Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T12:36:12.209Z Has data issue: false hasContentIssue false

1 - Introduction to Circadian Rhythms

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

Circadian rhythms have a period of approximately 24 hours and are set to precisely 24 hours by various zeitgebers (time givers), light being the most prominent zeitgeber. The central pacemakers for mammalian circadian rhythms are the suprachiasmatic nuclei (SCN) in the anterior hypothalamus. Humoral and neural signals from the SCN help synchronize circadian clocks throughout the body. At the molecular level, cellular circadian rhythms are formed from interlocking transcriptional-translational feedback loops (TTFL) of circadian clock genes that drive spontaneous oscillations of gene and protein expression with an approximately 24-hour period. Remarkably, the molecular clock components are expressed rhythmically in nearly every cell of the body and are entrained by signals from the SCN. Disruption of clock genes either through genes or environment can impair optimal biological function. Circadian rhythms regulate myriad homeostatic systems including the cardiac, immune, metabolic, and central nervous systems. Circadian regulation of physiological and behavioral functions can be disrupted by several factors including the timing of light exposure and food intake. This chapter reviews circadian disruptors to set up the remainder of the book.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, E. E., & Moore, R. Y. (2001). The posterior hypothalamic area: Chemoarchitecture and afferent connections. Brain Res, 889(1–2), 122.Google Scholar
Albers, H. E., Ferris, C. F., Leeman, S. E., & Goldman, B. D. (1984). Avian pancreatic polypeptide phase shifts hamster circadian rhythms when microinjected into the suprachiasmatic region. Science, 223(4638), 833835.Google Scholar
Albrecht, U., Sun, Z. S., Eichele, G., & Lee, C. C. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell, 91(7), 10551064.Google Scholar
Alexander, R. K., Liou, Y. H., Knudsen, N. H., Starost, K. A., Xu, C., Hyde, A. L., Liu, S., Jacobi, D., Liao, N. S., & Lee, C. H. (2020). Bmal1 integrates mitochondrial metabolism and macrophage activation. Elife, 9, https://doi.org/10.7554/eLife.54090.Google Scholar
Arble, D. M., Ramsey, K. M., Bass, J., & Turek, F. W. (2010). Circadian disruption and metabolic disease: Findings from animal models. Best Pract Res Clin Endocrinol Metab, 24(5), 785800.Google Scholar
Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., & Herzog, E. D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci, 8(4), 476483.Google Scholar
Aton, S. J., & Herzog, E. D. (2005). Come together, right … now: Synchronization of rhythms in a mammalian circadian clock. Neuron, 48(4), 531534.Google Scholar
Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., Schutz, G., & Schibler, U. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 289(5488), 23442347.Google Scholar
Barclay, J. L., Husse, J., Bode, B., Naujokat, N., Meyer-Kovac, J., Schmid, S. M., Lehnert, H., & Oster, H. (2012). Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One, 7(5), e37150.Google Scholar
Basinou, V., Park, J. S., Cederroth, C. R., & Canlon, B. (2017). Circadian regulation of auditory function. Hear Res, 347, 4755.CrossRefGoogle ScholarPubMed
Bastianini, S., Silvani, A., Berteotti, C., Martire, V. L., & Zoccoli, G. (2012). Mice show circadian rhythms of blood pressure during each wake–sleep state. Chronobiol Int, 29(1), 8286.Google Scholar
Beier, C., Zhang, Z., Yurgel, M., & Hattar, S. (2021). Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. J Comp Neurol, 529(8), 18631875.Google Scholar
Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 10701073.CrossRefGoogle ScholarPubMed
Boivin, D. B., & Boudreau, P. (2014). Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris), 62(5), 292301.CrossRefGoogle ScholarPubMed
Bouillon-Minois, J. B., Thivel, D., Croizier, C., Ajebo, E., Cambier, S., Boudet, G., Adeyemi, O. J., Ugbolue, U. C., Bagheri, R., Vallet, G. T., Schmidt, J., Trousselard, M., & Dutheil, F. (2022 ). The negative impact of night shifts on diet in emergency healthcare workers. Nutrients, 14(4), 829.Google Scholar
Boulos, Z., Rosenwasser, A. M., & Terman, M. (1980). Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res, 1(1), 3965.CrossRefGoogle ScholarPubMed
Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., & Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J Neurosci, 21(16), 64056412.Google Scholar
Brown, T. M., Brainard, G. C., Cajochen, C., Czeisler, C. A., Hanifin, J. P., Lockley, S. W., Lucas, R. J., Munch, M., O’Hagan, J. B., Peirson, S. N., Price, L. L. A., Roenneberg, T., Schlangen, L. J. M., Skene, D. J., Spitschan, M., Vetter, C., Zee, P. C., & Wright, K. P. Jr. (2022). Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol, 20(3), e3001571.Google Scholar
Bunger, M. K., Wilsbacher, L. D., Moran, S. M., Clendenin, C., Radcliffe, L. A., Hogenesch, J. B., Simon, M. C., Takahashi, J. S., & Bradfield, C. A. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7), 10091017.CrossRefGoogle ScholarPubMed
Challet, E. (2007). Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology, 148(12), 56485655.Google Scholar
Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci USA, 112, 12321237.Google Scholar
Chen, S., Feng, M., Zhang, S., Dong, Z., Wang, Y., Zhang, W., & Liu, C. (2019). Angptl8 mediates food-driven resetting of hepatic circadian clock in mice. Nat Commun, 10(1), 3518.Google Scholar
Colwell, C. S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., Hu, Z., Liu, X., & Waschek, J. A. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol, 285(5), R939R949.Google Scholar
Coomans, C. P., van den Berg, S. A., Houben, T., van Klinken, J. B., van den Berg, R., Pronk, A. C., Havekes, L. M., Romijn, J. A., van Dijk, K. W., Biermasz, N. R., & Meijer, J. H. (2013 ). Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. Faseb J, 27(4), 17211732.Google Scholar
Cox, K. H., & Takahashi, J. S. (2019). Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol, 63(4), R93R102.Google Scholar
Curtis, A. M., Bellet, M. M., Sassone-Corsi, P., & O’Neill, L. A. (2014). Circadian clock proteins and immunity. Immunity, 40(2), 178186.Google Scholar
Curtis, A. M., Cheng, Y., Kapoor, S., Reilly, D., Price, T. S., & Fitzgerald, G. A. (2007). Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA, 104(9), 34503455.Google Scholar
Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Rimmer, D. W., Ronda, J. M., Silva, E. J., Allan, J. S., Emens, J. S., Dijk, D. J., & Kronauer, R. E. (1999). Stability, precision, and near-24-hour period of the human circadian pacemaker. Science, 284(5423), 21772181.Google Scholar
Czeisler, C. A., Shanahan, T. L., Klerman, E. B., Martens, H., Brotman, D. J., Emens, J. S., Klein, T., & Rizzo, J. F. (1995). Suppression of melatonin secretion in some blind patients by exposure to bright light [see comments]. N Engl J Med, 332, 611.Google Scholar
Dalby, M. C., Davidson, S. J., Burman, J. F., & Davies, S. W. (2000). Diurnal variation in platelet aggregation with the PFA-100 platelet function analyser. Platelets, 11(6), 320324.Google Scholar
Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 14(23), 29502961.Google Scholar
Davidson, A. J., London, B., Block, G. D., & Menaker, M. (2005). Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens, 27(2–3), 307311.Google Scholar
Ding, J. M., Faiman, L. E., Hurst, W. J., Kuriashkina, L. R., & Gillette, M. U. (1997). Resetting the biological clock: Mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci, 17(2), 667675.Google Scholar
Do, M. T. H. (2019). Melanopsin and the intrinsically photosensitive retinal ganglion cells: Biophysics to behavior. Neuron, 104(2), 205226.Google Scholar
Dutheil, F., Baker, J. S., Mermillod, M., De Cesare, M., Vidal, A., Moustafa, F., Pereira, B., & Navel, V. (2020). Shift work, and particularly permanent night shifts, promote dyslipidaemia: A systematic review and meta-analysis. Atherosclerosis, 313, 156169.CrossRefGoogle ScholarPubMed
Edgar, D. M., & Dement, W. C. (1991). Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol, 261(4 Pt 2), R928R933.Google Scholar
Etsuda, H., Takase, B., Uehata, A., Kusano, H., Hamabe, A., Kuhara, R., Akima, T., Matsushima, Y., Arakawa, K., Satomura, K., Kurita, A., & Ohsuzu, F. (1999). Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: Possible connection to morning peak of cardiac events? Clin Cardiol, 22(6), 417421.CrossRefGoogle ScholarPubMed
Evans, J. A., & Davidson, A. J. (2013). Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci, 119, 283323.Google Scholar
Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci Adv, 2(6), e1600377.Google Scholar
Fernandez, D. C., Chang, Y. T., Hattar, S., & Chen, S. K. (2016). Architecture of retinal projections to the central circadian pacemaker. Proc Natl Acad Sci USA, 113(21), 60476052.Google Scholar
Finlay, B. L., & Sengelaub, D. R. (1981). Toward a neuroethology of mammalian vision: Ecology and anatomy of rodent visuomotor behavior. Behav Brain Res, 3(2), 133149.Google Scholar
Fisk, A. S., Tam, S. K. E., Brown, L. A., Vyazovskiy, V. V., Bannerman, D. M., & Peirson, S. N. (2018). Light and cognition: Roles for circadian rhythms, sleep, and arousal. Front Neurol, 9, 56.Google Scholar
Fonken, L. K., Aubrecht, T. G., Melendez-Fernandez, O. H., Weil, Z. M., & Nelson, R. J. (2013). Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms, 28(4), 262271.CrossRefGoogle ScholarPubMed
Fonken, L. K., Frank, M. G., Kitt, M. M., Barrientos, R. M., Watkins, L. R., & Maier, S. F. (2015). Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun, 45, 171179.CrossRefGoogle ScholarPubMed
Fonken, L. K., & Nelson, R. J. (2013). Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res, 243, 7478.CrossRefGoogle ScholarPubMed
Fonken, L. K., & Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocr Rev, 35(4), 648670.Google Scholar
Fonken, L. K., Weil, Z. M., & Nelson, R. J. (2013). Dark nights reverse metabolic disruption caused by dim light at night. Obesity (Silver Spring), 21(6), 11591164.Google Scholar
Fonken, L. K., Workman, J. L., Walton, J. C., Weil, Z. M., Morris, J. S., Haim, A., & Nelson, R. J. (2010). Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA, 107(43), 1866418669.Google Scholar
Fraser, G., Trinder, J., Colrain, I. M., & Montgomery, I. (1989). Effect of sleep and circadian cycle on sleep period energy expenditure. J Appl Physiol (1985), 66(2), 830836.Google Scholar
Gaston, K. J., Visser, M. E., & Holker, F. (2015). The biological impacts of artificial light at night: The research challenge. Philosophical Transactions of the Royal Society B, 370, 20140133.Google Scholar
Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H. W., & Schutz, G. (2002). Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron, 34(2), 245253.Google Scholar
Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S., & Weitz, C. J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280(5369), 15641569.CrossRefGoogle ScholarPubMed
Gibbs, J. E., Blaikley, J., Beesley, S., Matthews, L., Simpson, K. D., Boyce, S. H., Farrow, S. N., Else, K. J., Singh, D., Ray, D. W., & Loudon, A. S. (2012). The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA, 109(2), 582587.CrossRefGoogle ScholarPubMed
Gibbs, J. E., & Ray, D. W. (2013). The role of the circadian clock in rheumatoid arthritis. Arthritis Res Ther, 15(1), 205.CrossRefGoogle ScholarPubMed
Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., & Greenberg, M. E. (1993). Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science, 260(5105), 238241.Google Scholar
Griffin, E. A. Jr., Staknis, D., & Weitz, C. J. (1999). Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science, 286(5440), 768771.Google Scholar
Gritton, H. J., Kantorowski, A., Sarter, M., & Lee, T. M. (2012). Bidirectional interactions between circadian entrainment and cognitive performance. Learn Mem, 19(3), 126141.Google Scholar
Halberg, F., Johnson, E. A., Brown, B. W., & Bittner, J. J. (1960). Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med, 103, 142144.Google Scholar
Hanifin, J. P., Lockley, S. W., Cecil, K., West, K., Jablonski, M., Warfield, B., James, M., Ayers, M., Byrne, B., Gerner, E., Pineda, C., Rollag, M., & Brainard, G. C. (2019). Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses. Physiol Behav, 198, 5766.Google Scholar
Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B., & Fahrenkrug, J. (2002). The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci, 22(1), RC191.Google Scholar
Hansen, J. (2017). Night shift work and risk of breast cancer. Curr Environ Health Rep, 4(3), 325339.CrossRefGoogle ScholarPubMed
Harmar, A. J., Marston, H. M., Shen, S., Spratt, C., West, K. M., Sheward, W. J., Morrison, C. F., Dorin, J. R., Piggins, H. D., Reubi, J. C., Kelly, J. S., Maywood, E. S., & Hastings, M. H. (2002). The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell, 109(4), 497508.CrossRefGoogle ScholarPubMed
Haspel, J. A., Anafi, R., Brown, M. K., Cermakian, N., Depner, C., Desplats, P., Gelman, A. E., Haack, M., Jelic, S., Kim, B. S., Laposky, A. D., Lee, Y. C., Mongodin, E., Prather, A. A., Prendergast, B. J., Reardon, C., Shaw, A. C., Sengupta, S., Szentirmai, E., … Solt, L. A. (2020). Perfect timing: Circadian rhythms, sleep, and immunity: An NIH workshop summary. JCI Insight, 5(1).Google Scholar
Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., Leblanc, M., Chaix, A., Joens, M., Fitzpatrick, J. A., Ellisman, M. H., & Panda, S. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab, 15(6), 848860.Google Scholar
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W., & Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse [Comparative Study Research Support, N.I.H., Extramural]. J Comp Neurol, 497(3), 326349.CrossRefGoogle ScholarPubMed
Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S., Douglas, R. H., Hankins, M. W., Lem, J., Biel, M., Hofmann, F., Foster, R. G., & Yau, K. W. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424(6944), 7681.Google Scholar
He, W., Holtkamp, S., Hergenhan, S. M., Kraus, K., de Juan, A., Weber, J., Bradfield, P., Grenier, J. M. P., Pelletier, J., Druzd, D., Chen, C. S., Ince, L. M., Bierschenk, S., Pick, R., Sperandio, M., Aurrand-Lions, M., & Scheiermann, C. (2018). Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity, 49(6), 11751190.Google Scholar
van der Heijden, K. B., de Sonneville, L. M., & Althaus, M. (2010). Time-of-day effects on cognition in preadolescents: A trails study. Chronobiol Int, 27(9–10), 18701894.Google Scholar
Herxheimer, A. (2014). Jet lag. BMJ Clin Evid, 2014, 2303.Google Scholar
Hogenesch, J. B., Gu, Y. Z., Jain, S., & Bradfield, C. A. (1998). The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA, 95(10), 54745479.Google Scholar
Hut, R. A., & Van der Zee, E. A. (2011). The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res, 221(2), 466480.CrossRefGoogle ScholarPubMed
IARC Monographs Vol 124 group. (2019). Carcinogenicity of night shift work. Lancet Oncol, 20(8), 10581059.Google Scholar
Ingpen, M. L. (1968). The quantitative measurement of joint changes in rheumatoid arthritis. Ann Phys Med, 9(8), 322327.Google Scholar
Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J., & Reppert, S. M. (1999). A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell, 96(1), 5768.Google Scholar
Jones, S. E., Lane, J. M., Wood, A. R., van Hees, V. T., Tyrrell, J., Beaumont, R. N., Jeffries, A. R., Dashti, H. S., Hillsdon, M., Ruth, K. S., Tuke, M. A., Yaghootkar, H., Sharp, S. A., Jie, Y., Thompson, W. D., Harrison, J. W., Dawes, A., Byrne, E. M., Tiemeier, H., … Weedon, M. N. (2019). Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun, 10(1), 343.Google Scholar
Jung, C. M., Melanson, E. L., Frydendall, E. J., Perreault, L., Eckel, R. H., & Wright, K. P. (2011). Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol, 589(Pt 1), 235244.Google Scholar
Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H., & McEwen, B. S. (2011). Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci USA, 108(4), 16571662.Google Scholar
Khan, M. S., & Ahmad, S. I. (2003). Circadian variation: Increased morning incidence of acute myocardial infarction in patients with coronary artery disease. J Pak Med Assoc, 53(2), 8487.Google Scholar
Krishnan, H. C., & Lyons, L. C. (2015). Synchrony and desynchrony in circadian clocks: Impacts on learning and memory. Learn Mem, 22(9), 426437.Google Scholar
Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H., & Reppert, S. M. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 98(2), 193205.Google Scholar
Lamia, K. A., Storch, K. F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA, 105(39), 1517215177.Google Scholar
Landgraf, D., Tsang, A. H., Leliavski, A., Koch, C. E., Barclay, J. L., Drucker, D. J., & Oster, H. (2015). Oxyntomodulin regulates resetting of the liver circadian clock by food. Elife, 4, e06253.Google Scholar
Leak, R. K., & Moore, R. Y. (2001). Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol, 433(3), 312334.Google Scholar
Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S., & Reppert, S. M. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 107(7), 855867.Google Scholar
Liu, J. A., Walton, J. C., DeVries, A. C., & Nelson, R. J. (2021). Disruptions of circadian rhythms and thrombolytic therapy during ischemic stroke intervention. Front Neurosci, 15, 675732.CrossRefGoogle ScholarPubMed
Lowrey, P. L., Shimomura, K., Antoch, M. P., Yamazaki, S., Zemenides, P. D., Ralph, M. R., Menaker, M., & Takahashi, J. S. (2000). Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science, 288(5465), 483492.Google Scholar
Manfredini, R., Boari, B., Salmi, R., Fabbian, F., Pala, M., Tiseo, R., & Portaluppi, F. (2013). Twenty-four-hour patterns in occurrence and pathophysiology of acute cardiovascular events and ischemic heart disease. Chronobiol Int, 30(1–2), 616.Google Scholar
Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M. H., Lopez, J. P., Philipson, L. H., Bradfield, C. A., Crosby, S. D., JeBailey, L., Wang, X. Z., Takahashi, J. S., & Bass, J. (2010). Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 466(7306), 627631.Google Scholar
Markwald, R. R., Melanson, E. L., Smith, M. R., Higgins, J., Perreault, L., Eckel, R. H., & Wright, K. P. Jr. (2013). Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci USA, 110(14), 56955700.Google Scholar
Martin-Fairey, C. A., & Nunez, A. A. (2014). Circadian modulation of memory and plasticity gene products in a diurnal species. Brain Res, 1581, 3039.CrossRefGoogle Scholar
Mavroudis, P. D., DuBois, D. C., Almon, R. R., & Jusko, W. J. (2018). Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat. PLoS One, 13(6), e0197534.Google Scholar
Maywood, E. S., Chesham, J. E., O’Brien, J. A., & Hastings, M. H. (2011). A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA, 108(34), 1430614311.Google Scholar
McHill, A. W., Melanson, E. L., Higgins, J., Connick, E., Moehlman, T. M., Stothard, E. R., & Wright, K. P. Jr. (2014). Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci USA, 111(48), 1730217307.CrossRefGoogle ScholarPubMed
Melendez-Fernandez, O. H., Walton, J. C., DeVries, A. C., & Nelson, R. J. (2021). Clocks, rhythms, sex, and hearts: How disrupted circadian rhythms, time-of-day, and sex influence cardiovascular health. Biomolecules, 11(6), 883.Google Scholar
Meltser, I., Cederroth, C. R., Basinou, V., Savelyev, S., Lundkvist, G. S., & Canlon, B. (2014). TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol, 24(6), 658663.Google Scholar
Mohawk, J. A., Green, C. B., & Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annu Rev Neurosci, 35, 445462.Google Scholar
Moore, R. Y., & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res, 42(1), 201206.Google Scholar
Moore, R. Y., & Qavi, H. B. (1971). Circadian rhythm in adrenal adenyl cyclase and corticosterone abolished by medial forebrain bundle transection in the rat. Experientia, 27(3), 249250.Google Scholar
Moore, R. Y., Speh, J. C., & Leak, R. K. (2002). Suprachiasmatic nucleus organization. Cell Tissue Res, 309(1), 8998.Google Scholar
Mrosovsky, N., Lucas, R. J., & Foster, R. G. (2001). Persistence of masking responses to light in mice lacking rods and cones. J Biol Rhythms, 16(6), 585588.CrossRefGoogle ScholarPubMed
Muller, J. E. (1999 ). Circadian variation and triggering of acute coronary events. Am Heart J, 137(4 Pt 2), S1S8.Google Scholar
Muller, J. E., Ludmer, P. L., Willich, S. N., Tofler, G. H., Aylmer, G., Klangos, I., & Stone, P. H. (1987). Circadian variation in the frequency of sudden cardiac death. Circulation, 75(1), 131138.CrossRefGoogle ScholarPubMed
Nelson, R. J., Bumgarner, J. R., Walker, W. H., 2nd, & DeVries, A. C. (2021 ). Time-of-day as a critical biological variable. Neurosci Biobehav Rev, 127, 740746.CrossRefGoogle ScholarPubMed
Paschos, G. K., & FitzGerald, G. A. (2010). Circadian clocks and vascular function. Circ Res, 106(5), 833841.Google Scholar
Patton, A. P., & Hastings, M. H. (2018). The suprachiasmatic nucleus. Curr Biol, 28(15), R816R822.Google Scholar
Paul, M. J., Indic, P., & Schwartz, W. J. (2015). Social synchronization of circadian rhythmicity in female mice depends on the number of cohabiting animals. Biol Lett, 11(6), 20150204.Google Scholar
Perry, M. G., Kirwan, J. R., Jessop, D. S., & Hunt, L. P. (2009). Overnight variations in cortisol, interleukin 6, tumour necrosis factor alpha and other cytokines in people with rheumatoid arthritis. Ann Rheum Dis, 68(1), 6368.Google Scholar
Pietroiusti, A., Neri, A., Somma, G., Coppeta, L., Iavicoli, I., Bergamaschi, A., & Magrini, A. (2010). Incidence of metabolic syndrome among night-shift healthcare workers. Occup Environ Med, 67(1), 5457.Google Scholar
Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110(2), 251260.Google Scholar
Provencio, I., Rollag, M. D., & Castrucci, A. M. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature, 415(6871), 493.Google Scholar
Ralph, M. R., & Menaker, M. (1988). A mutation of the circadian system in golden hamsters. Science, 241, 12251227.CrossRefGoogle ScholarPubMed
Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., Cao, R., & Liu, A. C. (2018). mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet, 14(5), e1007369.Google Scholar
Rana, S., Prabhu, S. D., & Young, M. E. (2020). Chronobiological influence over cardiovascular function: The good, the bad, and the ugly. Circ Res, 126(2), 258279.Google Scholar
Reddy, A. B., Maywood, E. S., Karp, N. A., King, V. M., Inoue, Y., Gonzalez, F. J., Lilley, K. S., Kyriacou, C. P., & Hastings, M. H. (2007). Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology, 45(6), 14781488.Google Scholar
Reinke, H., & Asher, G. (2019). Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol, 20(4), 227241.Google Scholar
Richter, C. P. (1922). A behavioristic study of the activity of the rat. Compar Psychol Monogr, 1, 155.Google Scholar
Ripperger, J. A., & Schibler, U. (2001). Circadian regulation of gene expression in animals. Curr Opin Cell Biol, 13(3), 357362.Google Scholar
Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: Daily temporal patterns of human chronotypes. J Biol Rhythms, 18(1), 8090.Google Scholar
Rusak, B., & Groos, G. (1982). Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science, 215(4538), 14071409.Google Scholar
Salgado-Delgado, R. C., Saderi, N., Basualdo Mdel, C., Guerrero-Vargas, N. N., Escobar, C., & Buijs, R. M. (2013). Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS One, 8(4), e60052.Google Scholar
Scheer, F. A., Morris, C. J., & Shea, S. A. (2013). The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring), 21(3), 421423.Google Scholar
Schibler, U., Gotic, I., Saini, C., Gos, P., Curie, T., Emmenegger, Y., Sinturel, F., Gosselin, P., Gerber, A., Fleury-Olela, F., Rando, G., Demarque, M., & Franken, P. (2015). Clock-talk: Interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol, 80, 223232.Google Scholar
Schmidt, C., Collette, F., Cajochen, C., & Peigneux, P. (2007, Oct). A time to think: Circadian rhythms in human cognition. Cogn Neuropsychol, 24(7), 755789.Google Scholar
Schurov, I. L., McNulty, S., Best, J. D., Sloper, P. J., & Hastings, M. H. (1999). Glutamatergic induction of CREB phosphorylation and Fos expression in primary cultures of the suprachiasmatic hypothalamus in vitro is mediated by co-ordinate activity of NMDA and non-NMDA receptors. J Neuroendocrinol, 11(1), 4351.Google Scholar
Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382(6594), 810813.Google Scholar
Smarr, B. L., Jennings, K. J., Driscoll, J. R., & Kriegsfeld, L. J. (2014). A time to remember: The role of circadian clocks in learning and memory. Behav Neurosci, 128(3), 283303.Google Scholar
Smolensky, M. H., Hermida, R. C., Castriotta, R. J., & Portaluppi, F. (2007). Role of sleep–wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med, 8(6), 668680.Google Scholar
Stephan, F. K., & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA, 69(6), 15831586.Google Scholar
Storch, K. F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F. C., Wong, W. H., & Weitz, C. J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature, 417(6884), 7883.Google Scholar
Stow, L. R., Richards, J., Cheng, K. Y., Lynch, I. J., Jeffers, L. A., Greenlee, M. M., Cain, B. D., Wingo, C. S., & Gumz, M. L. (2012). The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension, 59(6), 11511156.Google Scholar
Sudy, A. R., Ella, K., Bodizs, R., & Kaldi, K. (2019). Association of social jetlag with sleep quality and autonomic cardiac control during sleep in young healthy men. Front Neurosci, 13, 950.Google Scholar
Takahashi, J. S., DeCoursey, P. J., Bauman, L., & Menaker, M. (1984). Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature, 308(5955), 186188.CrossRefGoogle ScholarPubMed
Takeda, N., Maemura, K., Horie, S., Oishi, K., Imai, Y., Harada, T., Saito, T., Shiga, T., Amiya, E., Manabe, I., Ishida, N., & Nagai, R. (2007). Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J Biol Chem, 282(45), 3256132567.Google Scholar
Thosar, S. S., Butler, M. P., & Shea, S. A. (2018). Role of the circadian system in cardiovascular disease. J Clin Invest, 128(6), 21572167.CrossRefGoogle ScholarPubMed
Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S., & Bass, J. (2005). Obesity and metabolic syndrome in circadian clock mutant mice. Science, 308(5724), 10431045.Google Scholar
Vetter, C. (2020). Circadian disruption: What do we actually mean? Eur J Neurosci, 51(1), 531550.Google Scholar
Vitaterna, M. H., King, D. P., Chang, A. M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., & Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science, 264(5159), 719725.Google Scholar
Weaver, D. R. (1998). The suprachiasmatic nucleus: A 25-year retrospective. J Biol Rhythms, 13(2), 100112.Google Scholar
Welsh, D. K., Logothetis, D. E., Meister, M., & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14(4), 697706.Google Scholar
West, K. E., Jablonski, M. R., Warfield, B., Cecil, K. S., James, M., Ayers, M. A., Maida, J., Bowen, C., Sliney, D. H., Rollag, M. D., Hanifin, J. P., & Brainard, G. C. (2011). Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol (1985), 110(3), 619626.Google Scholar
Westwood, M. L., O’Donnell, A. J., de Bekker, C., Lively, C. M., Zuk, M., & Reece, S. E. (2019). The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol, 3(4), 552560.Google Scholar
Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M., & Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science, 288(5466), 682685.Google Scholar
Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., Siepka, S. M., Hong, H. K., Oh, W. J., Yoo, O. J., Menaker, M., & Takahashi, J. S. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA, 101(15), 53395346.Google Scholar
Zhang, Q., Chair, S. Y., Lo, S. H. S., Chau, J. P., Schwade, M., & Zhao, X. (2020). Association between shift work and obesity among nurses: A systematic review and meta-analysis. Int J Nurs Stud, 112, 103757.Google Scholar
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., & Hogenesch, J. B. (2014). A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA, 111(45), 1621916224.CrossRefGoogle ScholarPubMed
Zhang, S., Dai, M., Wang, X., Jiang, S. H., Hu, L. P., Zhang, X. L., & Zhang, Z. G. (2020). Signalling entrains the peripheral circadian clock. Cell Signal, 69, 109433.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×