Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:59:22.047Z Has data issue: false hasContentIssue false

9 - Biological scaffolds for regenerative medicine

from Part II - Porous scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Vineet Agrawal
Affiliation:
University of Pittsburgh
Stephen F. Badylak
Affiliation:
University of Pittsburgh
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The ideal biological scaffold would provide structural support appropriate for the tissue of interest, and an adhesion surface that maintains phenotypic cues suited to the tissue and has the ability to change as the functional requirements of the target tissue change. The extracellular matrix (ECM) is the aggregate product of cells that reside in a given tissue, organ, or microenvironment and has all of these characteristics. In addition to serving as structural support for the tissue, the ECM has numerous functional roles that it fulfills through site-specific ligands that serve as cell-attachment anchors, differentiation cues, and mediators of intracellular signaling pathways. Furthermore, the ECM is in a constant state of “dynamic reciprocity” with the resident cells of the given tissues or organ, which is manifested by the temporal change in composition and structure in response to the requirements and activity of the resident cells that reside within the ECM. Stated differently, the composition and structure of the matrix are optimized for each tissue and change in response to mechanical forces, biochemical milieu, oxygen requirements/concentration, pH, and gene expression, among other factors. The ECM also plays a central role in mammalian development, normal physiology, and the response to injury. For these reasons, if harvested and processed appropriately, the ECM has been shown to promote constructive, site-specific remodeling when used as a biological scaffold for regenerative medicine applications.

Beginning with a discussion of the components that comprise the extracellular matrix, the present chapter will review the use of extracellular matrix as a biological scaffold material in tissue engineering and regenerative medicine applications with a specific focus on the mechanisms by which such scaffolds promote functional restoration of tissue following injury.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rozario, T. and DeSimone, D. W. 2010. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol., 341(1), 126–40.CrossRefGoogle ScholarPubMed
Toole, B. P. 2001. Hyaluronan in morphogenesis. Semin. Cell Dev. Biol., 12(2), 79–87.CrossRefGoogle ScholarPubMed
Zheng Shu, X., Liu, Y., Palumbo, F. S., Luo, Y. and Prestwich, G. D. 2004. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials, 25(7–8), 1339–48.CrossRefGoogle ScholarPubMed
Evanko, S. P., Angello, J. C. and Wight, T. N. 1999. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 19(4), 1004–13.CrossRefGoogle ScholarPubMed
Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. and San Antonio, J. D. 2002. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem., 277(6), 4223–31.CrossRefGoogle ScholarPubMed
Badylak, S. F. 2002. The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol., 13(5), 377–83.CrossRefGoogle ScholarPubMed
Hahn, E., Wick, G., Pencev, D. and Timpl, R. 1980. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut, 21(1), 63–71.CrossRefGoogle ScholarPubMed
Munakata, H., Takagaki, K., Majima, M. and Endo, M. 1999. Interaction between collagens and glycosaminoglycans investigated using a surface plasmon resonance biosensor. Glycobiology, 9(10), 1023–7.CrossRefGoogle ScholarPubMed
Sakai, L. Y., Keene, D. R., Morris, N. P. and Burgeson, R. E. 1986. Type VII collagen is a major structural component of anchoring fibrils. J. Cell Biol., 103(4), 1577–86.CrossRefGoogle ScholarPubMed
Rogers, S. L., Edson, K. J., Letourneau, P. and McLoon, S. C. 1986. Distribution of laminin in the developing peripheral nervous system of the chick. Dev. Biol., 113(2), 429–35.CrossRefGoogle ScholarPubMed
Zagris, N., Chung, A. E. and Stavridis, V. 2000. Differential expression of laminin genes in early chick embryo. Int. J. Dev. Biol., 44(7), 815–18.Google ScholarPubMed
Wan, Y. J., Wu, T. C., Chung, A. E. and Damjanov, I. 1984. Monoclonal antibodies to laminin reveal the heterogeneity of basement membranes in the developing and adult mouse tissues. J. Cell Biol., 98(3), 971–9.CrossRefGoogle ScholarPubMed
Liesi, P., Kaakkola, S., Dahl, D. and Vaheri, A. 1984. Laminin is induced in astrocytes of adult brain by injury. EMBO J., 3(3), 683–6.Google ScholarPubMed
Powell, S. K., Williams, C. C., Nomizu, M., Yamada, Y. and Kleinman, H. K. 1998. Laminin-like proteins are differentially regulated during cerebellar development and stimulate granule cell neurite outgrowth in vitro. J. Neurosci. Res., 54(2), 233–47.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Fishman, R. B. and Hatten, M. E. 1993. Multiple receptor systems promote CNS neural migration. J. Neurosci., 13(8), 3485–95.CrossRefGoogle ScholarPubMed
Bonewald, L. F. 1999. Regulation and regulatory activities of transforming growth factor beta. Crit. Rev. Eukaryot. Gene Expr., 9(1), 33–44.Google ScholarPubMed
Kagami, S., Kondo, S., Löster, K. et al. 1998. Collagen type I modulates the platelet-derived growth factor (PDGF) regulation of the growth and expression of β1 integrins by rat mesangial cells. Biochem. Biophys. Res. Commun., 252(3), 728–32.CrossRefGoogle ScholarPubMed
Roberts, R., Gallagher, J., Spooncer, E. et al. 1988. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature, 332(6162), 376–8.CrossRefGoogle ScholarPubMed
Stolz, D. B., Mars, W. M., Petersen, B. E., Kim, T.-H. and Michalopoulos, G. K. 1999. Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Cancer Res., 59(16), 3954–60.Google ScholarPubMed
Michalopoulos, G. K. 1990. Liver regeneration: molecular mechanisms of growth control. FASEB J., 4(2), 176–87.CrossRefGoogle ScholarPubMed
Nakamura, T., Sakai, K. and Matsumoto, K. 2011. Hepatocyte growth factor twenty years on: much more than a growth factor. J. Gastroenterol. Hepatol., 26(Suppl. 1), 188–202.CrossRefGoogle ScholarPubMed
Rozario, T. and DeSimone, D. W. 2010. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol., 341(1), 126–40.CrossRefGoogle ScholarPubMed
Lockhart, M., Wirring, E., Phelps, A. and Wessels, A. 2011. Extracellular matrix and heart development. Birth Defects Res. A Clin. Mol. Teratol., 91(6), 535–50.CrossRefGoogle ScholarPubMed
Little, C. D. and Rongish, B. J. 1995. The extracellular matrix during heart development. Experientia, 51(9–10), 873–82.CrossRefGoogle ScholarPubMed
Borg, T. K., Raso, D. S. and Terracio, L. 1990. Potential role of the extracellular matrix in postseptation development of the heart. Ann. NY Acad. Sci., 588, 87–92.CrossRefGoogle Scholar
Perris, R. and Perissinotto, D. 2000. Role of the extracellular matrix during neural crest cell migration. Mech. Dev., 95(1–2), 3–21.CrossRefGoogle ScholarPubMed
Werb, Z. and Chin, J. R. 1998. Extracellular matrix remodeling during morphogenesis. Ann. NY Acad. Sci., 857, 110–18.CrossRefGoogle ScholarPubMed
Rauch, U. and Schafer, K. H. 2003. The extracellular matrix and its role in cell migration and development of the enteric nervous system. Eur. J. Pediatr. Surg., 13(3), 158–62.Google ScholarPubMed
Parikh, D. H., Tam, P. K., Van Velzen, D. and Edgar, D. 1992. Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung’s disease. J. Pediatr. Surg., 27(8), 991–5; discussion 995–6.CrossRefGoogle ScholarPubMed
Margadant, C., Raymond, K., Kreft, M. et al. 2009. Integrin α3β1 inhibits directional migration and wound re-epithelialization in the skin. J. Cell Sci., 122(Part 2), 278–88.CrossRefGoogle Scholar
Woodley, D. T., Bachmann, P. M. and O’Keefe, E. J. 1991. The role of matrix components in human keratinocyte re-epithelialization. Prog. Clin. Biol. Res., 365, 129–40.Google ScholarPubMed
Karamichos, D., Brown, R. A. and Mudera, V. 2007. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression. J. Biomed. Mater. Res. A, 83(3), 887–94.CrossRefGoogle ScholarPubMed
Gilbert, T. W., Stewart-Akers, A. M., Sydeski, J. et al. 2007. Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching. Tissue Eng., 13(6), 1313–23.CrossRefGoogle ScholarPubMed
Barnes, C. A., Brison, J., Michel, R. et al. 2011. The surface molecular functionality of decellularized extracellular matrices. Biomaterials, 32(1), 137–43.CrossRefGoogle ScholarPubMed
Brown, B. N., Barnes, C. A., Kasick, R. T. et al. 2010. Surface characterization of extracellular matrix scaffolds. Biomaterials, 31(3), 428–37.CrossRefGoogle ScholarPubMed
Ackbar, R., Ainoedhofer, H., Gugatschka, M. and Saxena, A. K. 2012. Decellularized ovine esophageal mucosa for esophageal tissue engineering. Technol. Health Care, 20(3), 215–23.Google ScholarPubMed
Badylak, S., Meurling, S., Chen, M., Spievack, A. and Simmons-Byrd, A. 2000. Resorbable bioscaffold for esophageal repair in a dog model. J. Pediatr. Surg., 35(7), 1097–103.CrossRefGoogle Scholar
Lopes, M. F., Cabrita, A., Ilharco, J. et al. 2006. Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis. Esophagus, 19(4), 254–9.CrossRefGoogle ScholarPubMed
Badylak, S. F., Vorp, D. A., Spievack, A. R. et al. 2005. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res., 128(1), 87–97.CrossRefGoogle Scholar
Badylak, S. F., Tullius, R., Kokini, K. et al. 2011. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng. Part A, 17(11–12), 1643–50.CrossRefGoogle ScholarPubMed
Kochupura, P. V., Azeloǧlu, E. U., Kelly, D. J. et al. 2005. Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation, 112(9 Suppl.), I144–9.Google ScholarPubMed
Badylak, S. F., Kochupura, P. V., Cohen, I. S. et al. 2006. The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant., 15(Suppl. 1), S29–40.CrossRefGoogle ScholarPubMed
Robinson, K. A., Li, J., Mathison, M. et al. 2005. Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 Suppl.), I135–43.Google ScholarPubMed
Ota, T., Taketani, S., Iwai, S. et al. 2007. Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix. J. Thorac. Cardiovasc. Surg., 133(4), 979–85.CrossRefGoogle ScholarPubMed
Lantz, G. C., Badylak, S. F., Coffey, A. C., Geddes, L. A. and Sandusky, G. E. 1992. Small intestinal submucosa as a superior vena cava graft in the dog. J. Surg. Res., 53(2), 175–81.CrossRefGoogle ScholarPubMed
Badylak, S. F., Lantz, G. C., Coffey, A. et al. 1989. Small intestinal submucosa as a large-diameter vascular graft in the dog. J. Surg. Res., 47(1), 74–80.CrossRefGoogle ScholarPubMed
Lantz, G. C., Badylak, S. F., Coffey, A. C. et al. 1990. Small intestinal submucosa as a small-diameter arterial graft in the dog. J. Invest. Surg., 3(3), 217–27.CrossRefGoogle ScholarPubMed
Kropp, B. P., Eppley, B. L., Prevel, C. D. et al. 1995. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology, 46(3), 396–400.CrossRefGoogle ScholarPubMed
Kropp, B. P., Rippy, M. K., Badylak, S. F. et al. 1996. Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol., 155(6), 2098–104.CrossRefGoogle ScholarPubMed
Pope, J. C., Davis, M. M., Smith, E. R. et al. 1997. The ontogeny of canine small intestinal submucosa regenerated bladder. J. Urol., 158(3, Part 2), 1105–10.CrossRefGoogle ScholarPubMed
Record, R. D., Hillegonds, D., Simmons, C. et al. 2001. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials, 22(19), 2653–9.CrossRefGoogle ScholarPubMed
Schwarz, S., Koerber, L., Elsaesser, A. F. et al. 2012. decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng. Part A, 18(21–22), 2195–209.CrossRefGoogle ScholarPubMed
Clarke, K. M., Lantz, G. C., Salisbury, S. K. et al. 1996. Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J. Surg. Res., 60(1), 107–14.CrossRefGoogle ScholarPubMed
Badylak, S. , F., Kokini, K., Tullius, B., Simmons-Byrd, A. and Morff, R. et al. 2002. Morphologic study of small intestinal submucosa as a body wall repair device. J. Surg. Res., 103(2), 190–202.CrossRefGoogle ScholarPubMed
Badylak, S. , F., Kokini, K., Tullius, B. and Whitson, B. 2001. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J. Surg. Res., 99(2), 282–7.CrossRefGoogle Scholar
Prevel, C. D., Eppley, B. L., Summerlin, D. J. et al. 1995. Small intestinal submucosa: utilization for repair of rodent abdominal wall defects. Ann. Plast. Surg., 35(4), 374–80.CrossRefGoogle ScholarPubMed
Mase, V. J., Hsu, J. R., Wolf, S. E. et al. 2010. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics, 33(7), 511.Google ScholarPubMed
Gilbert, T. W., Stewart-Akers, A. M. and Badylak, S. F. 2007. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials, 28(2), 147–50.CrossRefGoogle ScholarPubMed
Gilbert, T. W., Stewart-Akers, A. M., Simmons-Byrd, A. and Badylak, S. F. 2007. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J. Bone Joint Surg. Am., 89(3), 621–30.CrossRefGoogle ScholarPubMed
Valentin, J. E., Stewart-Akers, A. M., Gilbert, T. W. and Badylak, S. F. 2009. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng. Part A, 15(7), 1687–94.CrossRefGoogle ScholarPubMed
Valentin, J. E., Badylak, J. S., McCabe, G. P. and Badylak, S. F. 2006. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J. Bone Joint Surg. Am., 88(12), 2673–86.CrossRefGoogle ScholarPubMed
Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. and Stewart-Akers, A. M. 2008. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A, 14(11), 1835–42.CrossRefGoogle ScholarPubMed
Brown, B. N., Valentin, J. E., Stewart-Akers, A. M., McCabe, G. P. and Badylak, S. F. 2009. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials, 30(8), 1482–91.CrossRefGoogle ScholarPubMed
Allman, A. J., McPherson, T. B., Badylak, S. F. et al. 2001. Xenogeneic extracellular matrix grafts elicit a Th2-restricted immune response. Transplantation, 71(11), 1631–40.CrossRefGoogle ScholarPubMed
Allman, A. J., McPherson, T. B., Merrill, L. C., Badylak, S. F. and Metzger, D. W. 2002. The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng., 8(1), 53–62.CrossRefGoogle Scholar
Turner, N. J. and Badylak, S. F. 2012. Regeneration of skeletal muscle. Cell Tissue Res., 347(3), 759–74.CrossRefGoogle ScholarPubMed
Gilbert, T. W., Freund, J. M. and Badylak, S. F. 2009. Quantification of DNA in biologic scaffold materials. J. Surg. Res., 152(1), 135–9.CrossRefGoogle ScholarPubMed
Gilbert, T. W., Sellaro, T. L. and Badylak, S. F. 2006. Decellularization of tissues and organs. Biomaterials, 27(19), 3675–83.Google ScholarPubMed
Crapo, P. M., Gilbert, T. W. and Badylak, S. F. 2011. An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–43.CrossRefGoogle ScholarPubMed
Collins, B. H., Chari, R. S., Magee, J. C. et al. 1994. Mechanisms of injury in porcine livers perfused with blood of patients with fulminant hepatic failure. Transplantation, 58(11), 1162–71.Google ScholarPubMed
Cooper, D. K., Good, A. H., Koren, E. et al. 1993. Identification of ´-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl. Immunol., 1(3), 198–205.CrossRefGoogle ScholarPubMed
Galili, U., Mandrell, R. E., Hamadeh, R. M. et al. 1985. Human natural anti-α-galactosyl IgG. II. The specific recognition of α (1–3)-linked galactose residues. J. Exp. Med., 162(2), 573–82.CrossRefGoogle ScholarPubMed
Oriol, R., Ye, Y., Koren, E. and Cooper, D. K. 1993. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation, 56(6), 1433–42.CrossRefGoogle ScholarPubMed
Daly, K., Stewart-Akers, A. M., Hara, H. et al. 2009. Effect of the αGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng. Part A, 15(12), 3877–88.CrossRefGoogle Scholar
Raeder, R. H., Badylak, S. F., Sheehan, C., Kallakury, B. and Metzger, D. W. 2002. Natural anti-galactose α1,3 galactose antibodies delay, but do not prevent the acceptance of extracellular matrix xenografts. Transpl. Immunol., 10(1), 15–24.CrossRefGoogle Scholar
Derwin, K. A., Baker, A. R., Spragg, R. K., Leigh, D. R. and Iannotti, J. P. 2006. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J. Bone Joint Surg. Am., 88(12), 2665–72.CrossRefGoogle ScholarPubMed
Zheng, M. H., Chen, J., Kirilak, Y. et al. 2005. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res. B Appl. Biomater., 73(1), 61–7.CrossRefGoogle Scholar
Daly, K. A., Liu, S.Agrawal, V. et al. 2012. Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials, 33(1), 91–101.CrossRefGoogle ScholarPubMed
Daly, K. A., Liu, S., Agrawal, V. et al. 2012. The host response to endotoxin-contaminated dermal matrix. Tissue Eng. Part A, 18(11–12), 1293–303.CrossRefGoogle ScholarPubMed
Nieponice, A., Gilbert, T. W. and Badylak, S. F. 2006. Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model. Ann. Thorac. Surg., 82(6), 2050–8.CrossRefGoogle Scholar
Freytes, D. O., Badylak, S. F., Webster, T. J., Geddes, L. A. and Rundell, A. E. 2004. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials, 25(12), 2353–61.CrossRefGoogle ScholarPubMed
Dejardin, L. M., Arnoczky, S. P., Ewers, B. J., Haut, R. C. and Clarke, R. B. 2001. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am. J. Sports Med., 29(2), 175–84.CrossRefGoogle ScholarPubMed
Gilbert, T. W., Stolz, D. B., Biancaniello, F., Simmons-Byrd, A. and Badylak, S. F. 2005. Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials, 26(12), 1431–5.CrossRefGoogle ScholarPubMed
Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S. and Badylak, S. F. 2008. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials, 29(11), 1630–7.CrossRefGoogle ScholarPubMed
Wolf, M. T., Daly, K. A., Brennan-Pierce, E. P. et al. 2012. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials, 33(29), 7028–38.CrossRefGoogle ScholarPubMed
Seif-Naraghi, S. B., Horn, D., Schup-Magoffin, P. A. and Christman, K. L. 2012. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater., 8(10), 3695–703.CrossRefGoogle ScholarPubMed
Sung, H. W., Chang, W. H., Ma, C. Y. and Lee, M. H. 2003. Crosslinking of biological tissues using genipin and/or carbodiimide. J. Biomed. Mater. Res. A, 64(3), 427–38.CrossRefGoogle ScholarPubMed
Sung, H. W., Chang, Y., Liang, I. L., Chang, W. H. and Chen, Y. C. 2000. Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J. Biomed. Mater. Res., 52(1), 77–87.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Badylak, S. F. 2007. The extracellular matrix as a biologic scaffold material. Biomaterials, 28(25), 3587–93.CrossRefGoogle ScholarPubMed
Falanga, V. 2005. Wound healing and its impairment in the diabetic foot. Lancet, 366(9498), 1736–43.CrossRefGoogle ScholarPubMed
Lolmede, K., Campana, L., Vezzoli, M. et al. 2009. Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol., 85(5), 779–87.CrossRefGoogle ScholarPubMed
Wokalek, H. and Ruh, H. 1991. Time course of wound healing. J. Biomater. Appl., 5(4), 337–62.CrossRefGoogle ScholarPubMed
Valentin, J. E., Turner, N. J., Gilbert, T. W. and Badylak, S. F. 2010. Functional skeletal muscle formation with a biologic scaffold. Biomaterials, 31(29), 7475–84.CrossRefGoogle ScholarPubMed
Crisan, M., Yap, S., Casteilla, L. et al. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–13.CrossRefGoogle ScholarPubMed
Gatenby, P. A., Callard, R. E. and Basten, A. 1984. T cells, T cell subsets and immunoregulation. Aust. NZ J. Med., 14(1), 89–96.CrossRefGoogle ScholarPubMed
Mantovani, A., Sica, A., Sozzani, S. et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 25(12), 677–86.CrossRefGoogle Scholar
Mosser, D. M. and Zhang, X. 2008. Activation of murine macrophages. In Current Protocols in Immunology. New York: John Wiley, Unit 14 2.Google Scholar
Boruch, A. V., Nieponice, A., Qureshi, I. R., Gilbert, T. W. and Badylak, S. F. 2010. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J. Surg. Res., 161(2), 217–25.CrossRefGoogle Scholar
Gilbert, T. W., Gilbert, S., Madden, M., Reynolds, S. D. and Badylak, S. F. 2008. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann. Thorac. Surg., 86(3), 967–74; discussion 967–74.CrossRefGoogle Scholar
Androjna, C., Spragg, R. K. and Derwin, K. A. 2007. Mechanical conditioning of cell-seeded small intestine submucosa: a potential tissue-engineering strategy for tendon repair. Tissue Eng., 13(2), 233–43.CrossRefGoogle ScholarPubMed
Autelitano, D. J., Rajic, A., Smith, A. I. et al. 2006. The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov. Today, 11(7–8), 306–14.CrossRefGoogle ScholarPubMed
Mukai, H., Seki, T., Nakano, H. et al. 2009. Mitocryptide-2: purification, identification, and characterization of a novel cryptide that activates neutrophils. J. Immunol., 182(8), 5072–80.CrossRefGoogle ScholarPubMed
Mukai, H., Hokari, Y., Seki, T. et al. 2008. Discovery of mitocryptide-1, a neutrophil-activating cryptide from healthy porcine heart. J. Biol. Chem., 283(45), 30596–605.CrossRefGoogle ScholarPubMed
Davis, G. E., Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events. J. Mol. Cell Cardiol., 48(3), 454–60.CrossRef
Davis, G. E., Bayless, K. J., Davis, M. J. and Meininger, G. A. 2000. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol., 156(5), 1489–98.CrossRefGoogle ScholarPubMed
Ng, J. H. and Ilag, L. L. 2006. Cryptic protein fragments as an emerging source of peptide drugs. IDrugs, 9(5), 343–6.Google ScholarPubMed
Pimenta, D. C. and Lebrun, I. 2007. Cryptides: buried secrets in proteins. Peptides, 28(12), 2403–10.CrossRefGoogle ScholarPubMed
Agrawal, V., Brown, B. N., Beattie, A. J., Gilbert, T. W. and Badylak, S. F. 2009. Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. J. Tissue Eng. Regen. Med., 3(8), 590–600.CrossRefGoogle ScholarPubMed
Agrawal, V., Johnson, S. A., Reing, J. et al. 2010. Epimorphic regeneration approach to tissue replacement in adult mammals. Proc. Nat. Acad. Sci. USA, 107(8), 3351–5.CrossRefGoogle ScholarPubMed
Agrawal, V., Kelly, J., Tottey, S. et al. 2011. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng. Part A, 17(23–24), 3033–44.CrossRefGoogle Scholar
Agrawal, V., Tottey, S., Johnson, S. A. et al. 2011. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng. Part A, 17(19–20), 2435–43.CrossRefGoogle Scholar
Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol., 3(9), 710–20.CrossRefGoogle ScholarPubMed
Moore, A. J., Beazley, W. D., Bibby, M. C. and Devine, D. A. 1996. Antimicrobial activity of cecropins. J. Antimicrob. Chemother., 37(6), 1077–89.CrossRefGoogle ScholarPubMed
Moore, A. J., Devine, D. A. and Bibby, M. C. 1994. Preliminary experimental anticancer activity of cecropins. Pept. Res., 7(5), 265–9.Google ScholarPubMed
Berkowitz, B. A., Bevins, C. L. and Zasloff, M. A. 1990. Magainins: a new family of membrane-active host defense peptides. Biochem. Pharmacol., 39(4), 625–9.CrossRefGoogle ScholarPubMed
Li, F., Li, W., Johnson, S. et al. 2004. Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium, 11(3–4), 199–206.CrossRefGoogle ScholarPubMed
Adair-Kirk, T. L. and Senior, R. M. 2008. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell. Biol., 40(6–7), 1101–10.CrossRefGoogle ScholarPubMed
Badylak, S. F., Park, K., Peppas, N., McCabe, G. and Yoder, M. 2001. Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp. Hematol., 29(11), 1310–18.CrossRefGoogle ScholarPubMed
Zantop, T., Gilbert, T. W., Yoder, M. C. and Badylak, S. F. 2006. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J. Orthop. Res., 24(6), 1299–309.CrossRefGoogle Scholar
Agrawal, V., Siu, B. F., Chao, H. et al. 2012. Partial characterization of the Sox2+ cell population in an adult murine model of digit amputation. Tissue Eng. Part A, 18(13–14), 1454–63.CrossRefGoogle Scholar
Reing, J. E., Zhang, L., Myers-Irvin, J. et al. 2009. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. Part A, 15(3), 605–14.CrossRefGoogle ScholarPubMed
Clark, L. D., Clark, R. K. and Heber-Katz, E. 1998. A new murine model for mammalian wound repair and regeneration. Clin. Immunol. Immunopathol., 88(1), 35–45.CrossRefGoogle ScholarPubMed
Brennan, E. P., Tang, X. H., Stewart-Akers, A. M., Gudas, L. J. and Badylak, S. F. 2008. Chemoattractant activity of degradation products of fetal and adult skin extracellular matrix for keratinocyte progenitor cells. J. Tissue Eng. Regen. Med., 2(8), 491–8.CrossRefGoogle ScholarPubMed
Tottey, S., Corselli, M., Jeffries, E. M. et al. 2011. Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells. Tissue Eng. Part A, 17(1–2), 37–44.CrossRefGoogle ScholarPubMed
Chen, P. M., Yen, M. L., Liu, K. J. et al. 2011. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J. Biomed. Sci., 18, 49.CrossRefGoogle ScholarPubMed
Becerra-Bayona, S., Guiza-Arguello, V., Qu, X., Munoz-Pinto, D. J. and Hahn, M. S. 2012. Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in 3D contexts. Acta Biomater., 8(12), 4397–404.CrossRefGoogle Scholar
Chun, S. Y., Lim, G. J., Kwon, T. G. et al. 2007. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials, 28(29), 4251–6.CrossRefGoogle ScholarPubMed
Sullivan, D. C., Mirmalek-Sani, S. H., Deegan, D. B. et al. 2012. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials, 33(31), 7756–64.CrossRefGoogle ScholarPubMed
Uygun, B. E., Soto-Gutierrez, A., Yagi, H. et al. 2010. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Med., 16(7), 814–20.CrossRefGoogle ScholarPubMed
Ott, H. C., Clippinger, B., Conrad, C. et al. 2010. Regeneration and orthotopic transplantation of a bioartificial lung. Nature Med., 16(8), 927–33.CrossRefGoogle ScholarPubMed
Soto-Gutierrez, A., Zhang, L., Medberry, C. et al. 2011. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C Methods, 17(6), 677–86.CrossRefGoogle ScholarPubMed
Petersen, T. H., Calle, E. A., Zhao, L. et al. 2010. Tissue-engineered lungs for in vivo implantation. Science, 329(5991), 538–41.CrossRefGoogle ScholarPubMed
Orlando, G., Farney, A. C., Iskandar, S. S. et al. 2012. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann. Surg., 256(2), 363–70.CrossRefGoogle ScholarPubMed
Lu, H., Hoshiba, T., Kawazoe, N. and Chen, G. 2012. Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture. J. Biomed. Mater. Res. A, 100(9), 2507–16.Google ScholarPubMed
Baiguera, S., Jungebluth, P., Burns, A. et al. 2011. Tissue engineered human tracheas for in vivo implantation. Biomaterials, 31(34), 8931–8.CrossRefGoogle Scholar
Ribatti, D., Conconi, M. T., Nico, B. et al. 2003. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane. Brain Res., 989(1), 9–15.CrossRefGoogle ScholarPubMed
Evans, D. W., Moran, E. C., Baptista, P. M., Soker, S. and Sparks, J. L. 2013. Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech. Model. Mechanobiol., 12(3), 569–80.CrossRefGoogle ScholarPubMed
Ott, H. C., Matthiesen, T. S., Goh, S. K. et al. 2008. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Med., 14(2), 213–21.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×