Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T19:54:03.236Z Has data issue: false hasContentIssue false

16 - Soil biodiversity in rapidly changing tropical landscapes: scaling down and scaling up

Published online by Cambridge University Press:  17 September 2009

Ken E. Giller
Affiliation:
Wageningen University
David Bignell
Affiliation:
University of London
Patrick Lavelle
Affiliation:
Institut de Recherches pour le Développement Paris
Mike Swift
Affiliation:
CIAT Nairobi
Edmundo Barrios
Affiliation:
CIAT Cali
Fatima Moreia
Affiliation:
Universidade Federal de Lavras
Meine van Noordwijk
Affiliation:
World Agroforestry Centre Bogor
Isabelle Barios
Affiliation:
Instituto de Ecología A. C.
Nancy Karanja
Affiliation:
University of Nairobi
Jeroen Huising
Affiliation:
CIAT, Nairobi
Richard Bardgett
Affiliation:
Lancaster University
Michael Usher
Affiliation:
University of Stirling
David Hopkins
Affiliation:
University of Stirling
Get access

Summary

SUMMARY

  1. Habitat modification and fragmentation of remaining pristine areas in the tropics is occurring at a speed that threatens to compromise any serious attempt to assess their value in the biosphere, and catalogue their true biological diversity.

  2. Knowledge about the functional significance of soil biodiversity has been strongly influenced by emphasis on temperate climates and by focusing on particular processes of significance to high-input, intensive agriculture. We do not know how robust our methodologies and our concepts are when applied to low-input systems.

  3. Links between diversity and function are clearer for functions that are relatively specific, such as the roles of ecosystem engineers, or specific nutrient transformations compared with generalist functions, such as decomposition, micrograzing, predation and antibiosis.

  4. Substantial redundancy exists in relation to general functions that could be important for functional stability.

  5. When considering the legume–rhizobium symbiosis as a specific case, rhizobial diversity based on molecular phylogeny is only weakly correlated with specific functions such as ability to form nodules (infectiveness), to fix N2 (effectiveness) and to survive in the soil (adaptation).

  6. Major challenges for the future include developing tools for managing soil biodiversity through manipulation of above-ground vegetation and soil amendments, and understanding the effects of scale to design land use systems for optimal future conservation of the biodiversity of tropical soils.

Introduction

If the soil is said to be the ‘poor man's rainforest’ in terms of the bewildering biodiversity it harbours (Usher 1985), then what status should the soil in the tropical rainforest be assigned?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, D. S., Murphy, P. J. & Giller, K. E. (2002a). The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Applied and Environmental Microbiology, 68, 4025–4034CrossRefGoogle Scholar
Andrade, D. S., Murphy, P. J. & Giller, K. E. (2002b). Effects of liming and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian oxisol. Soil Biology and Biochemistry, 34, 477–485CrossRefGoogle Scholar
Anyango, B., Wilson, K. J., Beynon, J. L. & Giller, K. E. (1995). Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils of contrasting pHs. Applied and Environmental Microbiology, 61, 4016–4021Google ScholarPubMed
Anyango, B., Wilson, K. & Giller, K. E. (1998). Competition in Kenyan soils between Rhizobium leguminosarum bv. phaseoli strain Kim5 and R. tropici strain CIAT899 using the gusA marker gene. Plant and Soil, 204, 69–78CrossRefGoogle Scholar
Bala, A. & Giller, K. E. (2001). Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytologist, 149, 495–507CrossRefGoogle Scholar
Bala, A., Murphy, P. & Giller, K. E. (2002). Occurrence and genetic diversity of rhizobia nodulating Sesbania sesban in African soils. Soil Biology and Biochemistry, 34, 1759–1768CrossRefGoogle Scholar
Bala, A., Murphy, P. J. & Giller, K. E. (2003a). Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Molecular Ecology, 12, 917–929CrossRefGoogle Scholar
Bala, A., Murphy, P. J., Osunde, A. O. & Giller, K. E. (2003b). Nodulation of tree legumes and ecology of their native rhizobial populations in tropical soils. Applied Soil Ecology, 22, 211–223CrossRefGoogle Scholar
Barros, E., Curmi, P., Hallaire, V., Chauvel, A. & Lavelle, P. (2001). The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma, 100, 193–213CrossRefGoogle Scholar
Barrios, E., Kwesiga, F., Buresh, R. J., Sprent, J. I. & Coe, R. (1998). Relating preseason soil nitrogen to maize yield in tree legume– maize rotations. Soil Science Society of America Journal, 62, 1604–1609CrossRefGoogle Scholar
Bignell, D. E., Tondoh, J., Dibog, L., et al. (2005). Below-ground biodiversity assessment: the ASB rapid, functional group approach. Alternatives to Slash-and-Burn: A Global Synthesis (Ed. by , P. J. Ericksen, , P. A. Sanchez & , A. Juo), Special Publication. Madison, WI: American Society for AgronomyGoogle Scholar
Cadisch, G. & Giller, K. E. (eds.) (1997). Driven by Nature: Plant Residue Quality and Decomposition. Wallingford: CAB InternationalGoogle Scholar
Chauvel, A., Grimaldi, M., Barros, E., et al. (1999). Pasture degradation by an Amazonian earthworm. Nature, 389, 32–33CrossRefGoogle Scholar
Chen, W.-H., Laevens, S., Lee, T.-M., et al. (2001). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology, 51, 1729–1735CrossRefGoogle ScholarPubMed
Chikowo, R., Mapfumo, P., Nyamugafata, P. & Giller, K. E. (2004). Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe. Agriculture, Ecosystems and Environment, 102, 109–131CrossRefGoogle Scholar
Coventry, R. J., Holt, J. A. & Sinclair, D. F. (1988). Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Australian Journal of Soil Research, 26, 375–390CrossRefGoogle Scholar
Daniel, R. M., Limmer, A. W., Steele, K. W. & Smith, I. M. (1982). Anaerobic growth, nitrate reduction and denitrification in 46 rhizobial strains. Journal of General Microbiology, 128, 1811–1815Google Scholar
Decaëns, T., Galvis, J. H. & Amezquita, E. (2001a). Properties of the structures created by ecological engineers at the soil surface of a Colombian savanna. Comptes Rendus de L'Academie Des Sciences Serie IIII Sciences De La Vie Life Sciences, 324, 465–478Google Scholar
Decaëns, T., Lavelle, P., Jiménez, J. J., et al. (2001b). Impact of land management on soil macrofauna in the eastern plains of Colombia. Nature's Plow: Soil Macroinvertebrate Communities in the Neotropical Savannas of Colombia (Ed. by , J. J. Jiménez & , R. J. Thomas), pp. 19–41. Colombia: CIATGoogle Scholar
Dobson, A. P., Bradshaw, A. D. & Baker, A. J. M. (1997). Hopes for the future: restoration ecology and conservation biology. Science, 277, 515–521CrossRefGoogle Scholar
Eggleton, P. (2000). Global patterns of termite diversity. Termites: Evolution, Sociality, Symbioses, Ecology (Ed. by , T. Abe, , D. E. Bignell & , M. Higashi), pp. 25–51. Dordrecht: Kluwer AcademicGoogle Scholar
Eggleton, P., Bignell, D. E., Hauser, S., et al. (2002). Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems and Environment, 90, 189–202CrossRefGoogle Scholar
Feijoo, A., Knapp, E. B., Lavelle, P. & Moreno, A. G. (2001). Quantifying soil macrofauna in a Colombian watershed. Nature's Plow: Soil Macroinvertebrate Communities in the Neotropical Savannas of Colombia (Ed. by , J. J. Jiménez & , R. J. Thomas), pp. 42–48. Colombia: CIATGoogle Scholar
Feller, C. & Beare, M. H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69–116CrossRefGoogle Scholar
Finlay, J. F. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063CrossRefGoogle ScholarPubMed
Finlay, J. F. & Clarke, K. J. (1999). Ubiquitous dispersal of microbial species. Nature, 400, 828CrossRefGoogle Scholar
Fragoso, C., Lavelle, P., Blanchart, E., et al. (1999). Earthworm communities of tropical agroecosystems: origin, structure and influence of management practices. Earthworm Management in Tropical Agroecosystems (Ed. by , P. Lavelle, , L. Brussaard & , P. Hendrix), pp. 27–55. Wallingford: CAB InternationalGoogle Scholar
Geist, H. J. & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. BioScience, 52, 143–150CrossRefGoogle Scholar
Giller, K. E. (2000). Translating science into action for agricultural development in the tropics: an example from decomposition studies. Applied Soil Ecology, 14, 1–3Google Scholar
Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems, 2nd edition. Wallingford: CAB InternationalCrossRefGoogle Scholar
Giller, K. E., Beare, M. H., Lavelle, P., Izac, A.-M. N. & Swift, M. J. (1997). Agricultural intensification, soil biodiversity and ecosystem function. Applied Soil Ecology, 6, 3–16CrossRefGoogle Scholar
Giller, K. E., Witter, E. & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414CrossRefGoogle Scholar
Gillison, A. N., Jones, D. T., Susilo, F.-X. & Bignell, D. E. (2003). Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms, Diversity and Evolution, 3, 111–126CrossRefGoogle Scholar
Graham, P. H., Draeger, K. J., Ferrey, M. L., et al. (1994). Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Canadian Journal of Microbiology, 40, 198–207CrossRefGoogle Scholar
Heal, O. W., Anderson, J. W. & Swift, M. J. (1997). Plant litter quality and decomposition: an historical overview. Driven by Nature: Plant Litter Quality and Decomposition (Ed. by , G. Cadisch & , K. E. Giller), pp. 3–30. Wallingford: CAB InternationalGoogle Scholar
Hernandez-Lucas, I., Segovia, L., Martínez-Romero, E. & Pueppke, S. (1995). Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Applied and Environmental Microbiology, 61, 2775–2779Google ScholarPubMed
Holt, J. A. & Lepage, M. (2000). Termites and soil properties. Termites: Evolution, Sociality, Symbioses, Ecology (Ed. by , T. Abe, , D. E. Bignell & , M. Higashi), pp. 389–407. Dordrecht: Kluwer AcademicGoogle Scholar
Jones, D. T., Susilo, F.-X., Bignell, D. E., et al. (2003). Termite assemblage collapses along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology, 40, 380–391CrossRefGoogle Scholar
Jordan, D. C. (1984). Rhizobiaceae. Bergey's Manual of Systematic Bacteriology (Ed. by , N. R. Krieg & , J. G. Holt), Vol. 1, pp. 235–244. Baltimore, MD: Williams and WilkinsGoogle Scholar
Kandji, S. T., Ogol, C. K. P. O. & Albrecht, A. (2001). Diversity of plant parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Applied Soil Ecology, 18, 143–157CrossRefGoogle Scholar
Lambin, E. F., Turner, B. L., Geist, H. J., et al. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, Human and Policy Dimensions, 11, 261–269CrossRefGoogle Scholar
Lapied, E. & Lavelle, P. (2003). The peregrine earthworm Pontoscolex corethrurus in the East Coast of Costa Rica. Pedobiologia, 47, 471–474Google Scholar
Lausch, A. & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2, 3–15CrossRefGoogle Scholar
Lavelle, P. (1997). Faunal strategies and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, 93–132CrossRefGoogle Scholar
Lavelle, P., Bignell, D., Lepage, M., et al. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33, 159–193Google Scholar
Lie, T. A. (1981). Gene centres: a source for genetic variants in symbiotic nitrogen fixation – host-induced ineffectivity in Pisum sativum ecotype Fulvum. Plant and Soil, 61, 125–134CrossRefGoogle Scholar
Mando, A. (1997). Effect of termites and mulch on the physical rehabilitation of structurally crusted soils in the Sahel. Land Degradation and Development, 8, 269–2783.0.CO;2-8>CrossRefGoogle Scholar
Martínez-Romero, E. & Caballero-Mellado, J. (1996). Rhizobium phylogenies and bacterial genetic diversity. Critical Reviews in Plant Sciences, 15, 113–140CrossRefGoogle Scholar
Martínez-Romero, E., Segovia, L., Mercante, F. M., et al. (1991). Rhizobium tropici: a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, 41, 417–426CrossRefGoogle ScholarPubMed
Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509CrossRefGoogle ScholarPubMed
Moran, E. (1993). Deforestation and land use in the Brazilian Amazon. Human Ecology, 21, 1–21CrossRefGoogle Scholar
Moreira, F. M. S., Gillis, M., Pot, B., Kersters, K. & Franco, A. A. (1993). Characterisation of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Systematic and Applied Microbiology, 16, 135–146CrossRefGoogle Scholar
Moreira, F. M. S., Haukka, K. & Young, J. P. W. (1998). Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Molecular Ecology, 7, 889–895CrossRefGoogle Scholar
Moulin, L., Munive, A., Dreyfus, B. & Boivin-Masson, C. (2001). Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature, 411, 948–950CrossRefGoogle ScholarPubMed
Noble, I. R. & Dirzo, R. (1997). Forests as human-dominated ecosystems. Science, 277, 522–525CrossRefGoogle Scholar
Noti, M.-I., Andre, H. M., Ducarme, X. & Lebrun, P. (2003). Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiversity and Conservation, 12, 767–785CrossRefGoogle Scholar
Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G. & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agriculture, Ecosystems and Environment, 83, 27–42CrossRefGoogle Scholar
Romero, D., Singleton, P. W., Segovia, L., et al. (1988). Effect of naturally occurring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli. Applied and Environmental Microbiology, 54, 848–850Google ScholarPubMed
Ruthenberg, H. (1980). Farming Systems in the Tropics, 3rd edition. Oxford: Clarendon PressGoogle Scholar
Segovia, L., Young, J. P. W. & Martínez-Romero, E. (1994). Reclassification of American Rhizobium leguminosarum biovar phaseoli Type I strains as Rhizobium etli sp. nov. International Journal of Systematic Bacteriology, 43, 374–377CrossRefGoogle Scholar
Soberon-Chavez, G., Najera, R., Olivera, H. & Segovia, L. (1986). Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. Journal of Bacteriology, 167, 487–491CrossRefGoogle ScholarPubMed
Sprent, J. I. (2001). Nodulation in Legumes. Kew: Royal Botanic GardensGoogle Scholar
Susilo, F.-X., Neutel, A. M., van Noordwijk, M., et al. (2004). Soil biodiversity and food web synthesis. Belowground Interactions in Tropical Agroecosystems (Ed. by , M. van Noordwijk, , G. Cadisch & , C. K. Ong), pp. 285–307. Wallingford: CAB International
Swift, M. J. (1976). Species diversity and the structure of microbial communities in terrestrial habitats. The Role of Aquatic and Terrestrial Organisms in Decomposition Processes (Ed. by , J. M. Anderson & , A. MacFadyen), pp. 185–221. Oxford: Blackwell ScientificGoogle Scholar
Swift, M. J. (1987). Organisation of assemblages of decomposer fungi in space and time. Organisation of Communities Past and Present (Ed. by , P. Giller & , J. Gee), pp. 229–253. Oxford: Blackwell ScientificGoogle Scholar
Swift, M. J. (1997). Agricultural intensification, soil biodiversity and ecosystem function. Applied Soil Ecology, 6, 1–2CrossRefGoogle Scholar
Swift, M. J. (1998). Towards the second paradigm: integrated biological management of soil. Soil Fertility, Soil Biology and Plant Nutrition Interrelationships (Ed. by , J. O. Siqueira, , F. M. S. Moreira, , A. S. Lopes, et al.), pp. 11–24. Lavras: SBCS/UFLA/DCSGoogle Scholar
Swift, M. J., Heal, O. W. & Anderson, J. M. (1979). Decomposition in Terrestrial Ecosystems. Oxford: Blackwell ScientificGoogle Scholar
Sy, A., Giraud, E., Jourand, P., et al. (2001a). Methylotrophic Methylobaterium bacteria that nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology, 183, 214–220CrossRefGoogle Scholar
Sy, A., Giraud, E., Samba, R., et al. (2001b). Certaines légumineuses du genre Crotalaria sont spécifiquement nodulées par une nouvelle espèce de Methylobaterium. Canadian Journal of Microbiology, 47, 503–508CrossRefGoogle Scholar
Tian, G., Brussaard, L. & Kang, B. T. (1993). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effect on soil fauna. Soil Biology and Biochemistry, 25, 731–737CrossRefGoogle Scholar
Usher, M. B. (1985). Population and community dynamics in the soil ecosystem. Ecological Interactions in Soil: Plants, Microbes and Animals (Ed. by , A. H. Fitter, , D. Atkinson, , D. J. Read & , M. B. Usher), pp. 243–265. Oxford: Blackwell ScientificGoogle Scholar
Wardle, D. A. (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton, NJ/Oxford: Princeton University PressGoogle Scholar
Wardle, D. A., Bonner, K. I. & Nicholson, K. S. (1997). Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79, 247–258CrossRefGoogle Scholar
Wilson, J. K. (1944). Over five hundred reasons for abandoning the cross-inoculation groups of the legumes. Soil Science, 58, 61–69CrossRefGoogle Scholar
Wood, T. G. (1996). The agricultural importance of termites in the tropics. Agricultural Zoology Reviews, 7, 117–155Google Scholar
Yeates, G. W. (1981). Soil nematode population depressed in the presence of earthworms. Pedobiologia, 22, 191–195Google Scholar
Young, J. P. W. (1994). Sex and the single cell: the population ecology and genetics of microbes. Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (Ed. by , K. Ritz, , J. Dighton & , K. E. Giller), pp. 101–107. Chichester: WileyGoogle Scholar
Young, J. P. W. & Haukka, K. E. (1996). Diversity and phylogeny of rhizobia. New Phytologist, 133, 87–94Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×