Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T02:10:18.387Z Has data issue: false hasContentIssue false

2 - Conformational transitions

Published online by Cambridge University Press:  05 March 2015

Alexander Vologodskii
Affiliation:
New York University
Get access

Summary

The main form of the double helix, the B form, is stabilized by only weak hydrogen bonds and van der Waals interactions. If we also take into account the remarkable flexibility of the backbone of ssDNA, it is not surprising that depending on the solution conditions DNA can be found in various alternative forms. Conformational flexibility of DNA is needed for its functioning, since it facilitates speciflc DNA-DNA, DNA-RNA and DNA–protein interactions inside the cell. When we are changing solution conditions gradually, DNA can undergo transitions from one form to another. Studying these transitions has brought a lot of important information about DNA conformational flexibility and the stability of the various forms. This is why the conformational transitions have been a subject of biophysical investigation for decades. In this chapter we start from general theoretical analysis of the transitions, and then consider individual transitions: DNA melting or the helix–coil transition, B–A and B–Z transitions. We mainly consider only equilibrium properties of the transitions; the corresponding dynamic properties will be the subject of Chapter 4.

Theoretical analysis of conformational transitions in DNA

2.1.1 Preliminary remarks

A key concept of the theoretical description of conformational transitions that will be used in this chapter is a concept of a macrostate. It seems that Zimm and Bragg were the first to apply this approach to the analysis of the helix–coil transition in polypeptides (Zimm & Bragg 1959), although a few groups were moving in the same direction at that time. In this approach all microscopic states of a base pair (or nucleotides that can form the base pair) are divided into two groups, which correspond to the two DNA forms under consideration. The exact numbers of microstates in the macrostates and their corresponding energies are not specified in this approach. To apply it we only need to know the ratio of the statistical weights of the macrostates.

Type
Chapter
Information
Biophysics of DNA , pp. 23 - 71
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboul-ela, F., Koh, D., Tinoco, I., Jr. & Martin, F. H. (1985). Base-base mismatches. Thermodynamics of double helix formation for dCAaXAaG + dCT3YT3G(X, Y = A, C, G, T). Nucleic Acids Res. 13, 4811–24.CrossRefGoogle Scholar
Abrescia, N. G., Thompson, A., Huynh-Dinh, T. & Subirana, J. A. (2002). Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Proc. Natl. Acad. Sci. U. S. A. 99, 2806–11.CrossRefGoogle ScholarPubMed
Adams, A. (2002). Crystal structures of acridines complexed with nucleic acids. Curr. Med. Chem. 9, 1667–75.CrossRefGoogle ScholarPubMed
Allawi, H. T. & SantaLucia, J., Jr. (1997). Thermodynamics and NMR of internal G-T mismatches in DNA. Biochemistry 36, 10581–94.CrossRefGoogle ScholarPubMed
Allawi, H. T. (1998a). Nearest-neighbor thermodynamics of internal A-C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37, 9435–44.Google ScholarPubMed
Allawi, H. T. (1998b). Nearest neighbor thermodynamic parameters for internal G·A mismatches in DNA. Biochemistry 37, 2170–9.Google ScholarPubMed
Allawi, H. T. (1998c). NMR solution structure of a DNA dodecamer containing single G-T mismatches. Nucleic Acids Res. 26, 4925–34.CrossRefGoogle ScholarPubMed
Allawi, H. T. (1998d). Thermodynamics of internal C-T mismatches in DNA. Nucleic Acids Res. 26, 2694–701.CrossRefGoogle Scholar
Amirikyan, B. R., Vologodskii, A. V. & Lyubchenko Yu, L. (1981). Determination of DNA cooperativity factor. Nucleic Acids Res. 9, 5469–82.CrossRefGoogle ScholarPubMed
Ansevin, A. T., Vizard, D. L., Brown, B. W. & McConathy, J. (1976). High-resolution thermal denaturation of DNA. I. Theoretical and practical considerations for the resolution of thermal subtransitions. Biopolymers 15, 153–74.CrossRefGoogle ScholarPubMed
Anshelevich, V. V., Vologodskii, A. V., Lukashin, A. V. & Frank-Kamenetskii, M. D. (1984). Slow relaxational processes in the melting of linear biopolymers. A theory and its application to nucleic acids. Biopolymers 23, 39–58.CrossRefGoogle ScholarPubMed
Antao, V. P., Lai, S. Y. & Tinoco, I., Jr. (1991). A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 19, 5901–5.CrossRefGoogle ScholarPubMed
Arnold, F. H., Wolk, S., Cruz, P. & Tinoco, I., Jr. (1987). Structure, dynamics, and thermodynamics of mismatched DNA oligonucleotide duplexes d(CCCAGGG)2 and d(CCCTGGG)2. Biochemistry 26, 4068–75.CrossRefGoogle Scholar
Bauer, W. & Vinograd, J. (1968). The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–71.CrossRefGoogle ScholarPubMed
Biver, T. (2012). Use of UV–Vis spectrometry to gain information on the mode of binding of small molecules to DNAs and RNAs. Appl. Spectrosc. Rev. 47, 272–325.CrossRefGoogle Scholar
Blagoi, Y. P., Sorokin, V. A., Valeyev, V. A., Khomenko, S. A. & Gladchenko, G. O. (1978). Magnesium ion effect on the helix–coil transition of DNA. Biopolymers 17, 1103–18.CrossRefGoogle ScholarPubMed
Blommers, M. J., Walters, J. A., Haasnoot, C. A., Aelen, J. M., van der Marel, G. A., van Boom, J. H. & Hilbers, C. W. (1989). Effects of base sequence on the loop folding in DNA hairpins. Biochemistry 28, 7491–8.CrossRefGoogle ScholarPubMed
Borovik, A. S., Kalambet, Y. A., Lyubchenko, Y. L., Shitov, V. T. & Golovanov, E. I. (1980). Equilibrium melting of plasmid ColE1 DNA: electron-microscopic visualization. Nucleic Acids Res. 8, 4165–84.CrossRefGoogle ScholarPubMed
Breslauer, K. J., Frank, R., Blocker, H. & Marky, L. A. (1986). Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. U. S. A. 83, 3746–50.CrossRefGoogle ScholarPubMed
Cantor, C. R. & Schimmel, P. R. (1980). Biophysical Chemistry.New York: Freeman.Google Scholar
Coman, D. & Russu, I. M. (2005). A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA. Biophys. J. 89, 3285–92.CrossRefGoogle ScholarPubMed
Conceição, A. S., Minetti, C. A., Remeta, D. P., Dickstein, R. & Breslauer, K. J. (2010). Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res. 38, 97–116.Google Scholar
Craig, M. E., Crothers, D. M. & Doty, P. (1971). Relaxation kinetics of dimer formation by self complementary oligonucleotidesJ. Mol. Biol. 62, 383–401.CrossRefGoogle ScholarPubMed
Crick, F. H. & Klug, A. (1975). Kinky helix. Nature 255, 530–3.CrossRefGoogle ScholarPubMed
Delcourt, S. G. & Blake, R. D. (1991). Stacking energies in DNA. J. Biol. Chem. 266, 15160–9.Google ScholarPubMed
Devoe, H. & Tinoco, I., Jr. (1962). The hypochromism of helical polynucleotides. J. Mol. Biol. 4, 518–27.CrossRefGoogle ScholarPubMed
Di Capua, E., Engel, A., Stasiak, A. & Koller, T. (1982). Characterization of complexes between recA protein and duplex DNA by electron microscopy. J. Mol. Biol. 157, 87–103.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1998). DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–26.CrossRefGoogle ScholarPubMed
Doktycz, M. J., Goldstein, R. F., Paner, T. M., Gallo, F. J. & Benight, A. S. (1992). Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearest-neighbor stacking interactions in DNA. Biopolymers 32, 849–64.CrossRefGoogle ScholarPubMed
Doktycz, M. J., Paner, T. M., Amaratunga, M. & Benight, A. S. (1990). Thermodynamic stability of the 5′ dangling-ended DNA hairpins formed from sequences 5′-(XY)2GGATAC(T)4GTATCC-3′, where X, Y = A, T, G, C. Biopolymers 30, 829–45.CrossRefGoogle Scholar
Du, Q., Kotlyar, A. & Vologodskii, A. (2008). Kinking the double helix by bending deformation. Nucleic Acids Res. 36, 1120–8.CrossRefGoogle ScholarPubMed
Eickbush, T. H. & Moudrianakis, E. N. (1978). The compaction of DNA helices into either continuous supercoils or folded-fiber rods andtoroids. Cell 13, 295–306.CrossRefGoogle ScholarPubMed
Ellison, M. J., Kelleher, R. J., 3rd, Wang, A. H., Habener, J. F. & Rich, A. (1985). Sequence-dependent energetics of the B–Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc. Natl. Acad. Sci. U. S. A. 82, 8320–4.CrossRefGoogle ScholarPubMed
Fixman, M. & Freire, J. J. (1977). Theory of DNA melting curves. Biopolymers 16, 2693–704.CrossRefGoogle ScholarPubMed
Frank-Kamenetskii, M. D. (1971). Simplification of the empirical relationship between melting temperature of DNA, its GC-content and concentration of sodium ions in solution. Biopoly- mers 10, 2623–4.Google ScholarPubMed
Frank-Kamenetskii, M. D. & Prakash, S. (2014). Fluctuations in the DNA double helix: a critical review. Phys. Life Rev. 11, 153–70.CrossRefGoogle ScholarPubMed
Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T. & Turner, D. H. (1986). Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. U. S. A. 83, 9373–7.CrossRefGoogle ScholarPubMed
Giudice, E., Varnai, P. & Lavery, R. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res. 31, 1434–43.CrossRefGoogle ScholarPubMed
Goddard, N. L., Bonnet, G., Krichevsky, O. & Libchaber, A. (2000). Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 85, 2400–3.CrossRefGoogle ScholarPubMed
Goldstein, R. F. & Benight, A. S. (1992). How many numbers are required to specify sequence-dependent properties of polynucleotides?Biopolymers 32, 1679–93.CrossRefGoogle ScholarPubMed
Gotoh, O., Husimi, Y., Yabuki, S. & Wada, A. (1976). Hyperfine structure in melting profile of bacteriophage lambda DNA. Biopolymers 15, 655–70.CrossRefGoogle ScholarPubMed
Gotoh, O. & Tagashira, Y. (1981). Stabilities of nearest-neighbor doublets in double-helical DNA determined by fitting calculated melting profiles to observed profiles. Biopolymers 20, 1033–43.CrossRefGoogle Scholar
Gray, D. M. & Tinoco, I. (1970). A new approach to the study of sequence-dependent properties of polynucleotides. Biopolymers 9, 223–44.CrossRefGoogle Scholar
Gruenwedel, D. W. (1974). Salt effects on the denaturation of DNA. III. A calorimetric investigation of the transition enthalpy of calf thymus DNA in Na2 SO4 solutions of varying ionic strength. Biochim. Biophys. Acta 340, 16–30.CrossRefGoogle Scholar
Gueron, M., Kochoyan, M. & Leroy, J. L. (1987). A single mode of DNA base-pair opening drives imino proton exchange. Nature 328, 89–92.CrossRefGoogle ScholarPubMed
Gyi, J. I., Conn, G. L., Lane, A. N. & Brown, T. (1996). Comparison of the thermodynamic stabilities and solution conformations of DNA. RNA hybrids containing purine-rich and pyrimidine-rich strands with DNA and RNA duplexes. Biochemistry 35, 12538–48.CrossRefGoogle ScholarPubMed
Haniford, D. B. & Pulleyblank, D. E. (1983). Facile transition of poly[d(TG) × d(CA)] into a left-handed helix in physiological conditions. Nature 302, 632–4.CrossRefGoogle Scholar
Hoff, A. J. & Roos, A. L. (1972). Hysteresis of denaturation of DNA in the melting range. Biopolymers 11, 1289–94.CrossRefGoogle ScholarPubMed
Huang, N. & MacKerell, A. D. J. (2004). Atomistic view of base flipping in DNA. Phil. Trans. R. Soc.A 362, 1439–60.CrossRefGoogle ScholarPubMed
Integrated DNA Technologies. http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/ [October 17, 2014].
Ivanov, V. I. & Krylov, D. (1992). A-DNA in solution as studied by diverse approaches. Methods Enzymol. 211, 111–27.Google ScholarPubMed
Ivanov, V. I., Krylov, D. & Minyat, E. E. (1985). Three-state diagram for DNA. J. Biomol. Struct. Dyn. 3, 43–55.CrossRefGoogle ScholarPubMed
Ivanov, V. I., Minchenkova, L. E., Burckhardt, G., Birch-Hirschfeld, E., Fritzsche, H. & Zimmer, C. (1996). The detection of B-form/A-form junction in a deoxyribonucleotide duplex. Biophys. J. 71, 3344–9.CrossRefGoogle Scholar
Ivanov, V. I., Minchenkova, L. E., Minyat, E. E., Frank-Kamenetskii, M. D. & Schyolkina, A. K. (1974). The B to A transition of DNA in solution. J. Mol. Biol. 87, 817–33.CrossRefGoogle Scholar
Kalnik, M. W., Norman, D. G., Li, B. F., Swann, P. F. & Patel, D. J. (1990). Conformational transitions in thymidine bulge-containing deoxytridecanucleotide duplexes. Role of flanking sequence and temperature in modulating the equilibrium between looped out and stacked thymidine bulge states. J. Biol. Chem. 265, 636–47.Google ScholarPubMed
Kalnik, M. W., Norman, D. G., Zagorski, M. G., Swann, P. F. & Patel, D. J. (1989). Conformational transitions in cytidine bulge-containing deoxytridecanucleotide duplexes: extra cytidine equilibrates between looped out (low temperature) and stacked (elevated temperature) conformations in solution. Biochemistry 28, 294–303.CrossRefGoogle ScholarPubMed
Kang, D. S. & Wells, R. D. (1985). B–Z DNA junctions contain few, if any, nonpaired bases at physiological superhelical densities. J. Biol. Chem. 260, 7783–90.Google ScholarPubMed
Kochoyan, M., Leroy, J. L. & Gueron, M. (1987). Proton exchange and base-pair lifetimes in a deoxy-duplex containing a purine–pyrimidine step and in the duplex of inverse sequence. J. Mol. Biol. 196, 599–609.CrossRefGoogle Scholar
Kozyavkin, S. A., Mirkin, S. M. & Amirikyan, B. R. (1987). The ionic strength dependence of the cooperativity factor for DNA melting. J. Biomol. Struct. Dyn. 5, 119–26.CrossRefGoogle ScholarPubMed
Krueger, A., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Sequence-dependent base pair opening in DNA double helix. Biophys. J. 90, 3091–9.CrossRefGoogle ScholarPubMed
Lankas, F., Lavery, R. & Maddocks, J. H. (2006). Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure 14, 1527–34.CrossRefGoogle ScholarPubMed
Lazurkin, Y. S., Frank-Kamenetskii, M. D. & Trifonov, E. N. (1970). Melting of DNA: its study and application as a research method. Biopolymers 9, 1253–306.CrossRefGoogle ScholarPubMed
Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3, 18–30.CrossRefGoogle ScholarPubMed
Leroy, J. L., Kochoyan, M., Huynh-Dinh, T. & Gueron, M. (1988). Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. J. Mol. Biol. 200, 223–38.CrossRefGoogle ScholarPubMed
Lesnik, E. A. & Freier, S. M. (1995). Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry 34, 10807–15.CrossRefGoogle ScholarPubMed
Lukashin, A. V., Vologodskii, A. V., Frank-Kamenetskii, M. D. & Lyubchenko, Y. L. (1976). Fluctuational opening of the double helix as revealed by theoretical and experimental study of DNA interaction with formaldehyde. J. Mol. Biol. 108, 665–82.CrossRefGoogle ScholarPubMed
Lyubchenko, Y. L., Frank-Kamenetskii, M. D., Vologodskii, A. V., Lazurkin, Y. S. & Gause, G. G., Jr. (1976). Fine structure of DNA melting curves. Biopolymers 15, 1019–36.CrossRefGoogle ScholarPubMed
Lyubchenko, Y. L., Vologodskii, A. V. & Frank-Kamenetskii, M. D. (1978). Direct comparison of theoretical and experimental melting profiles for RF II phiX174 DNA. Nature 271, 28–31.CrossRefGoogle ScholarPubMed
Malenkov, G., Minchenkova, L., Minyat, E., Schyolkina, A. & Ivanov, V. (1975). The nature of the B-A transition of DNA in solution. FEBS Lett. 51, 38–42.CrossRefGoogle Scholar
Marmur, J. & Doty, P. (1959). Heterogeneity in deoxyribonucleic acids: I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature 183, 1427–9.CrossRefGoogle ScholarPubMed
Martin, F. H. & Tinoco, I., Jr. (1980). DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8, 2295–9.CrossRefGoogle Scholar
McAteer, K., Jing, Y., Kao, J., Taylor, J. S. & Kennedy, M. A. (1998). Solution-state structure of a DNA dodecamer duplex containing a Cis-syn thymine cyclobutane dimer, the major UV photoproduct of DNA. J. Mol. Biol. 282, 1013–32.CrossRefGoogle ScholarPubMed
McGhee, J. D. & von Hippel, P. H. (1974). Theoretical aspects of DNA-protein interactions: cooperative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–89.CrossRefGoogle Scholar
Melchior, W. B., Jr. & Von Hippel, P. H. (1973). Alteration of the relative stability of dA–dT and dG–dC base pairs in DNA. Proc. Natl. Acad. Sci. U. S. A. 70, 298–302.CrossRefGoogle ScholarPubMed
Minchenkova, L. E., Schyolkina, A. K., Chernov, B. K. & Ivanov, V. I. (1986). CC/GG contacts facilitate the B to A transition of DNA in solution. J. Biomol. Struct. Dyn. 4, 463–76.CrossRefGoogle Scholar
Mirkin, S. M., Lyamichev, V. I., Kumarev, V. P., Kobzev, V. F., Nosikov, V. V. & Vologodskii, A. V (1987). The energetics of the B-Z transition in DNA. J. Biomol. Struct. Dyn. 5, 79–88.CrossRefGoogle ScholarPubMed
Moe, J. G. & Russu, I. M. (1990). Proton exchange and base-pair opening kinetics in 5′- d(CGCGAATTCGCG)-3′ and related dodecamers. Nucleic Acids Res. 18, 821–7.CrossRefGoogle ScholarPubMed
Morden, K. M. & Maskos, K. (1993). NMR studies of an extrahelical cytosine in an A.T rich region of a deoxyribodecanucleotide. Biopolymers 33, 27–36.CrossRefGoogle Scholar
Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. (2005). Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Structure 13, 1569–77.CrossRefGoogle Scholar
Nakano, M., Moody, E. M., Liang, J. & Bevilacqua, P. C. (2002). Selection forthermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). Biochemistry 41, 14281–92.CrossRefGoogle Scholar
Nikolova, E. N., Kim, E., Wise, A. A., O'Brien, P. J., Andricioaei, I. & Al-Hashimi, H. M. (2011). Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470, 498–502.CrossRefGoogle ScholarPubMed
Nordheim, A., Lafer, E. M., Peck, L. J., Wang, J. C., Stollar, B. D. & Rich, A. (1982). Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31, 309–18.CrossRefGoogle ScholarPubMed
Owczarzy, R., Moreira, B. G., You, Y., Behlke, M. A. & Walder, J. A. (2008). Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry 47, 5336–53.CrossRefGoogle ScholarPubMed
Owczarzy, R., Vallone, P. M., Gallo, F. J., Paner, T. M., Lane, M. J. & Benight, A. S. (1997). Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–39.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Owczarzy, R., You, Y., Moreira, B. G., Manthey, J. A., Huang, L., Behlke, M. A. & Walder, J. A. (2004). Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43, 3537–54.CrossRefGoogle ScholarPubMed
Owen, R. J., Hill, L. R. & Lapage, S. P. (1969). Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7, 503–16.CrossRefGoogle ScholarPubMed
Park, H., Zhang, K., Ren, Y., Nadji, S., Sinha, N., Taylor, J. S. & Kang, C. (2002). Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc. Natl. Acad. Sci. U. S. A. 99, 15965–70.CrossRefGoogle ScholarPubMed
Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. (1984). Deoxyadenosine-deoxycytidine pairing in the d(C-G-C-G-A-A-T-T-C-A-C-G) duplex – conformation and dynamics at and adjacent to the dA-dC mismatch site. Biochemistry 23, 3218–26.Google Scholar
Patel, D. J., Kozlowski, S. A., Marky, L. A., Rice, J. A., Broka, C., Dallas, J., Itakura, K. & Breslauer, K. J. (1982). Structure, dynamics, and energetics of deoxyguanosine.thymidine wobble base pair formation in the self-complementary d(CGTGAATTCGCG) duplex in solution. Biochemistry 21, 437–44.CrossRefGoogle ScholarPubMed
Peck, L. J. & Wang, J. C. (1983). Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. U. S. A. 80, 6206–10.CrossRefGoogle ScholarPubMed
Perelroyzen, M. P., Lyamichev, V. I., Kalambet, Y. A., Lyubchenko, Y. L. & Vologodskii, A. V. (1981). A study of the reversibility of helix-coil transition in DNA. Nucleic Acids Res. 9, 4043–59.CrossRefGoogle ScholarPubMed
Peyrard, M. & Bishop, A. R. (1989). Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755–8.CrossRefGoogle ScholarPubMed
Peyret, N., Seneviratne, P. A., Allawi, H. T. & SantaLucia, J., Jr. (1999). Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38, 3468–77.CrossRefGoogle Scholar
Pohl, F. M. & Jovin, T. M. (1972). Salt-induced cooperative conformational change of a synthetic DNA – equilibrium and kinetic studies with poly(dG-dC). J. Mol. Biol. 67, 375–96.CrossRefGoogle Scholar
Poland, D. (1974). Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers 13, 1859–71.CrossRefGoogle ScholarPubMed
Protozanova, E., Yakovchuk, P. & Frank-Kamenetskii, M. D. (2004). Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol. 342, 775–85.CrossRefGoogle ScholarPubMed
Ratmeyer, L., Vinayak, R., Zhong, Y. Y., Zon, G. & Wilson, W. D. (1994). Sequence specific thermodynamic and structural properties for DNA.RNA duplexes. Biochemistry 33, 5298–304.CrossRefGoogle ScholarPubMed
Rice, S. A. & Doty, P. (1957). The thermal denaturation of desoxyribose nucleic acid. J. Am. Chem. Soc. 79, 3937–47.CrossRefGoogle Scholar
Rich, A., Nordheim, A. & Wang, A. H.-J. (1984). The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem. 53, 791–846.CrossRefGoogle ScholarPubMed
Roberts, R. J. & Cheng, X. (1998). Base flipping. Annu. Rev. Biochem. 67, 181–98.CrossRefGoogle ScholarPubMed
Roberts, R. W. & Crothers, D. M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–6.CrossRefGoogle ScholarPubMed
Rouzina, I. & Bloomfield, V. A. (1999a). Heat capacity effects on the melting of DNA. 1. General aspects. Biophys. J. 77, 3242–51.Google ScholarPubMed
Rouzina, I. (1999b). Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys. J. 77, 3252–5.Google ScholarPubMed
Rybenkov, V. V., Vologodskii, A. V. & Cozzarelli, N. R. (1997). The effect of ionic conditions on DNA helical repeat, effective diameter, and free energy of supercoiling. Nucleic Acids Res. 25, 1412–18.CrossRefGoogle ScholarPubMed
SantaLucia, J., Jr. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. U. S. A. 95, 1460–5.CrossRefGoogle ScholarPubMed
SantaLucia, J., Jr., Allawi, H. T. & Seneviratne, P. A. (1996). Improvednearest-neighborparameters for predicting DNA duplex stability. Biochemistry 35, 3555–62.CrossRefGoogle ScholarPubMed
SantaLucia, J., Jr. & Hicks, D. (2004). The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–40.CrossRefGoogle ScholarPubMed
Seaman, F. C. & Hurley, L. (1993). Interstrand cross-linking by bizelesin produces a Watson–Crick to Hoogsteen base-pairing transition region in d(CGTAATTACG)2. Biochemistry 32, 12577–85.CrossRefGoogle Scholar
Senior, M. M., Jones, R. A. & Breslauer, K. J. (1988). Influence of loop residues on the relative stabilities of DNA hairpin structures. Proc. Natl. Acad. Sci. U. S. A. 85, 6242–6.CrossRefGoogle ScholarPubMed
Shiao, D. D. & Sturtevant, J. M. (1973). Heats of thermally induced helix-coil transitions of DNA in aqueous solution. Biopolymers 12, 1829–36.CrossRefGoogle ScholarPubMed
Singleton, C. K., Klysik, J., Stirdivant, S. M. & Wells, R. D. (1982). Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299, 312–16.CrossRefGoogle ScholarPubMed
Sobell, H. M., Tsai, C. C., Jain, S. C. & Gilbert, S. G. (1977). Visualization of drug-nucleic acid interactions at atomic resolution. III. Unifying structural concepts in understanding drug-DNA interactions and their broader implications in understanding protein-DNA interactions. J. Mol. Biol. 114, 333–65.CrossRefGoogle ScholarPubMed
Sugimoto, N., Nakano, S., Yoneyama, M. & Honda, K. (1996). Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 24, 4501–5.CrossRefGoogle ScholarPubMed
Suzuki, M. & Yagi, N. (1995). Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res. 23, 2083–2091.CrossRefGoogle ScholarPubMed
Tan, W., Wang, K. & Drake, T. J. (2004). Molecular beacons. Curr. Opin. Chem. Biol. 8, 547–53.CrossRefGoogle ScholarPubMed
Tanaka, F., Kameda, A., Yamamoto, M. & Ohuchi, A. (2004). Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop. Biochemistry 43, 7143–50.CrossRefGoogle ScholarPubMed
Tinoco, I., Jr., Borer, P. N., Dengler, B., Levin, M. D., Uhlenbeck, O. C., Crothers, D. M. & Bralla, J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246, 40–1.CrossRefGoogle ScholarPubMed
Tinoco, I., Jr., Uhlenbeck, O. C. & Levine, M. D. (1971). Estimation of secondary structure in ribonucleic acids. Nature 230, 362–7.CrossRefGoogle ScholarPubMed
Tolstorukov, M. Y., Ivanov, V. I., Malenkov, G. G., Jernigan, R. L. & Zhurkin, V. B. (2001). Sequence-dependent B-A transition in DNA evaluated with dimeric and trimeric scales. Biophys. J. 81, 3409–21.CrossRefGoogle ScholarPubMed
Tunis-Schneider, M. J. & Maestre, M. F. (1970). Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films – a preliminary study. J. Mol. Biol. 52, 521–41.CrossRefGoogle ScholarPubMed
Tyagi, S. & Kramer, F. R. (1996). Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–8.CrossRefGoogle ScholarPubMed
Ughetto, G., Wang, A. H., Quigley, G. J., van der Marel, G. A., van Boom, J. H. & Rich, A. (1985). A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment. Nucleic Acids Res. 13, 2305–23.CrossRefGoogle ScholarPubMed
Usatyi, A. F. & Shlyakhtenko, L. S. (1974). Melting of DNA in ethanol-water solutions. Biopolymers 13, 2435–46.CrossRefGoogle ScholarPubMed
Varani, G. (1995). Exceptionally stable nucleic acid hairpins. Annu. Rev. Biophys. Biomol. Struct. 24, 379–404.CrossRefGoogle ScholarPubMed
Vologodskii, A. V., Amirikyan, B. R., Lyubchenko, Y. L. & Frank-Kamenetskii, M. D. (1984). Allowance for heterogeneous stacking in the DNA helix-coil transition theory. J. Biomol. Struct. Dyn. 2, 131–48.CrossRefGoogle ScholarPubMed
Vologodskii, A. V. & Cozzarelli, N. R. (1994). Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–43.CrossRefGoogle ScholarPubMed
Voskoboinik, A. D., Monaselidze, D. R., Mgeladze, G. N., Chanchalashvili, Z. I., Lazurkin, Y. S. & Frank-Kamenetskii, M. D. (1975). Study of DNA melting in the region of the inversion of relative stability of AT and GC pairs. Mol. Biol. 9, 783–90.Google ScholarPubMed
Wang, A. H., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–6.CrossRefGoogle ScholarPubMed
Wang, J. C. (1974). The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J. Mol. Biol. 89, 783–801.CrossRefGoogle ScholarPubMed
Werner, M. H., Gronenborn, A. M. & Clore, G. M. (1996). Intercalation, DNA kinking, and the control of transcription. Science 271, 778–84.CrossRefGoogle Scholar
Woodson, S. A. & Crothers, D. M. (1988a). Preferential location of bulged guanosine internal to a G.C tract by 1H NMR. Biochemistry 27, 436–45.CrossRefGoogle ScholarPubMed
Woodson, S. A. (1988b). Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimizationBiochemistry 27, 3130–41.CrossRefGoogle ScholarPubMed
Woodson, S. A. (1989). Conformation of a bulge-containing oligomer from a hot-spot sequence by NMR and energy minimization. Biopolymers 28, 1149–77.CrossRefGoogle ScholarPubMed
Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–74.CrossRefGoogle ScholarPubMed
Zasedatelev, A. S., Gurskii, G. V. & Vol'kenshtein, M. V. (1971). Theory of one-dimensional adsorption. I. Adsorption of small molecules on a homopolymer. Mol. Biol. 5, 194–8.Google ScholarPubMed
Zhu, J. & Wartell, R. M. (1999). The effect of base sequence on the stability of RNA and DNA single base bulges. Biochemistry 38, 15986–93.CrossRefGoogle ScholarPubMed
Zimm, B. H. & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526–31.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×