrossRefGoogle Scholar
Shurin, J. B., Borer, E. T., Seabloom, E. W.et al. 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters 5: 785–791CrossRefGoogle Scholar
Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M.. 1998. Experimental tests of the dependence of arthropod diversity on plant diversity. American Naturalist 152: 738–750CrossRefGoogle ScholarPubMed
Sime, K. R. & Brower, A. V. Z.. 1998. Explaining the latitudinal gradient anomaly in ichneumonid species richness: evidence from butterflies. Journal of Animal Ecology 67: 387–399CrossRefGoogle Scholar
Slobodkin, L. B. 1960. Ecological energy relationships at the population level. The American Naturalist 94: 213–236CrossRefGoogle Scholar
Smith, F. E. 1966. Population limitation in ecosystems. Biometrics 22: 960–975Google Scholar
Spiller, D. A. & Schoener, T. W.. 1990. A terrestrial field experiment showing the impact of eliminating top predators on foliage damage. Nature 347: 469–472CrossRefGoogle Scholar
Strong, D. R., , J. H. Lawton & , T. R. E. Southwood. 1984. Insects on Plants: Community Patterns and Mechanisms. Cambridge, Massachusetts: Harvard University PressGoogle Scholar
Strong, D. R., Whipple, A. V., Child, A. L. & Dennis, B.. 1999. Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology 80: 2750–2761CrossRefGoogle Scholar
Terborgh, J. 1992. Maintenance of diversity in tropical forests. Biotropica 24: 283–292CrossRefGoogle Scholar
Terborgh, J., Lopez, L., Nunez, P.et al. 2001. Ecological meltdown in predator-free forest fragments. Science 294: 1923–1926CrossRefGoogle ScholarPubMed
Thomas, C. D. 1989. Predator–herbivore interactions and the escape of isolated plants from phytophagous insects. Oikos 55: 291–298CrossRefGoogle Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G.et al. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269: 571–577CrossRefGoogle ScholarPubMed
Tscharntke, T. 1992. Cascade effects among 4 trophic levels: bird predation on galls affects density-dependent parasitism. Ecology 73: 1689–1698CrossRefGoogle Scholar
Bael, S. A., Brawn, J. D. & Robinson, S. K.. 2003. Birds defend trees from herbivores in a neotropical forest canopy. Proceedings of the National Academy of Sciences 100: 8304–8307CrossRefGoogle Scholar
Walker, M. & Jones, T. H.. 2001. Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant–insect herbivore–natural enemy systems. Oikos 93: 177–187CrossRefGoogle Scholar
Wilson, E. O. 2003. Pheidole in the New World: a Dominant, Hyperdiverse Ant Genus. Cambridge, MA: Harvard University PressGoogle Scholar
Witman, J. D. & Smith, F.. 2003. Rapid community change at a tropical upwelling site in the Galapagos Marine Reserve. Biodiversity and Conservation 12: 25–45CrossRefGoogle Scholar
Wright, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130: 1–14CrossRefGoogle ScholarPubMed
Wright, S. J. & Duber, H. C.. 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33: 583–595CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×