Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T15:55:45.060Z Has data issue: false hasContentIssue false

8 - Electrospun micro/nanofibrous scaffolds

from Part II - Porous scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Vince Beachley
Affiliation:
Johns Hopkins University
Xuejun Wen
Affiliation:
Virginia Commonwealth University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Polymer nanofibers have several properties that make them an extremely promising material in regenerative medicine. These favorable properties are derived from their high surface-area-to-volume ratios, their size relationship to that of cells, and their geometric similarity to natural extracellular matrix (ECM) fibers such as collagen. The literature in the field of tissue engineering generally defines nanofibers as those with diameters less than 1000 nm, while fibers larger than that are described as microfibers. The high surface-area-to-volume ratio of nanofibers allows them to interact with biomolecules at very high efficiency. In addition, nanofibers and microfibers are valuable in tissue engineering because their size is suitable for assembling complex three-dimensional (3D) architectures that can be perceived and populated by cells.

It has become increasingly apparent that cell behaviors are highly dependent on the physical environment. Substrate microstructure cues such as size, orientation, and dimensionality modulate cell behaviors ranging from attachment and morphology to differentiation and ECM production. Specifically, it has been shown that polymer nanofibrous structures can improve cell attachment; increase cell viability, proliferation, and ECM production; and predictably push cells toward specific morphologies and differentiation paths [1]. Researchers have been exploring ways of designing polymer nanofiber scaffolds that elicit desired cell responses for specific tissue engineering applications. The vast majority of these designs start with the electrospinning fabrication method. The electrospinning method is a simple and relatively inexpensive process, yet demonstrates amazing versatility in terms of the types of fibers and structures that can be fabricated. This chapter will introduce the basics of electrospinning and describe in detail strategies to make nanofiber structures for tissue engineering applications. These strategies will be focussed on electrospinning fibers with desired biofunctionality, electrospinning fiber arrays with uniaxial alignment, and methods of assembling individual fibers into 3D scaffolds conducive to cell population. It is our hope that the tools presented here can be used to design better electrospun scaffolds for applications in regenerative medicine.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beachley, V. and Wen, X. 2010. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci., 35(7), 868–892.CrossRefGoogle ScholarPubMed
Yarin, A., Koombhongse, S. and Reneker, D. 2001. Bending instability in electrospinning of nanofibers. J. Appl. Phys., 89(5), 3018.CrossRefGoogle Scholar
Shin, Y., Hohman, M. M., Brenner, M. P. and Rutledge, G. C. 2001. Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett., 78(8), 1149.CrossRefGoogle Scholar
Casper, C. L., Yamaguchi, N., Kiick, K. L. and Rabolt, J. F. 2005. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules, 6(4), 1998–2007.CrossRefGoogle ScholarPubMed
Tong, H.-W. and Wang, M. 2011. Electrospinning of poly(hydroxybutyrate-co-hydroxyvalerate) fibrous tissue engineering scaffolds in two different electric fields. Polymer Eng. Sci., 51(7), 1325–38.CrossRefGoogle Scholar
Deitzel, J. M., Kleinmeyer, J., Harris, D. and Beck Tan, N. C. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–72.CrossRefGoogle Scholar
Meechaisue, C., Dubin, R., Supaphol, P., Hoven, V. P. and Kohn, J. 2006. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J. Biomater. Sci., Polymer Edition, 17(9), 1039–56.CrossRefGoogle ScholarPubMed
Beachley, V. and Wen, X. 2009. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C Mater. Biol. Appl., 29(3), 663–8.CrossRefGoogle ScholarPubMed
Megelski, S., Stephens, J. S., Chase, D. B. and Rabolt, J. F. 2002. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456–66.CrossRefGoogle Scholar
Fong, H., Chun, I. and Reneker, D. H. 1999. Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585–92.CrossRefGoogle Scholar
Demir, M. M., Yilgor, I., Yilgor, E. and Erman, B. 2002. Electrospinning of polyurethane fibers. Polymer, 43(11), 3303–9.CrossRefGoogle Scholar
Hayati, I., Bailey, A. I. and Tadros, T. F. 1987. Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J. Colloid Interface Sci., 117(1), 205–221.CrossRefGoogle Scholar
Zhang, C., Yuan, X., Wu, L., Han, Y. and Sheng, J. 2005. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polymer J., 41(3), 423–32.CrossRefGoogle Scholar
Jiang, H., Fang, D., Hsiao, B. S., Chu, B. and Chen, W. 2004. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules, 5(2), 326–33.CrossRefGoogle ScholarPubMed
Zong, X., Kim, K., Fang, D. et al. 2002. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403–4412.CrossRefGoogle Scholar
Chen, F., Li, X., Mo, X. et al. 2008. Electrospun chitosan–P(LLA-CL) nanofibers for biomimetic extracellular matrix. J. Biomater. Sci. Polymer Edition, 19(5), 677–91.CrossRefGoogle ScholarPubMed
Jeong, S. I., Lee, A. Y., Lee, Y. M. and Shin, H. 2008. Electrospun gelatin/poly(l-lactide-co-ε-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. J. Biomater. Sci. Polymer Edition, 19(3), 339–57.CrossRefGoogle ScholarPubMed
Li, M., Mondrinos, M. J., Ghandhi, M. R. et al., 2005. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 26(30), 5999–6008.CrossRefGoogle ScholarPubMed
Boland, E. D., Mondrinos, M. J., Gandhi, M. R. et al. 2004. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Frontiers Biosci., 9, 1422–32.CrossRefGoogle ScholarPubMed
Rho, K. S., Jeong, L., Lee, G. et al. 2006. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 27(8), 1452–61.CrossRefGoogle ScholarPubMed
Buttafoco, L., Kolkman, N. G., Engbers-Buijtenhuijs, P. et al. 2006. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials, 27(5), 724–34.CrossRefGoogle ScholarPubMed
Chen, Z. C., Ekaputra, A. K., Gauthaman, K. et al. 2008. In vitro and in vivo analysis of co-electrospun scaffolds made of medical grade poly(ε-caprolactone) and porcine collagen. J. Biomater. Sci. Polymer Edition, 19(5), 693–707.CrossRefGoogle ScholarPubMed
Kwon, I. K. and Matsuda, T. 2005. Co-electrospun nanofiber fabrics of poly(l-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules, 6(4), 2096–105.CrossRefGoogle ScholarPubMed
Han, I., Shim, K. J., Kim, J. Y. et al. 2007. Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Artif. Organs, 31(11), 801–8.CrossRefGoogle ScholarPubMed
Meng, W., Kim, S. Y., Yuan, J. et al. 2007. Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J. Biomater. Sci. Polymer Edition, 18(1), 81–94.CrossRefGoogle ScholarPubMed
Zeugolis, D. I., Panengad, P. P., Yew, E. S. et al. 2008. Electro-spinning of pure collagen nano-fibres – just an expensive way to make gelatin? Biomaterials, 29(15), 2293–305.CrossRefGoogle ScholarPubMed
Casper, C. L., Yang, W., Farach-Carson, M. C. and Rabolt, J. F. 2007. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules, 8(4), 1116–23.CrossRefGoogle Scholar
Gauthaman, K., Venugopal, J. R., Yee, F. C. et al. 2009. Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. J. Cell Molec. Med., 13(9B), 3475–84.CrossRefGoogle ScholarPubMed
Song, J. H., Kim, H. E. and Kim, H. W. 2008. Production of electrospun gelatin nanofiber by water-based co-solvent approach. J. Mater. Sci. Mater. Med., 19(1), 95–102.CrossRefGoogle ScholarPubMed
Zhang, Y. Z., Venugopal, J., Huang, Z. M., Lim, C. T. and Ramakrishna, S. 2006. Crosslinking of the electrospun gelatin nanofibers. Polymer, 47(8), 2911–17.CrossRefGoogle Scholar
Kim, H. W., Yu, H. S. and Lee, H. H. 2008. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J. Biomed. Mater. Res. A, 87(1), 25–32.CrossRefGoogle ScholarPubMed
Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M.-H. and Ramakrishna, S. 2008. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29(34), 4532–9.CrossRefGoogle ScholarPubMed
Meng, W., Xing, Z. C., Jung, K.-H. et al. 2008. Synthesis of gelatin-containing PHBV nanofiber mats for biomedical application. J. Mater. Sci. Mater. Med., 19(8), 2799–807.CrossRefGoogle ScholarPubMed
Stitzel, J., Liu, J., Lee, S. J. et al. 2006. Controlled fabrication of a biological vascular substitute. Biomaterials, 27(7), 1088–94.CrossRefGoogle ScholarPubMed
Geng, X., Kwon, O. H. and Jang, J. 2005. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427–32.CrossRefGoogle ScholarPubMed
Ohkawa, K., Minato, K. I., Kumagai, G., Hayashi, S. and Yamamoto, H. 2006. Chitosan nanofiber. Biomacromolecules, 7(11), 3291–4.CrossRefGoogle ScholarPubMed
Ohkawa, K., Cha, D., Kim, H., Nishida, A. and Yamamoto, H. 2004. Electrospinning of chitosan. Macromolec. Rapid Commun., 25, 1600–5.CrossRefGoogle Scholar
Chu, X. H., Shi, X. L., Feng, Z. Q., Gu, Z. Z. and Ding, Y. T. 2009. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol. Lett., 31(3), 347–52.CrossRefGoogle ScholarPubMed
Pan, H., Jiang, H. and Chen, W. 2006. Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide. Biomaterials, 27(17), 3209–20.CrossRefGoogle ScholarPubMed
Wnek, G., Carr, M., Simpson, D. and Bowlin, G. 2003. Electrospinning of nanofiber fibrinogen structrures. Nano Lett., 3(2), 213–16.CrossRefGoogle Scholar
McManus, M. C., Boland, E. D., Simpson, D. G., Barnes, C. P. and Bowlin, G. L. 2007. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J. Biomed. Mater. Res. A, 81(2), 299–309.CrossRefGoogle Scholar
McManus, M., Boland, E., Sell, S. et al. 2007. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed. Mater., 2(4), 257–62.CrossRefGoogle ScholarPubMed
Neal, R. A., McClugage, S. G., Link, M. C. et al. 2009. Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng. Part C Methods, 15(1), 11–21.CrossRefGoogle ScholarPubMed
Um, I. C., Fang, D., Hsiao, B. S., Okamoto, S. and Chu, B. 2004. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules, 5(4), 1428–36.CrossRefGoogle ScholarPubMed
Ji, Y., Ghosh, K., Li, B. et al. 2006. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromolec. Biosci., 6(10), 811–17.CrossRefGoogle ScholarPubMed
Ji, Y., Ghosh, K., Xiao, Z. S. et al. 2006. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 27(20), 3782–92.CrossRefGoogle ScholarPubMed
Duan, Y., Wang, Z., Yan, W. et al. 2007. Preparation of collagen-coated electrospun nanofibers by remote plasma treatment and their biological properties. J. Biomater. Sci. Polymer Edition, 18(9), 1153–64.CrossRefGoogle ScholarPubMed
Ma, Z., He, W., Yong, T. and Ramakrishna, S. 2005. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng., 11(7–8), 1149–58.CrossRefGoogle ScholarPubMed
Koh, H. S., Yong, T., Chan, C. K. and Ramakrishna, S. 2008. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials, 29(26), 3574–82.CrossRefGoogle ScholarPubMed
Chen, J., Chu, B. and Hsiao, B. S. 2006. Mineralization of hydroxyapatite in electrospun nanofibrous poly(l-lactic acid) scaffolds. J. Biomed. Mater. Res. A, 79(2), 307–17.CrossRefGoogle ScholarPubMed
Yu, H. S., Jang, J. H., Kim, T. I., Lee, H. H. and Kim, H. W. 2009. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J. Biomed. Mater. Res. A, 88(3), 747–54.CrossRefGoogle ScholarPubMed
Zhu, Y., Leong, M. F., Ong, W. F., Chan-Park, M. B. and Chian, K. S. 2007. Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials, 28(5), 861–8.CrossRefGoogle ScholarPubMed
Nisbet, D. R., Yu, L. M. Y., Zahir, T., Forsythe, J. S. and Shoichet, M. S. 2008. Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering. J. Biomater. Sci. Polymer Edition, 19(5), 623–34.CrossRefGoogle ScholarPubMed
Park, K., Ju, Y. M., Son, J. S., Ahn, K.-D. and Han, D. K. 2007. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J. Biomater. Sci. Polymer Edition, 18(4), 369–82.CrossRefGoogle ScholarPubMed
Chua, K. N., Chai, C., Lee, P. C. et al. 2007. Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Exp. Hematol., 35(5), 771–81.CrossRefGoogle ScholarPubMed
Patel, S., Kurpinski, K., Quigley, R. et al. 2007. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett., 7(7), 2122–8.CrossRefGoogle ScholarPubMed
Bakowsky, U., Schumacher, G., Gege, C. et al. 2002. Cooperation between lateral ligand mobility and accessibility for receptor recognition in selectin-induced cell rolling. Biochemistry, 41(14), 4704–12.CrossRefGoogle ScholarPubMed
Houseman, B. T. and Mrksich, M. 2001. The microenvironment of immobilized Arg–Gly–Asp peptides is an important determinant of cell adhesion. Biomaterials, 22(9), 943–55.CrossRefGoogle ScholarPubMed
Choi, J. S., Leong, K. W. and Yoo, H. S. 2008. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 29(5), 587–96.CrossRefGoogle Scholar
Kim, T. G. and Park, T. G. 2006. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(d,l-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng., 12(2), 221–33.CrossRefGoogle ScholarPubMed
Li, W., Guo, Y., Wang, H. et al. 2008. Electrospun nanofibers immobilized with collagen for neural stem cells culture. J. Mater. Sci. Mater. Med., 19(2), 847–54.CrossRefGoogle ScholarPubMed
Zhang, D., Chang, J. and Zeng, Y. 2008. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process. J. Mater. Sci. Mater. Med., 19(1), 443–9.CrossRefGoogle ScholarPubMed
He, W., Ma, Z., Yong, T., Teo, W. E. and Ramakrishna, S. 2005. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials, 26(36), 7606–15.CrossRefGoogle ScholarPubMed
Ma, K., Chan, C. K., Liuo, S. et al. 2008. Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials, 29(13), 2096–103.CrossRefGoogle ScholarPubMed
Chew, S. Y., Hufnagel, T. C., Lim, C. T. and Leong, K. W. 2006. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology, 17(15), 3880–91.CrossRefGoogle ScholarPubMed
Kim, K., Luu, Y. K., Chang, C. et al. 2004. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release, 98(1), 47–56.CrossRefGoogle ScholarPubMed
Luu, Y. K., Kim, K., Hsiao, B. S., Chu, B. and Hadjiargyrou, M. 2003. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release, 89(2), 341–53.CrossRefGoogle ScholarPubMed
Chew, S. Y., Wen, J., Yim, E. K. F. and Leong, K. W. 2005. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 6(4), 2017–24.CrossRefGoogle ScholarPubMed
Maretschek, S., Greiner, A. and Kissel, T. 2008. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J. Control. Release, 127(2), 180–7.CrossRefGoogle ScholarPubMed
Sanders, E. H., Kloefkorn, R., Bowlin, G. L., Simpson, D. G. and Wnek, G. E. 2003. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinylacetate) fibers. Macromolecules, 36, 3803–5.CrossRefGoogle Scholar
Luong-Van, E., Grøndahl, L., Chua, K. N. et al. 2006. Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials, 27(9), 2042–50.CrossRefGoogle ScholarPubMed
Qi, H., Hu, P., Xu, I. and Wang, A. 2006. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules, 7(8), 2327–30.CrossRefGoogle ScholarPubMed
Li, X., Su, Y., He, C. et al. 2009. Sorbitan monooleate and poly(l-lactide-co-ε-caprolactone) electrospun nanofibers for endothelial cell interactions. J. Biomed. Mater. Res. A, 91(3), 878–85.CrossRefGoogle ScholarPubMed
Yang, Y., Li, X., Qi, M., Zhou, S. and Weng, J. 2008. Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(Dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur. J. Pharm. Biopharm., 69(1), 106–16.CrossRefGoogle ScholarPubMed
Taepaiboon, P., Rungsardthong, U. and Supaphol, P. 2007. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm., 67(2), 387–97.CrossRefGoogle ScholarPubMed
Erisken, C., Kalyon, D. M. and Wang, H. 2008. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials, 29(30), 4065–73.CrossRefGoogle ScholarPubMed
Erisken, C., Kalyon, D. M. and Wang, H. 2009. A hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibresNanotechnology, 19(16), 165302.CrossRefGoogle Scholar
Sun, Z., Zussman, E., Yarin, E. L., Wendorff, J. H. and Greiner, A. 2003. Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater., 15(22), 1929–32.CrossRefGoogle Scholar
Zhang, Y. Z., Wang, X., Feng, Y. et al. 2006. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules, 7(4), 1049–57.CrossRefGoogle ScholarPubMed
Loscertales, I. G., Barrero, A., Márquez, M. et al. 2004. Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. Am. Chem. Soc., 126(17), 5376–7.CrossRefGoogle ScholarPubMed
Yi, F. and LaVan, D. A. 2008. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromolec. Biosci., 8(9), 803–6.CrossRefGoogle ScholarPubMed
Beachley, V., Katsanevakis, E., Zhang, N. and Wen, X. 2012. Highly aligned polymer nanofiber structures: fabrication and applications in tissue engineering. In Biomedical Applications of Polymeric Nanofibers, ed. Jayakumar, R. and Nair, S.Berlin: Springer, pp. 171–212.Google Scholar
Reneker, D. H. and Chun, I. 1996. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216–23.CrossRefGoogle Scholar
Yee, W. A., Kotaki, M., Liu, Y. and Lu, X. 2007. Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer, 48(2), 512–21.CrossRefGoogle Scholar
Wu, Y. Q., Carnell, L. A. and Clark, R. L. 2007. Control of electrospun mat width through the use of parallel auxiliary electrodes. Polymer, 48(19), 5653–61.CrossRefGoogle Scholar
Edwards, M. D., Mitchell, G. R., Mohan, S. D. and Olley, R. H. 2010. Development of orientation during electrospinning of fibres of poly(ε-caprolactone). Eur. Polymer J., 46(6), 1175–83.CrossRefGoogle Scholar
Bashur, C. A., Dahlgren, L. A. and Goldstein, A. S. 2006. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d,l-lactic-co-glycolic acid) meshes. Biomaterials, 27(33), 5681–8.CrossRefGoogle ScholarPubMed
Wang, H. B., Mullins, M. E., Cregg, J. M. et al. 2009. Creation of highly aligned electrospun poly-l-lactic acid fibers for nerve regeneration applications. J. Neural Eng., 6(1), 016001.CrossRefGoogle ScholarPubMed
Aviss, K. J., Gough, J. E. and Downes, S. 2010. Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur. Cells Mater., 19, 193–204.CrossRefGoogle ScholarPubMed
Courtney, T., Sacks, M. S., Stankus, S., Guan, J. and Wagner, W. R. 2006. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials, 27(19), 3631–8.Google ScholarPubMed
Zhong, S., Teo, W. E., Zhu, X. et al. 2006. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J. Biomed. Mater. Res. A, 79(3), 456–63.CrossRefGoogle ScholarPubMed
Lee, J. Y., Bashur, C. A., Gomez, N., Goldstein, A. S. and Schmidt, C. E. 2010. Enhanced polarization of embryonic hippocampal neurons on micron scale electrospun fibers. J. Biomed. Mater. Res. Part A, 92(4), 1398–406.Google ScholarPubMed
Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. and Tuan, R. S. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech., 40(8), 1686–93.CrossRefGoogle ScholarPubMed
Chan, K. H. K., Wong, S. Y., Tiju, W. C. et al. 2010. Morphologies and electrical properties of electrospun poly(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate/multiwalled carbon nanotubes fibers. J. Appl. Polymer Sci., 116(2), 1030–5.Google Scholar
Bashur, C. A., Shaffer, R. D., Dahlgren, L. A., Guelcher, S. A. and Goldstein, A. S. 2009. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A, 15(9), 2435–45.CrossRefGoogle ScholarPubMed
Thomas, V., Jose, M. V., Chowdhury, S. et al. 2006. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J. Biomater. Sci. Polymer Edition, 17(9), 969–84.CrossRefGoogle ScholarPubMed
Jose, M. V., Steinert, B. W., Thomas, V. et al. 2007. Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer, 48(4), 1096–104.CrossRefGoogle Scholar
Li, D., Wang, Y. L. and Xia, Y. N. 2003. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett., 3(8), 1167–71.CrossRefGoogle Scholar
Xin, Y., Huang, Z., Chen, J. et al. 2008. Fabrication of well-aligned PPV/PVP nanofibers by electrospinning. Mater. Lett., 62(6–7), 991–3.CrossRefGoogle Scholar
Kuo, C. C., Wang, C. T. and Chen, W. C. 2008. Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: fabrication, morphology, photophysical properties and sensory applications. Macromolec. Mater. Eng., 293(12), 999–1008.CrossRefGoogle Scholar
Dalton, P. D., Grafahrend, D., Klinkhammer, K., Klee, D. and Möller, M. 2007. Electrospinning of polymer melts: phenomenological observations. Polymer, 48(23), 6823–33.CrossRefGoogle Scholar
Jalili, R., Morshed, M. and Ravandi, S. A. H. 2006. Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J. Appl. Polymer Sci., 101(6), 4350–7.CrossRefGoogle Scholar
Li, D., Wang, Y. L. and Xia, Y. N. 2004. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater., 16(4), 361–6.CrossRefGoogle Scholar
Wray, L. S. and Orwin, E. J. 2009. Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng. Part A, 15(7), 1463–72.CrossRefGoogle ScholarPubMed
Bazbouz, M. B. and Stylios, G. K. 2008. Alignment and optimization of nylon 6 nanofibers by electrospinning. J. Appl. Polymer Sci., 107(5), 3023–32.CrossRefGoogle Scholar
Liu, L. H. and Dzenis, Y. A. 2008. Analysis of the effects of the residual charge and gap size on electrospun nanofiber alignment in a gap method. Nanotechnology, 19(35), 355307.CrossRefGoogle Scholar
Katta, P., Alessandro, M., Ramsier, R. and Chase, G. 2004. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett., 4(11), 2215–18.CrossRefGoogle Scholar
Teo, W. E. and Ramakrishna, S. 2006. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17, R89–106.CrossRefGoogle ScholarPubMed
Pokorny, M., Niedoba, K. and Velebny, V. 2010. Transversal electrostatic strength of patterned collector affecting alignment of electrospun nanofibers. Appl. Phys. Lett., 96(19), 193111.CrossRefGoogle Scholar
Teo, W. E. and Ramakrishna, S. 2005. Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology, 16(9), 1878–84.CrossRefGoogle Scholar
Ayutsede, J., Gandhi, M., Sukigara, S. et al. 2006. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules, 7(1), 208–14.CrossRefGoogle ScholarPubMed
Carnell, L. S., Siochi, E. J., Wincheski, R. A., Holloway, N. M. and Clark, R. L. 2009. Electric field effects on fiber alignment using an auxiliary electrode during electrospinning. Scripta Mater., 60(6), 359–61.CrossRefGoogle Scholar
Acharya, M., Arumugam, G. K. and Heiden, P. A. 2008. Dual electric field induced alignment of electrospun nanofibers. Macromolec. Mater. Eng., 293(8), 666–74.CrossRefGoogle Scholar
Kim, G. and Kim, W. 2006. Formation of oriented nanofibers using electrospinning. Appl. Phys. Lett., 88(23), 233101.CrossRefGoogle Scholar
Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K. and Beck Jan, N. C. 2001. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 42, 8163–70.CrossRefGoogle Scholar
Theron, A., Zussman, E. and Yarin, A. L. 2001. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 12(3), 384–90.CrossRefGoogle Scholar
Yao, L., O’Brien, N., Windebank, A. and Pandit, A. 2009. Orienting neurite growth in electrospun fibrous neural conduits. J. Biomed. Mater. Res. Part B – Appl. Biomater., 90(2), 483–91.CrossRefGoogle ScholarPubMed
Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A. and Zhang, M. 2005. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 26(31), 6176–84.CrossRefGoogle ScholarPubMed
Secasanu, V. P., Giardina, C. K. and Wang, Y. D. 2009. A novel electrospinning target to improve the yield of uniaxially aligned fibers. Biotechnol. Progress, 25(4), 1169–75.CrossRefGoogle ScholarPubMed
Carnell, L. S., Siochi, E. J., Holloway, N. M. et al. 2008. Aligned mats from electrospun single fibers. Macromolecules, 41(14), 5345–9.CrossRefGoogle Scholar
Sundaray, B., Subramanian, V.Natarajan, T. S. et al. 2004. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett., 84(7), 1222–4.CrossRefGoogle Scholar
Teo, W. E., Kotaki, M., Mo, X. M. and Ramakrishna, S. 2005. Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology, 16(6), 918–24.CrossRefGoogle Scholar
Mo, X. M. and Weber, H. J. 2004. Electrospinning P(LLA-CL) nanofiber: a tubular scaffold fabrication with circumferential alignment. Macromolec. Symp., 217, 413–16.CrossRefGoogle Scholar
Lee, H., Yoon, H. and Kim, G. 2009. Highly oriented electrospun polycaprolactone micro/nanofibers prepared by a field-controllable electrode and rotating collector. Appl. Phys. A – Mater. Sci. Processing, 97(3), 559–65.CrossRefGoogle Scholar
Kim, G. H. 2006. Electrospinning process using field-controllable electrodes. J. Polymer Sci. Part B – Polymer Phys., 44(10), 1426–33.CrossRefGoogle Scholar
Attout, A., Yunus, S. and Bertrand, P. 2008. Electrospinning and alignment of polyaniline-based nanowires and nanotubes. Polymer Eng. Sci., 48(9), 1661–6.CrossRefGoogle Scholar
Ishii, Y., Sakai, H. and Murata, H. 2008. A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. Mater. Lett., 62(19), 3370–2.CrossRefGoogle Scholar
Kessick, R., Fenn, J. and Tepper, G. 2004. The use of AC potentials in electrospraying and electrospinning processes. Polymer, 45(9), 2981–4.CrossRefGoogle Scholar
Sarkar, S., Deevi, S. and Tepper, G. 2007. Biased AC electrospinning of aligned polymer nanofibers. Macromolec. Rapid Commun., 28(9), 1034–9.CrossRefGoogle Scholar
Rafique, J., Yu, J., Yu, J. L. et al. 2007. Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector. Appl. Phys. Lett., 91(6), 63–126.CrossRefGoogle Scholar
Zhou, W., Li, Z., Zhang, Q. et al. 2007. Gas flow-assisted alignment of super long electrospun nanofibers. J. Nanosci. Nanotechnol., 7(8), 2667–73.CrossRefGoogle ScholarPubMed
Liu, Y. Q., Zhang, X., Xia, Y. and Yang, H. 2010. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater., 22(22), 2454–7.CrossRefGoogle ScholarPubMed
Beachley, V. and Wen, X. 2010. Fabrication of Three-Dimensional Aligned Nanofiber Array. Clemson, SC: Clemson University.Google Scholar
Madhugiri, S., Dalton, A., Gutierrez, J., Ferraris, J. P. and Balkus, K. J. 2003. Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J. Am. Chem. Soc., 125(47), 14531–8.CrossRefGoogle ScholarPubMed
Kidoaki, S., Kwon, I. K. and Matsuda, T. 2005. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials, 26(1), 37–46.CrossRefGoogle ScholarPubMed
Ding, B., Kimura, E., Sato, T., Fujita, S. and Shiratori, S. 2004. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer, 45(6), 1895–1902.CrossRefGoogle Scholar
Theron, S. A., Yarin, A. L., Zussman, E. and Kroll, E. 2005. Multiple jets in electrospinning: experiment and modeling. Polymer, 46(9), 2889–99.CrossRefGoogle Scholar
Chow, W. N., Simpson, D. G., Bigbee, J. W. and Colello, R. J. 2007. Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries. Neuron Glia Biol., 3, 119–26.CrossRefGoogle ScholarPubMed
Yao, Y. F., Gu, Z. Z., Zhang, J. Z. et al. 2007. Fiber-oriented liquid crystal polarizers based on anisotropic electrospinning. Adv. Mater., 19(21), 3707–11.CrossRefGoogle Scholar
Afifi, A. M., Nakajima, H., Yamane, H., Kimura, Y. and Nakano, S. 2009. Fabrication of aligned poly(l-lactide) fibers by electrospinning and drawing. Macromolec. Mater. Eng., 294(10), 658–65.CrossRefGoogle Scholar
Yang, X., Shah, J. D. and Wang, H. 2009. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng. Part A, 15(4), 945–56.CrossRefGoogle ScholarPubMed
Stankus, J. J., Soletti, L., Fujimoto, K. et al. 2007. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials, 28(17), 2738–46.CrossRefGoogle ScholarPubMed
van Aalst, J. A., Reed, C. R., Han, L. et al. 2008. Cellular incorporation into electrospun nanofibers: retained viability, proliferation, and function in fibroblasts. Ann. Plast. Surg., 60(5), 577–83.CrossRefGoogle ScholarPubMed
Li, W. J., Jiang, Y. J. and Tuan, R. S. 2008. Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. Tissue Eng Part A, 14(5), 639–48.CrossRefGoogle ScholarPubMed
Pham, Q. P., Sharma, U. and Mikos, A. G. 2006. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 7(10), 2796–805.CrossRefGoogle ScholarPubMed
Eichhorn, S. J. and Sampson, W. W. 2005. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. R. Soc. Interface, 2(4), 309–18.CrossRefGoogle ScholarPubMed
Balguid, A., Mol, A., van Marion, M. H. et al. 2009. Tailoring fiber diameter in electrospun poly(ε-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. Part A, 15(2), 437–44.CrossRefGoogle ScholarPubMed
Tuzlakoğlu, K., Bolgen, N., Salgado, A. J. et al. 2005. Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J. Mater. Sci. Mater. Med., 16(12), 1099–104.CrossRefGoogle ScholarPubMed
Santos, M. I., Tuzlakoğlu, K., Fuchs, S. et al. 2008. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials, 29(32), 4306–13.CrossRefGoogle ScholarPubMed
Park, S. H., Kim, T. G., Kim, H. C., Yang, D. Y. and Park, T. G. 2008. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater., 4(5), 1198–207.CrossRefGoogle ScholarPubMed
Thorvaldsson, A., Stenhamre, H., Gatenholm, P. and Walkenström, P. 2008. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules, 9(3), 1044–9.CrossRefGoogle ScholarPubMed
Ki, C. S., Park, S. Y., Kim, H. J. et al. 2008. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol. Lett., 30(3), 405–10.CrossRefGoogle ScholarPubMed
Nam, J., Huang, Y., Agarwal, S. and Lannutti, J. 2007. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng., 13(9), 2249–57.CrossRefGoogle ScholarPubMed
Leong, M. F., Rasheed, M. Z., Lim, T. C. and Chian, K. S. 2009. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(d,l-lactide) scaffold fabricated by cryogenic electrospinning technique. J. Biomed. Mater. Res. A, 91(1), 231–40.CrossRefGoogle Scholar
Baker, B. M., Gee, A. O., Metter, R. B. et al. 2008. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 29(15), 2348–58.CrossRefGoogle ScholarPubMed
Ekaputra, A. K., Prestwich, G. D., Cool, S. M. and Hutmacher, D. W. 2008. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules, 9(8), 2097–103.CrossRefGoogle ScholarPubMed
Beachley, V. and Wen, X. 2009. Fabrication of nanofiber reinforced protein structures for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl., 29(8), 2448–53.CrossRefGoogle ScholarPubMed
Nair, S., Kim, J., Crawford, B. and Kim, S. H. 2007. Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules, 8(4), 1266–70.CrossRefGoogle ScholarPubMed
Ki, C. S., Kim, J. W., Hyun, J. H. et al. 2007. Electrospun three-dimensional silk fibroin nanofibrous scaffold. J. Appl. Polymer Sci., 106(6), 3922–8.CrossRefGoogle Scholar
Teo, W. E., Liao, S., Chan, C. K., Ramakrishna, S. 2008. Remodeling of three-dimensional hierarchically organized nanofibrous assemblies. Current Nanosci., 4(4), 361–9.CrossRefGoogle Scholar
Srouji, S., Kizhner, T., Suss-Tobi, E., Livne, E. and Zussman, E. 2008. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J. Mater. Sci. Mater. Med., 19(3), 1249–55.CrossRefGoogle ScholarPubMed
Ishii, O., Shin, M., Sueda, T. and Vacanti, J. P. 2005. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J. Thorac. Cardiovasc. Surg., 130(5), 1358–63.CrossRefGoogle ScholarPubMed
Inanç, B., Arslan, Y. E., Seker, S., Elçin, A. E. and Elçin, Y. M. 2009. Periodontal ligament cellular structures engineered with electrospun poly(dl-lactide-co-glycolide) nanofibrous membrane scaffolds. J. Biomed. Mater. Res. A, 90(1), 186–95.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×