Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T04:22:16.001Z Has data issue: false hasContentIssue false

37 - Bladder regeneration

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Yuanyuan Zhang
Affiliation:
The Wake Forest Institute for Regenerative Medicine
Anthony Atala
Affiliation:
The Wake Forest Institute for Regenerative Medicine
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Bladder tissue engineering technology has provided an alternative treatment for patients with congenital bladder conditions (e.g. bladder exstrophy) and conditions such as radiation damage, infection, interstitial cystitis, neuropathic small bladder disease, and bladder cancer. To treat these end-stage bladder diseases, a partial or total cystectomy is often performed, followed by the creation of a neobladder or a continent urinary reservoir using intestinal segments to restore bladder capacity. However, using bowel tissue for this purpose may cause many side effects, although a recent study showed that all children with neurogenic bladder disease are at increased risk of bladder cancer regardless of exposure to intestinal tissue in the urinary tract [1]. Therefore, new clinical and surgical techniques are needed in order to allow these patients to live healthier and more normal lives. The authors of a clinical study recently reported that it is possible to engineer neo-bladder tissue using autologous cells seeded on biodegradable scaffolds [2] and that this engineered tissue can be used to enlarge the bladder volume and improve function for patients with neuropathic diseases. Additionally, increasing evidence indicates that the use of patients’ own stem cells provides a promising alternative for patients with end-stage bladder diseases in cases in which healthy autologous bladder cells might not be available.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Higuchi, T. T., Granberg, C. F., Fox, J. A. and Husmann, D. A. 2010. Augmentation cystoplasty and risk of neoplasia: fact, fiction and controversy. J. Urol., 184(6), 2492–6.CrossRefGoogle ScholarPubMed
Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. and Retik, A. B. 2006. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367(9518), 1241–6.CrossRefGoogle ScholarPubMed
de Boer, W. I., Schuller, A. G., Vermey, M. and van der Kwast, T. H. 1994. Expression of growth factors and receptors during specific phases in regenerating urothelium after acute injury in vivo. Am. J. Pathol., 145(5), 1199–207.Google ScholarPubMed
Yoo, J. J., Meng, J., Oberpenning, F. and Atala, A. 1998. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology, 51(2), 221–5.CrossRefGoogle ScholarPubMed
Zhang, Y., Lin, H. K., Frimberger, D., Epstein, R. B. and Kropp, B. P. 2005. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int., 96(7), 1120–5.CrossRefGoogle ScholarPubMed
Atala, A. 2006. Recent developments in tissue engineering and regenerative medicine. Curr. Opin. Pediatr., 18(2), 167–71.CrossRefGoogle ScholarPubMed
Atala, A. 2008. Bioengineered tissues for urogenital repair in children. Pediatr. Res., 63(5), 569–75.CrossRefGoogle ScholarPubMed
Zhang, Y. 2008. Bladder reconstruction by tissue engineering – with or without cells? J. Urol., 180(1), 10–11.CrossRefGoogle ScholarPubMed
Zhang, Y., McNeill, E., Tian, H. et al. 2008. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol., 180(5), 2226–33.CrossRefGoogle ScholarPubMed
Zhang, Y. 2008. Autologous cell sources for urological applications. In Atala, A. and Denstedt, J., editors. Biomaterials and Tissue Engineering in Urology. Cambridge: Woodhead Publishing Limited.Google Scholar
Wu, S., Liu, Y., Bharadwaj, S., Atala, A. and Zhang, Y. 2011. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials, 32(5), 1317–26.CrossRefGoogle Scholar
Tobin, M. S., Freeman, M. R. and Atala, A. 1994. Maturational response of normal human urothelial cells in culture is dependent on extracellular matrix and serum additives. Surg. Forum, 45, 786.Google Scholar
Bodin, A., Bharadwaj, S., Wu, S. et al. 2010. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials, 31(34), 8889–901.CrossRefGoogle ScholarPubMed
Tian, H., Bharadwaj, S., Liu, Y. et al. 2010. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng. Part A, 16(5), 1769–79.CrossRefGoogle ScholarPubMed
Tian, H., Bharadwaj, S., Liu, Y. et al. 2010. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials, 31(5), 870–7.CrossRefGoogle ScholarPubMed
Sharma, A. K., Hota, P. V., Matoka, D. J. et al. 2010. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials, 31(24), 6207–17.CrossRefGoogle ScholarPubMed
Sharma, A. K., Fuller, N. J., Sullivan, R. R. et al. 2009. Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration. J. Urol., 182(4 Suppl.), 1898–905.CrossRefGoogle ScholarPubMed
Sharma, A. K., Bury, M. I., Marks, A. J. et al. 2011. A non-human primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells, 29(2), 241–50.CrossRefGoogle Scholar
De Coppi, P., Callegari, A., Chiavegato, A. et al. 2007. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. Urol., 177(1), 369–76.CrossRefGoogle ScholarPubMed
Zhu, W. D., Xu, Y. M., Feng, C. et al. 2010. Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J. Urol., 28(4), 493–8.CrossRefGoogle ScholarPubMed
Jack, G. S., Almeida, F. G., Zhang, R. et al. 2005. Processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction. J. Urol., 174(5), 2041–5.CrossRefGoogle ScholarPubMed
Caplan, A. I. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol., 213(2), 341–7.CrossRefGoogle ScholarPubMed
Oottamasathien, S., Williams, K., Franco, O. E. et al. 2007. Urothelial inhibition of transforming growth factor-β in a bladder tissue recombination model. J. Urol., 178(4, Part 2), 1643–9.CrossRefGoogle Scholar
Nguyen, M. M., Lieu, D. K., deGraffenried, L. A., Isseroff, R. R. and Kurzrock, E. A. 2007. Urothelial progenitor cells: regional differences in the rat bladder. Cell Proliferation, 40(2), 157–65.CrossRefGoogle ScholarPubMed
Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., Chan, C. W. and Isseroff, R. R. 2008. Label-retaining cells of the bladder: candidate urothelial stem cells. Am. J. Physiol. – Renal Physiol., 294(6), F1415–21.CrossRefGoogle ScholarPubMed
Cilento, B. G., Freeman, M. R., Schneck, F. X., Retik, A. B. and Atala, A. 1994. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J. Urol., 152(2, Part 2), 665–70.CrossRefGoogle ScholarPubMed
Scriven, S. D., Booth, C., Thomas, D. F., Trejdosiewicz, L. K. and Southgate, J. 1997. Reconstitution of human urothelium from monolayer cultures. J. Urol., 158(3, Part 2), 1147–52.CrossRefGoogle ScholarPubMed
Liebert, M., Hubbel, A., Chung, M. et al. 1997. Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation, 61(3), 177–85.CrossRefGoogle ScholarPubMed
Puthenveettil, J. A., Burger, M. S. and Reznikoff, C. A. 1999. Replicative senescence in human uroepithelial cells. Adv. Exp. Med. Biol., 462, 83–91.CrossRefGoogle ScholarPubMed
Liebert, M., Wedemeyer, G., Abruzzo, L. V. et al. 1991. Stimulated urothelial cells produce cytokines and express an activated cell surface antigenic phenotype. Seminars Urol., 9(2), 124–30.Google ScholarPubMed
Harriss, D. R. 1995. Smooth muscle cell culture: a new approach to the study of human detrusor physiology and pathophysiology. Brit. J. Urol., 75(Suppl. 1), 18–26.Google Scholar
Freeman, M. R., Yoo, J. J., Raab, G. et al. 1997. Heparin-binding EGF-like growth factor is an autocrine growth factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J. Clin. Invest., 99(5), 1028–36.CrossRefGoogle ScholarPubMed
Fauza, D. O., Fishman, S. J., Mehegan, K. and Atala, A. 1998. Videofetoscopically assisted fetal tissue engineering: skin replacement. J. Pediatr. Surg., 33(2), 357–61.CrossRefGoogle ScholarPubMed
Fauza, D. O., Fishman, S. J., Mehegan, K. and Atala, A. 1998. Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J. Pediatr. Surg., 33(1), 7–12.CrossRefGoogle ScholarPubMed
Solomon, L. Z., Jennings, A. M., Sharpe, P., Cooper, A. J. and Malone, P. S. 1998. Effects of short-chain fatty acids on primary urothelial cells in culture: implications for intravesical use in enterocystoplasties. J. Lab. Clin. Med., 132(4), 279–83.CrossRefGoogle ScholarPubMed
Lobban, E. D., Smith, B. A., Hall, G. D. et al. 1998. Uroplakin gene expression by normal and neoplastic human urothelium. Am. J. Pathol., 153(6), 1957–67.CrossRefGoogle ScholarPubMed
Nguyen, H. T., Park, J. M., Peters, C. A. et al. 1999. Cell-specific activation of the HB-EGF and ErbB1 genes by stretch in primary human bladder cells. In Vitro Cell. Developmental Biol. Animal, 35(7), 371–5.CrossRefGoogle ScholarPubMed
Rackley, R. R., Bandyopadhyay, S. K., Fazeli-Matin, S., Shin, M. S. and Appell, R. 1996. Immunoregulatory potential of urothelium: characterization of NF-kappaB signal transduction. J. Urol., 162(5), 1812–16.CrossRefGoogle Scholar
Oberpenning, F., Meng, J., Yoo, J. J. and Atala, A. 1999. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nature Biotechnol., 17(2), 149–55.CrossRefGoogle ScholarPubMed
Atala, A., Freeman, M. R., Vacanti, J. P., Shepard, J. and Retik, A. B. 1993. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J. Urol., 150(2, Part 2), 608–12.CrossRefGoogle ScholarPubMed
Jayo, M. J., Jain, D., Ludlow, J. W. et al. 2008. Long-term durability, tissue regeneration and neo-organ growth during skeletal maturation with a neo-bladder augmentation construct. Regen. Med., 3(5), 671–82.CrossRefGoogle ScholarPubMed
Jayo, M. J., Jain, D., Wagner, B. J. and Bertram, T. A. 2008. Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies. J. Urol., 180(1), 392–7.CrossRefGoogle ScholarPubMed
Kwon, T. G., Yoo, J. J. and Atala, A. 2008. Local and systemic effects of a tissue engineered neobladder in a canine cystoplasty model. J. Urol., 179(5), 2035–41.CrossRefGoogle Scholar
Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. and Retik, A. B. 2006. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367(9518), 1241–6.CrossRefGoogle ScholarPubMed
Hanada, K., Dennis, J. E. and Caplan, A. I. 1997. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J. Bone Miner. Res., 12(10), 1606–14.CrossRefGoogle ScholarPubMed
Saito, T., Dennis, J. E., Lennon, D. P., Young, R. G. and Caplan, A. I. 1995. Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng., 1(4), 327–43.CrossRefGoogle ScholarPubMed
Caplan, A. I. 1995. Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect Tissue Res., 31(4), S9–14.CrossRefGoogle ScholarPubMed
da Silva Meirelles, L., Sand, T. T., Harman, R. J., Lennon, D. P. and Caplan, A. I. 2009. MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng. Part A, 15(2), 221–9.CrossRefGoogle ScholarPubMed
Bharadwaj, S., Liu, G., Shi, Y. et al. 2011. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng. Part A, 17(15–16), 2123–32.CrossRefGoogle ScholarPubMed
Bharadwaj, S., Wu, S., Hodges, S., Atala, A. and Zhang, Y. 2011. Skeletal muscle differentiation of human urine-derived stem cells for injection therapy in the treatment of stress urinary incontinence. J. Urol., 184(4), E681.Google Scholar
Wu, S., Liu, Y., Bharadwaj, S. et al. 2011. Implantation of autologous urine-derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J. Urol., 186(2), 640–7.CrossRefGoogle ScholarPubMed
Chung, S. Y., Krivorov, N. P., Rausei, V. et al. 2005. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J. Urol., 174(1), 353–9.CrossRefGoogle ScholarPubMed
Kanematsu, A., Yamamoto, S., Iwai-Kanai, E. et al. 2005. Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells. Am. J. Pathol., 166(2), 565–73.CrossRefGoogle ScholarPubMed
Sakuma, T., Matsumoto, T., Kano, K. et al. 2009. Mature, adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J. Urol., 182(1), 355–65.CrossRefGoogle ScholarPubMed
Smaldone, M. C., Chen, M. L. and Chancellor, M. B. 2009. Stem cell therapy for urethral sphincter regeneration. Minerva Urol. Nefrol., 61(1), 27–40.Google ScholarPubMed
Montzka, K. and Heidenreich, A. 2010. Application of mesenchymal stromal cells in urological diseases. BJU Int., 105(3), 309–12.CrossRefGoogle ScholarPubMed
Liu, J., Huang, J., Lin, T., Zhang, C. and Yin, X. 2009. Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochem. Biophys. Res. Commun., 390(3), 931–6.CrossRefGoogle ScholarPubMed
Lin, G., Wang, G., Banie, L. et al. 2010. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy, 12(1), 88–95.CrossRefGoogle ScholarPubMed
Lin, G., Banie, L., Ning, H. et al. 2009. Potential of adipose-derived stem cells for treatment of erectile dysfunction. J. Sex Med., 6(Suppl. 3), 320–7.CrossRefGoogle ScholarPubMed
Jack, G. S., Zhang, R., Lee, M. et al. 2009. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials, 30(19), 3259–70.CrossRefGoogle Scholar
Cavarretta, I. T., Altanerova, V., Matuskova, M. et al. 2010. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molec. Ther., 18(1), 223–31.CrossRefGoogle ScholarPubMed
Bharadwaj, S., Liu, G., Shi, Y. et al. 2013. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells, 31(9), 1840–56.CrossRefGoogle ScholarPubMed
Oberpenning, F., Meng, J., Yoo, J. J. and Atala, A. 1999. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nature Biotechnol., 17(2), 149–55.CrossRefGoogle ScholarPubMed
Kropp, B. P. and Cheng, E. Y. 2000. Bioengineering organs using small intestinal submucosa scaffolds: in vivo tissue-engineering technology. J. Endourol., 14(1), 59–62.CrossRefGoogle ScholarPubMed
Kropp, B. P., Cheng, E. Y., Lin, H. K. and Zhang, Y. 2004. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J. Urol., 172(4, Part 2), 1710–13.CrossRefGoogle ScholarPubMed
Kropp, B. P., Rippy, M. K., Badylak, S. F. et al. 1996. Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol., 155(6), 2098–104.CrossRefGoogle ScholarPubMed
Kropp, B. P., Sawyer, B. D., Shannon, H. E. et al. 1996. Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J. Urol., 156(2, Part 2), 599–607.CrossRefGoogle ScholarPubMed
Zhang, Y., Kropp, B. P., Lin, H. K., Cowan, R. and Cheng, E. Y. 2004. Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng., 10(1–2), 181–7.CrossRefGoogle ScholarPubMed
Zhang, Y., Kropp, B. P., Moore, P. et al. 2000. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J. Urol., 164(3, Part 2), 928–34; discussion 34–5.CrossRefGoogle ScholarPubMed
Liu, Y., Bharadwaj, S., Lee, S. J., Atala, A. and Zhang, Y. 2009. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials, 30(23–24), 3865–73.CrossRefGoogle ScholarPubMed
Chen, B. S., Zhang, S. L., Geng, H., Pan, J. and Chen, F. 2009. Ex vivo functional evaluation of isolated strips in BAMG tissue-engineered bladders. Int. J. Artif. Organs, 32(3), 159–65.CrossRefGoogle ScholarPubMed
Kikuno, N., Kawamoto, K., Hirata, H. et al. 2009. Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder. BJU Int., 103(10), 1424–8.CrossRefGoogle ScholarPubMed
Badylak, S. F., Kropp, B., McPherson, T., Liang, H. and Snyder, P. W. 1998. Small intestional submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng., 4(4), 379–87.CrossRefGoogle Scholar
Kropp, B. P., Rippy, M. K., Badylak, S. F. et al. 1996. Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol., 155(6), 2098–104.CrossRefGoogle ScholarPubMed
Zhang, Y., Frimberger, D., Cheng, E. Y., Lin, H. K. and Kropp, B. P. 2006. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int., 98(5), 1100–5.CrossRefGoogle Scholar
Feil, G., Christ-Adler, M., Maurer, S. et al. 2006. Investigations of urothelial cells seeded on commercially available small intestine submucosa. Eur. Urol., 50(6), 1330–7.CrossRefGoogle ScholarPubMed
Ma, Z., Gao, C., Gong, Y. and Shen, J. 2005. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials, 26(11), 1253–9.CrossRefGoogle ScholarPubMed
Ma, Z., Mao, Z. and Gao, C. 2007. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf. B Biointerfaces, 60(2), 137–57.CrossRefGoogle ScholarPubMed
Sikavitsas, V. I., Bancroft, G. N., Holtorf, H. L., Jansen, J. A. and Mikos, A. G. 2003. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Nat. Acad. Sci. USA, 100(25), 14683–8.CrossRefGoogle ScholarPubMed
Bancroft, G. N., Sikavitsas, V. I., van den Dolder, J. et al. 2002. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Nat. Acad. Sci. USA, 99(20), 12600–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bladder regeneration
  • Edited by Peter X. Ma, University of Michigan, Ann Arbor
  • Book: Biomaterials and Regenerative Medicine
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997839.043
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bladder regeneration
  • Edited by Peter X. Ma, University of Michigan, Ann Arbor
  • Book: Biomaterials and Regenerative Medicine
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997839.043
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bladder regeneration
  • Edited by Peter X. Ma, University of Michigan, Ann Arbor
  • Book: Biomaterials and Regenerative Medicine
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997839.043
Available formats
×