Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T12:56:39.798Z Has data issue: false hasContentIssue false

5 - DNA–protein interaction

Published online by Cambridge University Press:  05 March 2015

Alexander Vologodskii
Affiliation:
New York University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Biophysics of DNA , pp. 165 - 183
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G. & Delbrück, M. (1968). Reduction of dimensionality in biological diffusion processes. In Structural Chemistry and Molecular Biology, eds. A., Rich & N., Davidson, 198–215. San Francisco, CA: Freeman.Google Scholar
Allemand, J. F., Cocco, S., Douarche, N. & Lia, G. (2006). Loops in DNA: an overview of experimental and theoretical approaches. Eur. Phys. J.E 19, 293–302.CrossRefGoogle ScholarPubMed
Balasubramanian, S., Xu, F. & Olson, W. K. (2009). DNA sequence-directed organization of chromatin: structure-based computational analysis of nucleosome-binding sequences. Biophys. J. 96, 2245–60.CrossRefGoogle ScholarPubMed
Berg, O. G. & Blomberg, C. (1976). Association kinetics with coupled diffusional flows – special application to lac repressor–operator system. Biophys. Chem. 4, 367–81.CrossRefGoogle ScholarPubMed
Berg, O. G. (1977). Association kinetics with coupled diffusion – extension to coiled-chain macromolecules applied to lac repressor-operator system. Biophys. Chem. 7, 33–9.CrossRefGoogle ScholarPubMed
Berg, O. G., Winter, R. B. & von Hippel, P. H. (1981). Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–48.CrossRefGoogle ScholarPubMed
Bonnet, I., Biebricher, A., Porte, P. L., Loverdo, C., Benichou, O., Voituriez, R., Escude, C., Wende, W., Pingoud, A. & Desbiolles, P. (2008). Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res. 36, 4118–27.CrossRefGoogle ScholarPubMed
Chua, E. Y., Vasudevan, D., Davey, G. E., Wu, B. & Davey, C. A. (2012). The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res. 40, 6338–52.CrossRefGoogle ScholarPubMed
deHaseth, P. L., Lohman, T. M., Burgess, R. R. & Record, M. T., Jr. (1978). Nonspecific interactions of Escherichia coli RNA polymerase with native and denatured DNA: differences in the binding behavior of core and holoenzyme. Biochemistry 17, 1612–22.CrossRefGoogle ScholarPubMed
Dikic, J., Menges, C., Clarke, S., Kokkinidis, M., Pingoud, A., Wende, W. & Desbiolles, P. (2012). The rotation-coupled sliding of EcoRV. Nucleic Acids Res. 40, 4064–70.CrossRefGoogle ScholarPubMed
Dong, K. C. & Berger, J. M. (2007). Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450, 1201–5.CrossRefGoogle ScholarPubMed
Elf, J., Li, G. W. & Xie, X. S. (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191—4.CrossRefGoogle Scholar
Enemark, E. J. & Joshua-Tor, L. (2006). Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–5.CrossRefGoogle Scholar
Gorman, J., Chowdhury, A., Surtees, J. A., Shimada, J., Reichman, D. R., Alani, E. & Greene, E. C. (2007). Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol. Cell 28, 359–70.CrossRefGoogle ScholarPubMed
Gorman, J. & Greene, E. C. (2008). Visualizing one-dimensional diffusion of proteins along DNA. Nat. Struct. Mol. Biol. 15, 768–74.CrossRefGoogle ScholarPubMed
Gowers, D. M., Wilson, G. G. & Halford, S. E. (2005). Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl. Acad. Sci. U. S. A. 102, 15883–8.CrossRefGoogle ScholarPubMed
Gu, M. & Rice, C. M. (2010). Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl. Acad. Sci. U. S. A. 107, 521–8.CrossRefGoogle ScholarPubMed
Halford, S. E. & Marko, J. F. (2004). How do site-specific DNA-binding proteins find their targets?Nucleic Acids Res. 32, 3040–52.CrossRefGoogle ScholarPubMed
Halford, S. E., Welsh, A. J. & Szczelkun, M. D. (2004). Enzyme-mediated DNA looping. Annu.Rev. Biophys. Biomol. Struct. 33, 1–24.Google ScholarPubMed
Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E. G., Berg, O. G. & Elf, J. (2012). The lac repressor displays facilitated diffusion in living cells. Science 336, 1595–8.CrossRefGoogle ScholarPubMed
Hardin, A. H., Sarkar, S. K., Yeonee Seol, Y., Liou, G. F., Osheroff, N. & Neuman, K. C. (2011). Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification. Nucleic Acids Res. 39, 5729–43.CrossRefGoogle ScholarPubMed
Huang, J., Schlick, T. & Vologodskii, T. (2001). Dynamics of site juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. U. S. A. 98, 968–73.CrossRefGoogle ScholarPubMed
Kalodimos, C. G., Biris, N., Bonvin, A. M., Levandoski, M. M., Guennuegues, M., Boelens, R. & Kaptein, R. (2004a). Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305, 386–9.CrossRefGoogle ScholarPubMed
Kalodimos, C. G., Boelens, R. & Kaptein, R. (2004b). Toward an integrated model of protein–DNA recognition as inferred from NMR studies on the Lac repressor system. Chem. Rev. 104, 104–3567.CrossRefGoogle ScholarPubMed
Klenin, K. V. & Langowski, J. (2001). Diffusion-controlled intrachain reactions of supercoiled DNA: Brownian dynamics simulations. Biophys. J. 80, 69–74.CrossRefGoogle ScholarPubMed
Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G. & Lu, P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271, 1247–54.CrossRefGoogle ScholarPubMed
Loth, K., Gnida, M., Romanuka, J., Kaptein, R. & Boelens, R. (2013). Sliding and target location of DNA-binding proteins: an NMR view of the lac repressor system. J. Biomol. NMR 56, 41–9.CrossRefGoogle ScholarPubMed
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–60.CrossRefGoogle ScholarPubMed
Luscombe, N. M., Austin, S. E., Berman, H. M. & Thornton, J. M. (2000). An overview of the structures of protein-DNA complexes. Genome Biol. 1, 1–10.CrossRefGoogle ScholarPubMed
Lynch, T. W., Read, E. K., Mattis, A. N., Gardner, J. F. & Rice, P. A. (2003). Integration host factor: putting a twist on protein-DNA recognition. J. Mol. Biol. 330, 493–502.CrossRefGoogle ScholarPubMed
Moreland, J. L., Gramada, A., Buzko, O. V., Zhang, Q. & Bourne, P. E. (2005). The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinform. 6, 21.CrossRefGoogle ScholarPubMed
Morozov, A. V., Fortney, K., Gaykalova, D. A., Studitsky, V. M., Widom, J. & Siggia, E. D. (2009). Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucleic Acids Res. 37, 4707–22.CrossRefGoogle ScholarPubMed
Olson, W. K., Gorin, A. A., Lu, X. J., Hock, L. M. & Zhurkin, V. B. (1998). DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. U.S.A. 95, 11163–8.CrossRefGoogle ScholarPubMed
Olson, W. K. & Zhurkin, V. B. (2011). Working the kinks out of nucleosomal DNA. Curr. Opin. Struct. Biol. 21, 348–57.CrossRefGoogle ScholarPubMed
Polikanov, Y. S., Bondarenko, V. A., Tchernaenko, V., Jiang, Y. I., Lutter, L. C., Vologodskii, A. & Studitsky, V. M. (2007). Probability of the site juxtaposition determines the rate of protein-mediated DNA looping. Biophys. J. 93, 2726–31.CrossRefGoogle ScholarPubMed
Porecha, R. H. & Stivers, J. T. (2008). Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc. Natl. Acad. Sci. U. S. A. 105, 10791–6.CrossRefGoogle ScholarPubMed
Rau, D. C. & Sidorova, N. Y. (2010). Diffusion of the restriction nuclease EcoRI along DNA. J. Mol. Biol. 395, 408–16.CrossRefGoogle ScholarPubMed
Rice, P. A., Yang, S., Mizuuchi, K. & Nash, H. A. (1996). Crystal structure of an IHF–DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–306.CrossRefGoogle ScholarPubMed
Richmond, T. J. & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature 423, 423–145.CrossRefGoogle ScholarPubMed
Riggs, A. D., Bourgeois, S. & Cohn, M. (1970). The lac repressor–operator interaction. 3. Kinetic studies. J. Mol. Biol. 53, 401–17.CrossRefGoogle ScholarPubMed
Rohs, R., Jin, X., West, S. M., Joshi, R., Honig, B. & Mann, R. S. (2010). Origins of specificity in protein–DNA recognition. Annu. Rev. Biochem. 79, 233–69.CrossRefGoogle ScholarPubMed
Rouzina, I. & Bloomfield, V. A. (1997). Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson–Boltzmann equation. Biophys. Chem. 64, 139–55.CrossRefGoogle ScholarPubMed
Schleif, R. (1992). DNA looping. Annu. Rev. Biochem. 61, 199–223.CrossRefGoogle ScholarPubMed
Schurr, J. M. (1975). The one-dimensional diffusion coefficient of proteins absorbed on DNA hydrodynamic considerations. Biophys. Chem. 9, 413–14.Google ScholarPubMed
Singleton, M. R., Dillingham, M. S. & Wigley, D. B. (2007). Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50.CrossRefGoogle ScholarPubMed
Struhl, K. & Segal, E. (2013). Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 20–267.CrossRefGoogle ScholarPubMed
Swinger, K. K. & Rice, P. A. (2004). IHF and HU: flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14, 28–35.CrossRefGoogle Scholar
Tolstorukov, M. Y., Colasanti, A. V., McCandlish, D. M., Olson, W. K. & Zhurkin, V. B. (2007). A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. J. Mol. Biol. 371, 725–38.CrossRefGoogle ScholarPubMed
Trifonov, E. N. (2011). Cracking the chromatin code: precise rule of nucleosome positioning. Phys. Life Rev. 8, 39–50.CrossRefGoogle ScholarPubMed
Vologodskii, A. V. & Cozzarelli, N. R. (1996). Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70, 2548–56.CrossRefGoogle ScholarPubMed
von Hippel, P. H. & Berg, O. G. (1989). Facilitated target location in biological systems. J. Biol. Chem. 264, 675–8.Google ScholarPubMed
Widom, J. (2001). Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 34–269.CrossRefGoogle ScholarPubMed
Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–74.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×