Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T10:31:48.391Z Has data issue: false hasContentIssue false

Part I - Materials

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Meyers, M. A., & Chen, P. -Y. (2014). Biological materials science: Biological materials, bioinspired materials, and biomaterials. Cambridge: Cambridge University Press.Google Scholar
Ratner, B. D. (2013). A history of biomaterials. In Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (Eds.), Biomaterials science: An introduction to materials in medicine (3rd ed.). Amsterdam: Academic Press.Google Scholar
Jakab, P. L. (2013). Leonardo da Vinci’s codex on the flight of birds. Washington, DC: Smithsonian National Air and Space Museum.Google Scholar
Padfield, G. D., & Lawrence, B. (2003). The birth of flight control: An engineering analysis of the Wright Brothers’ 1902 glider. The Aeronautical Journal, 107, 697718.Google Scholar
de Barros, H. L. (2006). Santos-Dumont and the invention of the airplane. Rio de Janeiro: Brazilian Ministry of Science and Technology and Brazilian Center for Research in Physics.Google Scholar
Currey, J. D., & Taylor, J. D. (1974). The mechanical behaviour of some molluscan hard tissues. Journal of Zoology, 173, 395406.Google Scholar
Currey, J. D. (1976). Further studies on the mechanical properties of mollusc shell material. Journal of Zoology, 180, 445453.CrossRefGoogle Scholar
Chen, P. Y., Joanna, M. K., & Meyers, M. A. (2012). Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 57, 14921704.Google Scholar
Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14, 2336.Google Scholar
Beese, A. M., Sarkar, S., Nair, A., et al. (2013). Bio-inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral interactions. ACS Nano, 7, 34343446.Google Scholar
Rahbar, N., & Soboyejo, W. O. (2011). Design of functionally graded dental multilayers. Fatigue and Fracture of Engineering Materials and Structures, 34, 887897.Google Scholar
Martini, R., & Barthelat, F. (2016). Stretch-and-release fabrication, testing, and optimization of a flexible ceramic armor inspired from fish scales. Bioinspiration and Biomimetics, 11, 066001. doi:10.1088/1748-3190/11/6/066001.Google Scholar
Huang, M., Rahbar, N., Wang, R., Thompson, R. D., & Soboyejo, W. O. (2007). Bioinspired design of dental multilayers. Materials Science and Engineering: A, 464, 315320.Google Scholar
Li, L., & Ortiz, C. (2015). A natural 3D interconnected laminated composite with enhanced damage resistance. Advanced Functional Materials, 25, 34633471.Google Scholar
Wang, L. F., & Boyce, M. C. (2010). Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension. Advanced Functional Materials, 20, 30253030.Google Scholar
Dooley, C., & Taylor, D. (2017). Self-healing materials: What can nature teach us? Fatigue and Fracture of Engineering Materials and Structures, 40, 655669.Google Scholar
Niu, X., Rahbar, N., Farias, S., & Soboyejo, W. (2009). Bio-inspired design of dental multilayers: Experiments and model. Journal of the Mechanical Behavior of Biomedical Materials, 2, 596602.Google Scholar
Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., & Aksay, I. A. (2001). Deformation mechanisms in nacre. Journal of Materials Research, 16, 24852493.Google Scholar
Farmer, B. L., Holmes, D. M., Vandeperre, L. J., Stearn, R. J., & Clegg, W. J. (2002). The growth of bamboo-structured carbon tubes using a copper catalyst. MRS Proceedings, 740, I3.8. doi: 10.1557/PROC-740-I3.8.Google Scholar
Tan, T., Rahbar, N., Allameh, S. M., et al. (2011). Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomaterialia, 7, 37963803.Google Scholar
Du, J., Niu, X., Rahbar, N., & Soboyejo, W. (2013). Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation. Acta Biomaterialia, 9, 52735279.Google Scholar
Moored, K. W., Dewey, P. A., Leftwich, M. C., Bart-Smith, H., & Smits, A. J. (2011). Bioinspired propulsion mechanisms based on manta ray locomotion. The Marine Technology Society Journal, 45, 110118.Google Scholar
Gemmell, B. J., Colin, S. P., Costello, J. H., & Dabiri, J. O. (2015). Suction-based propulsion as a basis for efficient animal swimming. Nature Communications, 6, 8790. doi: 10.1038/ncomms9790.Google Scholar
Fish, F. E., Howle, L. E., & Murray, M. M. (2008). Hydrodynamic flow control in marine mammals. Integrative and Comparative Biology, 48, 788800.Google Scholar
Melli, J., & Rowley, C. W. (2010). Models and control of fish-like locomotion. Experimental Mechanics, 50, 13551360.Google Scholar
Ayali, A., Borgmann, A., Büschges, A., Couzin-Fuchs, E., Daun-Gruhn, S., & Holmes, P. (2015). The comparative investigation of the stick insect and cockroach models in the study of insect locomotion. Current Opinion in Insect Science, 12, 110.CrossRefGoogle Scholar
Su, H., Shang, W., Li, G., Patel, N., & Fischer, G. S. (2017). An MRI-guided telesurgery system using a Fabry-Perot interferometry force sensor and a pneumatic haptic device. Annals of Biomedical Engineering, 45, 19171928.Google Scholar
Zhang, Y., Chai, H., & Lawn, B. R. (2010). Graded structures for all-ceramic restorations. Journal of Dental Research, 89, 417421.Google Scholar
Abate, I., & Tadesse, L. (2018). Bioinspired design for energy storage devices. In Daniel, L. & Soboyejo, W. O. (Eds.), Bioinspired design, Cambridge: Cambridge University Press.Google Scholar
Huskinson, B., Marshak, M. P., Suh, C., et al. (2014). A metal-free organic-inorganic aqueous flow battery. Nature, 505, 195198.Google Scholar
Mannoor, M. S., Jiang, Z., James, T., et al. (2013). 3D printed bionic ears. Nano Letters, 13, 26342639.CrossRefGoogle ScholarPubMed
Mannoor, M. S. (2014). Bionic nanosystems. [PhD thesis.] Princeton: Princeton University.Google Scholar
James, T. (2014). Nanoscale patterning and 3D assembly for biomedical applications. [PhD thesis.] Baltimore: Johns Hopkins University.Google Scholar
Štacko, P., Kistemaker, J. C. M., van Leeuwen, T., Chang, M. -C., Otten, E., & Feringa, B. L. (2017). Locked synchronous rotor motion in a molecular motor. Science, 356, 964968.Google Scholar
Shan, W., Diller, S., Tutcuoglu, A., & Majidi, C. (2015). Rigidity-tuning conductive elastomer. Smart Materials and Structures, 24, 065001. doi: 10.1088/0964-1726/24/6/065001.CrossRefGoogle Scholar
Marshall, G. W. Jr., Balooch, M., Gallagher, R. R., Gansky, S. A., & Marshall, S. J. (2001) Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. Journal of Biomedical Materials Research, 54, 8795.Google Scholar
Askarinejad, S., Kotowski, P., Youssefian, S., & Rahbar, N. (2016). Fracture and mixed-mode resistance curve behavior of bamboo. Mechanics Research Communications, 78, 7985.CrossRefGoogle Scholar
Damiens, R., Rhee, H., Hwang, Y., et al. (2012). Compressive behavior of a turtle’s shell: Experiment, modeling, and simulation. Journal of the Mechanical Behavior of Biomedical Materials, 6, 106112.Google Scholar
Owoseni, T. A., Olukole, S. G., Gadu, A. I., Malik, I. A., & Soboyejo, W. O. (2016). Bioinspired design. Advanced Materials Research, 1132, 252266.Google Scholar
Ghavami, K., Allameh, S. M., Sánchez, M. L., & Soboyejo, W. O. (2003). Multiscale study of bamboo Phyllostachys edulis. First Inter American Conference on Non-Conventional Materials and Technologies in the Eco-Construction and Infrastructure-IAC-NOCMAT.Google Scholar
Bates, S. R. G., Farrow, I. R., & Trask, R. S. (2016). 3D printed polyurethane honeycombs for repeated tailored energy absorption. Materials and Design, 112, 172183.Google Scholar
Zhou, J., Leuschner, C., Kumar, C., Hormes, J. F., & Soboyejo, W. O. (2006). Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials, 27, 20012008.Google Scholar
Obayemi, J. D., Danyuo, Y., Dozie-Nwachukwu, S., et al. (2016). PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability. Materials Science and Engineering: C, 66, 5165.Google Scholar
Meng, J., Fan, J., Galiana, G., et al. (2009). LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Materials Science and Engineering: C, 29, 14671479.Google Scholar
Meng, J., Paetzell, E., Bogorad, A., & Soboyejo, W. O. (2010). Adhesion between peptides/antibodies and breast cancer cells. Journal of Applied Physics, 107, 114301. doi: 10.1063/1.3430940.Google Scholar
Dozie-Nwachukwu, S. O., Danyuo, Y., Obayemi, J. D., Odusanya, O. S., Malatesta, K., & Soboyejo, W. O. (2017). Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery. Materials Science and Engineering C, 71, 268278.Google Scholar
Chandrasekaran, A. R., Venugopal, J., Sundarrajan, S., & Ramakrishna, S. (2011). Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomedical Materials, 6, 015001. doi:10.1088/1748-6041/6/1/015001.Google Scholar
Eweida, A. M., Nabawi, A. S., Abouarab, M., et al. (2014). Enhancing mandibular bone regeneration and perfusion via axial vascularization of scaffolds. Clinical Oral Investigations, 18, 16711678.Google Scholar
Lo, K. W., Jiang, T., Gagnon, K. A., Nelson, C., & Laurencin, C. T. (2014). Small-molecule based musculoskeletal regenerative engineering. Trends in Biotechnology, 32, 7481.CrossRefGoogle ScholarPubMed
Gershlak, J. R., Hernandez, S., Fontana, G., et al. (2017). Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 125, 1322.Google Scholar
DiMarino, A. M., Caplan, A. I., & Bonfield, T. L. (2013). Mesenchymal stem cells in tissue repair. Frontiers in Immunology, 4, 201. doi: 10.3389/fimmu.2013.00201.Google Scholar
Caserta, G. D., Iannucci, L., & Galvanetto, U. (2011). Shock absorption performance of a motorbike helmet with honeycomb reinforced liner. Composite Structures, 93, 27482759.Google Scholar

References

Krauss, S., Fratzl, P., Seto, J., et al. (2009). Inhomogeneous fibril stretching in antler starts after macroscopic yielding: Indication for a nanoscale toughening mechanism. Bone, 44(6), 11051110Google Scholar
Launey, M. E., Chen, P. Y., McKittrick, J., & Ritchie, R .O. (2010). Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 6(4), 15051514.Google Scholar
Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., & Meyers, M. A. (2013). Natural flexible dermal armor. Advanced Materials, 25(1), 3148.Google Scholar
Zimmermann, E. A., Gludovatz, B., Schaible, E., et al. (2013). Mechanical adaptability of the Bouligand-type structure in natural dermal armor. Nature Communications, 4(10), 2634 (doi: http://dx.doi.org/10.1038/ ncomms 3634).Google Scholar
Mayer, G. (2005). Rigid biological systems as models for synthetic composites. Science 310(5751), 11441147.Google Scholar
Lakes, R. (1993). Materials with structural hierarchy. Nature, 361(6412), 511515.Google Scholar
Meyers, M. A., McKittrick, J., & Chen, P. -Y. (2013). Structural biological materials: Critical mechanics-materials connections. Science, 339(6121), 773779.Google Scholar
Weiner, S., & Wagner, H. D. (1998). The material bone: Structure mechanical function relations. Annual Review of Materials Science, 28, 271298.Google Scholar
Currey, J. D. (2006). Bones: Structure and mechanics. Princeton: Princeton University Press; p. 456.Google Scholar
Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering, 8(1), 455498.Google Scholar
Taylor, D., Hazenberg, J. G., & Lee, G. L. (2007). Living with cracks: Damage and repair in human bone. Nature Materials, 6, 263268.CrossRefGoogle ScholarPubMed
Burr, D. B. (2004). Bone quality: Understanding what matters. Journal of Musculoskeletal & Neuronal Interactions, 4(2), 184186.Google Scholar
Zimmermann, E. A., Barth, H. D., & Ritchie, R. O. (2012). On the multiscale origins of fracture resistance in human bone and its biological degradation. JOM, 64(4), 486493.Google Scholar
Ritchie, R. O. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817822.Google Scholar
Launey, M. E., Buehler, M. J., & Ritchie, R. O. (2010). On the mechanistic origins of toughness in bone. Annual Review of Materials Research, 40, 2553.Google Scholar
Ritchie, R. O. (1999). Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 100(1), 5583.Google Scholar
Evans, A. G. (1990). Perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society, 73(2), 187206.Google Scholar
Bailey, A. J. (2001). Molecular mechanisms of ageing in connective tissues. Mechanisms of Ageing and Development, 122(7), 735755.Google Scholar
Hodge, A. J., & Petruska, J. A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Ramachandran, G. N. (Ed.), Aspects of protein structure. New York: Academic Press.Google Scholar
Traub, W., Arad, T., & Weiner, S. (1989). 3-Dimensional ordered distribution of crystals in turkey tendon collagen-fibers. Proceedings of the National Academy of Sciences, 86(24), 98229826.Google Scholar
Weiner, S., & Traub, W. (1986). Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters 206(2), 262266.Google Scholar
Landis, W., Hodgens, K., Arena, J., Song, M., & McEwen, B. (1996). Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomograph. Microscopy Research and Technique, 33(2), 192202.3.0.CO;2-V>CrossRefGoogle Scholar
Landis, W. J., Hodgens, K. J., Song, M. J., et al. (1996). Mineralization of collagen may occur on fibril surfaces: Evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. Journal of Structural Biology, 117(1), 2435.Google Scholar
Arsenault, A. L. (1991). Image-analysis of collagen-associated mineral distribution in cryogenically prepared turkey leg tendons. Calcified Tissue International, 48(1), 5662.Google Scholar
Maitland, M. E., & Arsenault, A. L. (1991). A correlation between the distribution of biological apatite and amino-acid-sequence of type-i collagen. Calcified Tissue International, 48(5), 341352.Google Scholar
Eyre, D. R., Dickson, I. R., & Vanness, K. (1988). Collagen cross-linking in human-bone and articular-cartilage: Age-related-changes in the content of mature hydroxypyridinium residues. Biochemical Journal, 252(2), 495500.Google Scholar
Odetti, P., Rossi, S., Monacelli, F., et al. (2005). Advanced glycation end-products and bone loss during aging. Annals of the New York Academy of Sciences, 1043(1), 710717.Google Scholar
Saito, M., Marumo, K., Fujii, K., & Ishioka, N. (1997). Single-column high-performance liquid chromatographic fluorescence detection of immature, mature, and senescent cross-links of collagen. Analytical Biochemistry, 253(1), 2632.Google Scholar
Sell, D. R., & Monnier, V. M. (1989). Structure elucidation of a senescence cross-link from human extracellular-matrix: Implication of pentoses in the aging process. Journal of Biological Chemistry, 264(36), 2159721602.Google Scholar
Martin, R. B., & Burr, D. B. (1989). Structure, function, and adaptation of compact bone. New York: Raven Press. p 275.Google Scholar
Skedros, J., Holmes, J., Vajda, E., & Bloebaum, R. (2005). Cement lines of secondary osteons in human bone are not mineral-deficient: New data in a historical perspective. The Anatomical Record A, 286A, 781803.Google Scholar
Saber-Samandari, S., & Gross, K. A. (2009). Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomaterialia, 5(6), 22062212.Google Scholar
Sasaki, N., & Odajima, S. (1996). Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics, 29(5), 655658.Google Scholar
Ritchie, R. O. (1988). Mechanisms of fatigue crack-propagation in metals, ceramics and composites: Role of crack tip shielding. Materials Science and Engineering A – Structural Materials: Properties, Microstructure and Processing, 103(1), 1528.Google Scholar
Buehler, M. J. (2007). Molecular nanomechanics of nascent bone: Fibrillar toughening by mineralization. Nanotechnology, 18(29), 295102.Google Scholar
Gupta, H. S., Wagermaier, W., Zickler, G. A., et al. (2005). Nanoscale deformation mechanisms in bone. Nano Letters, 5(10), 21082111.Google Scholar
Silver, F. H., Christiansen, D. L., Snowhill, P. B., & Chen, Y. (2001). Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type i collagen fibers. Journal of Applied Polymer Science, 79(1), 134142.Google Scholar
Zimmermann, E. A., Schaible, E., Bale, H., et al. (2011). Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proceedings of the National Academy of Sciences of the United States of America, 108(35), 1441614421.Google Scholar
Nair, A. K., Gautieri, A., Chang, S. W., & Buehler, M. J. (2013). Molecular mechanics of mineralized collagen fibrils in bone. Nature Communications, 4.Google Scholar
Yuye, T., Ballarini, R., Buehler, M. J., & Eppell, S. J. (2010). Deformation micromechanisms of collagen fibrils under uniaxial tension. Journal of the Royal Society Interface, 7(46), 839850.Google Scholar
Siegmund, T., Allen, M. R., & Burr, D. B. (2008). Failure of mineralized collagen fibrils: Modeling the role of collagen cross-linking. Journal of Biomechanics, 41(7), 14271435.Google Scholar
Silver, F. H., Christiansen, D. L., Snowhill, P. B., & Chen, Y (2000). Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers. Connective Tissue Research, 41(2), 155164.Google Scholar
Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2012). Viscoelastic properties of model segments of collagen molecules. Matrix Biology, 31(2), 141149.Google Scholar
Barth, H. D., Zimmermann, E. A., Schaible, E., Tang, S. Y., Alliston, T., & Ritchie, R. O. (2011). Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials, 32(34), 88928904.Google Scholar
Fantner, G. E., Hassenkam, T., Kindt, J. H., et al. (2005). Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials, 4(8), 612616.Google Scholar
Nalla, R. K., Kinney, J. H., & Ritchie, R. O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2, 164168.Google Scholar
Thurner, P. J., Chen, C. G., Ionova-Martin, S., et al. (2010). Osteopontin deficiency increases bone fragility but preserves bone mass. Bone, 46, 15641573.Google Scholar
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322(5907), 15161520.Google Scholar
Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications. Boca Raton: CRC Press.Google Scholar
Wassermann, N., Brydges, B., Searles, S., & Akkus, O. (2008). In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone, 43, 856861.Google Scholar
Norman, T. L., & Wang, Z. (1997). Microdamage of human cortical bone: incidence and morphology in long bones. Bone, 20(4), 375379.Google Scholar
Wasserman, N., Yerramshetty, J., & Akkus, O. (2005). Microcracks colocalize within highly mineralized regions of cortical bone tissue. European Journal of Morphology, 42(1–2), 4351.Google Scholar
Evans, A. G. (1990). Perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society, 73(2), 187206.Google Scholar
Nalla, R. K., Kruzic, J. J., & Ritchie, R. O. (2004). On the origin of the toughness of mineralized tissue: Microcracking or crack bridging? Bone, 34, 790798.Google Scholar
Shank, J. K. & Ritchie, R. O. (1989). Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites. Metallurgical Transactions A, 20A(5), 897908.Google Scholar
Koester, K. J., Ager, J. W., & Ritchie, R. O. (2008). The true toughness of human cortical bone measured with realistically short cracks. Nature Materials, 7(8), 672677.Google Scholar
Zimmermann, E. A., Launey, M. E., Barth, H. D., & Ritchie, R. O. (2009). Mixed-mode fracture of human cortical bone. Biomaterials, 30(29), 58775884.Google Scholar
Zimmermann, E. A., Launey, M. E., & Ritchie, R. O. (2010). The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 31(20), 52975308.Google Scholar
Poundarik, A., Diab, T., Sroga, G. E., et al. (2012). Dilational band formation in bone. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 1917819183.Google Scholar
Cummings, S. R., Browner, W., Cummings, S. R., et al. (1993). Bone density at various sites for prediction of hip fractures. The Lancet, 341(8837), 7275.Google Scholar
Hui, S. L., Slemenda, C. W., & Johnston, C. C. (1988). Age and bone mass as predictors of fracture in a prospective study. Journal of Clinical Investigation, 81(6), 18041809.Google Scholar
Vashishth, D., Gibson, G. J., Khoury, J. I., Schaffler, M. B., Kimura, J., & Fyhrie, D. P. (2001). Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone, 28(2), 195201.Google Scholar
Nalla, R. K., Kruzic, J. J., Kinney, J. H., Balooch, M., Ager, J. W., & Ritchie, R. O. (2006). Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(8), 12511260.Google Scholar
Adharapurapu, R. R., Jiang, F., & Vecchio, K. S. (2006). Dynamic fracture of bovine bone. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(8), 13251332.Google Scholar
Behiri, J. C., & Bonfield, W. (1984). Fracture-mechanics of bone: The effects of density, specimen thickness and crack velocity on longitudinal fracture. Journal of Biomechanics, 17(1), 2534.Google Scholar
Kulin, R. M., Jiang, F., & Vecchio, K. S. (2011). Effects of age and loading rate on equine cortical bone failure. Journal of the Mechanical Behavior of Biomedical Materials, 4(1), 5775.Google Scholar
Kulin, R. M., Jiang, F., & Vecchio, K. S. (2011). Loading rate effects on the R-curve behavior of cortical bone. Acta Biomaterialia, 7(2), 724732.Google Scholar
Zimmermann, E. A., Gludovatz, B., Schaible, E., Busse, B., & Ritchie, R. O. (2014). Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials, 35(21), 54725481.Google Scholar
He, M. Y., & Hutchinson, J. W. (1989). Crack deflection at an interface between dissimilar elastic-materials. International Journal of Solids and Structures, 25(9), 10531067.Google Scholar
DeLuca, H. F. (2004). Overview of general physiologic features and functions of vitamin D. American Journal of Clinical Nutrition, 80(6), 1689S1696S.Google Scholar
Lips, P. (2001). Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocrine Reviews, 22(4), 477501.Google Scholar
Whyte, M. P., & Thakker, R. V. (2005). Rickets and osteomalacia. Medicine, 33(12), 7074.Google Scholar
Busse, B., Bale, H., Zimmermann, E. A., et al. (2013). Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Science Translational Medicine, 5(193), 193ra188.CrossRefGoogle ScholarPubMed
Priemel, M., von Domarus, C., Klatte, T. O., et al. (2010). Bone mineralization defects and vitamin D deficiency: Histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675  patients. Journal of Bone and Mineral Research, 25(2), 305312.Google Scholar
Shane, E., Burr, D., Ebeling, P. R., et al. (2010). Atypical subtrochanteric and diaphyseal femoral fractures: Report of a Task Force of the American Society for Bone and Mineral Research. Journal of Bone and Mineral Research, 25(11), 22672294.Google Scholar
Harrington, J. T., Ste-Marie, L. G., Brandi, M. L., et al. (2004). Risedronate rapidly reduces the risk for nonvertebral fractures in women with postmenopausal osteoporosis. Calcified Tissue International, 74(2), 129135.Google Scholar
Roux, C., Seeman, E., Eastell, R., et al. (2004). Efficacy of risedronate on clinical vertebral fractures within six months. Current Medical Research and Opinion, 20(4), 433439.Google Scholar
Donnelly, E., Meredith, D. S., Nguyen, J. T., et al. (2012). Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. Journal of Bone and Mineral Research, 27(3), 672678.Google Scholar
Burr, D. B., Diab, T., Koivunemi, A., Koivunemi, M., & Allen, M. R. (2009). Effects of 1 to 3 years' treatment with alendronate on mechanical properties of the femoral shaft in a canine model: Implications for subtrochanteric femoral fracture risk. Journal of Orthopaedic Research, 27(10), 12881292.Google Scholar
Ettinger, B., Burr, D. B., & Ritchie, R. O. (2013). Proposed pathogenesis for atypical femoral fractures: Lessons from materials research. Bone, 55(2), 495500.Google Scholar
Barth, H. D., Launey, M. E., MacDowell, A. A., Ager, J. W., & Ritchie, R. O. (2010). On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone, 46(6), 14751485.Google Scholar
Carriero, A., Zimmermann, E. A., Paluszny, A., et al. (2014). How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. Journal of Bone and Mineral Research, 29(6), 13921401.Google Scholar

References

Ortiz, C., & Boyce, M. C. (2008). Bioinspired structural materials. Science, 319(5866), 10531054.Google Scholar
Weaver, J. C., Milliron, G. W., Miserez, A., et al. (2012). The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science, 336(6086), 12751280.Google Scholar
Barthelat, F. (2010). Nacre from mollusk shells: A model for high-performance structural materials. Bioinspiration & Biomimetics, 5(3), 035001.Google Scholar
Woesz, A., Weaver, J. C., Kazanci, M., et al. (2006). Micromechanical properties of biological silica in skeletons of deep-sea sponges. Journal of Materials Research, 21(08), 20682078.Google Scholar
Espinosa, H. D., Juster, A. L., Latourte, F. J., Loh, O. Y., Gregoire, D., & Zavattieri, P. D. (2011). Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2, 173.Google Scholar
Mayer, G., & Sarikaya, M. (2002). Rigid biological composite materials: structural examples for biomimetic design. Experimental Mechanics, 42(4), 395403.Google Scholar
Currey, J. D., Landete-Castillejos, T., Estevez, J., et al. (2009). The mechanical properties of red deer antler bone when used in fighting. Journal of Experimental Biology, 212(24), 39853993.Google Scholar
Li, X., Chang, W. C., Chao, Y. J., Wang, R., & Chang, M. (2004). Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Letters,4(4), 613617.Google Scholar
Grunenfelder, L. K., Suksangpanya, N., Salinas, C., et al. (2014). Bio-inspired impact-resistant composites. Acta Biomaterialia, 10(9), 39974008.Google Scholar
Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5(8), 28842893.Google Scholar
Johnson, M., Walter, S. L., Flinn, B. D., & Mayer, G. (2010). Influence of moisture on the mechanical behavior of a natural composite. Acta Biomaterialia, 6(6), 21812188.Google Scholar
Askarinejad, S., Kotowski, P., Shalchy, F., & Rahbar, N. (2015). Effects of humidity on shear behavior of bamboo. Theoretical and Applied Mechanics Letters, 5(6), 236243.Google Scholar
Askarinejad, S., Kotowski, P., Youssefian, S., & Rahbar, N. (2016). Fracture and mixed-mode resistance curve behavior of bamboo. Mechanics Research Communications, 78, 7985.Google Scholar
Launey, M. E., Chen, P. Y., McKittrick, J., & Ritchie, R. O. (2010). Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 6(4), 15051514.Google Scholar
Song, Z. Q., Ni, Y., Peng, L. M., Liang, H. Y., & He, L. H. (2016). Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates. Scientific Reports, 6, 23724.Google Scholar
Xu, Z. H., & Li, X. (2011). Deformation strengthening of biopolymer in nacre. Advanced Functional Materials, 21(20), 38833888.Google Scholar
Ji, B., & Gao, H. (2004). Mechanical properties of nanostructured biological materials. Journal of Mechanics and Physics of Solids, 1963–1990.Google Scholar
Askarinejad, S., Choshali, H. A., Flavin, C., & Rahbar, N. (2018). Effects of tablet waviness on the mechanical response of architected multilayered materials: Modeling and experiment. Composite Structures, 195, 118125.Google Scholar
Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., & Aksay, I. A. (2001). Deformation mechanisms in nacre. Journal of Materials Research, 16(09), 24852493.Google Scholar
Jackson, A. P., Vincent, J. F. V., & Turner, R. M. (1988). The mechanical design of nacre. Proceedings of the Royal Society of London Series B, 234, 415440.Google Scholar
Meyers, M. A., Chen, P. Y., Lin, A. Y. M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53(1), 1206.Google Scholar
Espinosa, H. D., Rim, J. E., Barthelat, F., & Buehler, M. J. (2009). Merger of structure and material in nacre and bone: Perspectives on de novo biomimetic materials. Progress in Materials Science, 54(8), 10591100.Google Scholar
Meyers, M. A., McKittrick, J., & Chen, P. Y. (2013). Structural biological materials: Critical mechanics-materials connections. Science, 339(6121), 773779.Google Scholar
Porter, M. M., Yeh, M., Strawson, J., et al. (2012). Magnetic freeze casting inspired by natureMaterials Science and Engineering: A556, 741750.CrossRefGoogle Scholar
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322(5907), 15161520.Google Scholar
Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2010). A novel biomimetic approach to the design of high-performance ceramic/metal composites. Journal of the Royal Society Interface, 7(46), 741753.Google Scholar
Wang, R. Z., Wen, H. B., Cui, F. Z., Zhang, H. B., & Li, H. D. (1995). Observations of damage morphologies in nacre during deformation and fracture. Journal of Materials Research, 30(9), 22992304.Google Scholar
Ritchie, R. O. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817822.Google Scholar
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behaviour of Biomedical Materials, 19, 8793.Google Scholar
Bonderer, L. J., Feldman, K., & Gauckler, L. J. (2010). Platelet-reinforced polymer matrix composites by combined gel-casting and hot-pressing. Part I: Polypropylene matrix composites. Composite Science and Technology, 70(13), 19581965.Google Scholar
Tang, Z., Kotov, N. A., Magono, S., & Ozturk, B. (2003). Nanostructured artificial nacre. Nature Materials, 2(6), 413418.Google Scholar
Bouville, F., Maire, E., Meille, S., Van de Moortle, B., Stevenson, A. J., & Deville, S. (2014). Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Materials, 13(5), 508514.Google Scholar
Jackson, A. P., Vincent, J. F. V., & Turner, R. M. (1989). A physical model of nacre. Composite Science and Technology, 36(3), 255266.Google Scholar
Bass, J. D. (1995). Elasticity of minerals, glasses, and melts. In Mineral physics and crystallography: A handbook of physical constants, vol. 2, 4563.Google Scholar
Currey, J. D., & Taylor, J. D. (1974). The mechanical behavior of some molluscan hard tissues. Journal of Zoology, London, 173, 395406.Google Scholar
Currey, J. D. (1976). Further studies on the mechanical properties of mollusc shell material. Journal of Zoology, London 180, 445453.Google Scholar
Verma, D., Katti, K., & Katti, D. (2007). Nature of water in nacre: A 2D Fourier transform infrared spectroscopic study. Spectrochimica Acta A, 67(3), 784788.Google Scholar
Mohanty, B., Katti, K. S., Katti, D. R., & Verma, D. (2006). Dynamic nanomechanical response of nacre. Journal of Materials Research, 21(08), 20452051.Google Scholar
Feng, Q. L., Cui, F. Z., Pu, G., Wang, R. Z., & Li, H. D. (2000). Crystal orientation, toughening mechanisms and a mimic of nacre. Materials Science and Engineering C, 11(1), 1925.Google Scholar
Barthelat, F., & Espinosa, H. D. (2007). An experimental investigation of deformation and fracture of nacre/mother of pearl. Experimental Mechanics, 47(3), 311324.Google Scholar
Barthelat, F., Li, C. M., Comi, C., & Espinosa, H. D. (2006). Mechanical properties of nacre constituents and their impact on mechanical performance. Journal of Materials Research, 21(8), 19771986.Google Scholar
Bruet, B. J. F, Qi, H. J., Boyce, M.C., et al. (2005). Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. Journal of Materials Research, 20(9), 24002419.Google Scholar
Smith, B. L., Schaffer, T. E., Viani, M., et al. (1999). Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 399(6738), 761763.Google Scholar
Mohanty, B., Katti, K. S., & Katti, D. R. (2008). Experimental investigation of nanomechanics of the mineral-protein interface in nacre. Mechanics Research Communications, 35(1), 1723.Google Scholar
Katti, K. S., Mohanty, B., & Katti, D. R. (2006). Nanomechanical properties of nacre. Journal of Materials Research, 21(5), 12371242.Google Scholar
Moshe-Drezner, H., Shilo, D., Dorogoy, A., & Zolotoyabko, E. (2010). Nanometer-scale mapping of elastic modules in biogenic composites: The nacre of mollusk shells. Advanced Functional Materials, 20(16), 27232728.Google Scholar
Xu, Z. H., Yang, Y., Huang, Z., & Li, X. (2011). Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Materials Science and Engineering C, 31(8), 18521856.Google Scholar
Stempfle, P., Pantale, O., Njiwa, R. K., Rousseau, M., Lopez, E., & Bourrat, X. (2007). Friction-induced sheet nacre fracture: Effects of nano-shocks on cracks location. International Journal of Nanotechnology, 4(6), 712729.Google Scholar
Stempfle, P. H., Pantale, O., Rousseau, M., Lopez, E., & Bourrat, X. (2010). Mechanical properties of the elemental nanocomponents of nacre structure. Materials Science and Engineering C, 30(5), 715721.Google Scholar
Ghosh, P., Katti, D. R., & Katti, K. S. (2007). Mineral proximity influences mechanical response of proteins in biological mineral-protein hybrid systems. Biomacromolecules, 8(3), 851856.Google Scholar
Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M., & Espinosa, H. D. (2007). On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of Mechanics and Physics of Solids, 55(2), 306337.Google Scholar
Meyers, M. A., Lin, A. Y. M., Chen, P. Y., & Muyco, J. (2008). Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behaviour of Biomedical Materials, 1(1), 7685.Google Scholar
Xu, Z. H., & Li, X. (2011). Deformation strengthening of biopolymer in nacre. Advanced Functional Materials, 21(20), 38833888.Google Scholar
Schaffer, T. E., Ionescu-Zanetti, C., Proksch, R., et al. (1997). Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chemistry of Materials, 9(8), 17311740.Google Scholar
Weiner, S., & Lowenstam, H. (1986). Organization of extracellularly mineralized tissues: A comparative study of biological crystal growth. Critical Reviews in Biochemistry, 20(4), 365408.Google Scholar
Addadi, L., & Weiner, S. (1997). Biomineralization: A pavement of pearl. Nature, 389(6654), 912915.Google Scholar
Song, F., Soh, A. K., & Bai, Y. L. (2003). Effect of nanostructures on the fracture strength of the interfaces in nacre. Journal of Materials Research, 18(8), 17411744.Google Scholar
Song, F., Soh, A. K., & Bai, Y. L. (2003). Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 24, 36233631.Google Scholar
Cartwright, J. H., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491504.Google Scholar
Hou, W. T., & Feng, Q. L. (2003). Crystal orientation preference and formation mechanism of nacreous layer in mussel. Journal of Crystal Growth, 258(3), 402408.Google Scholar
Checa, A. G., & Rodriguez-Navarro, A. B. (2005). Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials, 26(9), 10711079.Google Scholar
Checa, A. G., Okamoto, T., & Ramrez, J. (2006). Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition. Proceedings of the Royal Society B: Biological Sciences, 273(1592), 13291337.Google Scholar
Checa, A. G., Cartwright, J. H., & Willinger, M. G. (2011). Mineral bridges in nacre. Journal of Structural Biology, 176(3), 330339.Google Scholar
Dimas, L. S., Bratzel, G. H., Eylon, I., & Buehler, M. J. (2013). Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing. Advanced Functional Materials, 23(36), 46294638.Google Scholar
Dimas, L. S., Buehler, M. J. (2014). Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter, 10(25), 44364442.Google Scholar
Currey, J. D. (1977). Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society B, . 196, 443463.Google Scholar
Gao, H., Ji, B. H., Jager, I. L., Arzt, E., & Fratzl, P. (2003). Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of the National Academy of Sciences, 100, 55975600.Google Scholar
Katti, D. R., Katti, K. S., Sopp, J. M., & Sarikaya, M. (2001). 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Computational and Theoretical Polymer Science, 11, 397404.Google Scholar
Katti, K. S., Katti, D. R., Pradhan, S. M., & Bhosle, A. (2005). Platelet interlocks are the key to toughness and strength in nacre. Journal of Materials Research, 20(05), 10971100.Google Scholar
Sen, D., & Buehler, M. J. (2011). Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Scientific Reports, 1, 35.Google Scholar
Katti, D. R, & Katti, K. S. (2001). Modeling microarchitecture and mechanical behavior of nacre using 3d finite element techniques. Journal of Materials Science, 36, 14111417.Google Scholar
Katti, D. R., Pradhan, S. M., & Katti, K. S. (2004). Modeling the organic-inorganic interfacial nanoasperities in a model bio-nanocomposite, nacre. Reviews on Advanced Materials Science, 6(2), 162168.Google Scholar
Evans, A. G., Suo, Z., Wang, R. Z., Aksay, I. A., He, M. Y., Hutchinson, J. W. (2001). Model for the robust mechanical behavior of nacre. Journal of Materials Research, 16(9), 24752484.Google Scholar
Shao, Y., Zhao, H. P., Feng, X. Q., & Gao, H. (2012). Discontinuous crack-bridging model for fracture toughness analysis of nacre. Journal of the Mechanics and Physics of Solids, 60(8), 14001419.Google Scholar
Shao, Y., Zhao, H. P., & Feng, X. Q. (2014). On flaw tolerance of nacre: A theoretical study. Journal of the Royal Society Interface, 11(92), 20131016.Google Scholar
Begley, M. R., Philips, N. R., Compton, B. G., et al. (2012). Micromechanical models to guide the development of synthetic brick and mortarcomposites. Journal of the Mechanics and Physics of Solids, 60(8), 15451560.Google Scholar
Askarinejad, S., & Rahbar, N. (2015). Toughening mechanisms in bioinspired multilayered materials. Journal of the Royal Society Interface, 12(102), 20140855.Google Scholar
Dimas, L. S., & Buehler, M. J. (2012). Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials. Bioinspiration & Biomimetics, 7(3), 036024.Google Scholar
Zhu, T. T., Bushby, A. J., & Dunstan, D. J. (2008). Size effect in the initiation of plasticity for ceramics in nanoindentation. Journal of the Mechanics and Physics of Solids, 56(4), 11701185.Google Scholar
Dunstan, D. J., & Bushby, A. J. (2013). The scaling exponent in the size effect of small scale plastic deformation. International Journal of Plasticity, 40, 152162.Google Scholar
Li, N., Nastasi, M., & Misra, A. (2012). Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. International Journal of Plasticity, 32, 116.Google Scholar
Salehinia, I., Wang, J., Bahr, D. F., & Zbib, H. M. (2014). Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. International Journal of Plasticity, 59, 119132.Google Scholar
Salehinia, I., Shao, S., Wang, J., & Zbib, H. M. (2015). Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Materialia, 86, 331340.Google Scholar
Salehinia, I., Shao, S., Wang, J., & Zbib, H. M. (2014). Plastic deformation of metal/ceramic nanolayered composites. JOM, 66(10), 20782085.Google Scholar
Dutta, A., Tekalur, S. A., & Miklavcic, M. (2013). Optimal overlap length in staggered architecture composites under dynamic loading conditions. Journal of the Mechanics and Physics of Solids, 61(1), 145160.Google Scholar
Yao, H., Song, Z., Xu, Z., & Gao, H. (2013). Cracks fail to intensify stress in nacreous composites. Composites Science and Technology, 81, 2429.Google Scholar
Zhang, Z. Q., Liu, B., Huang, Y., Hwang, K. C., & Gao, H. (2010). Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. Journal of the Mechanics and Physics of Solids, 58(10), 16461660.Google Scholar
Liu, G., Ji, B., Hwang, K. C., & Khoo, B. C. (2011). Analytical solutions of the displacement and stress fields of the nanocomposite structure of biological materials. Composites Science and Technology, 71(9), 11901195.Google Scholar
Dimas, L. S., Giesa, T., & Buehler, M. J. (2014). Coupled continuum and discrete analysis of random heterogeneous materials: elasticity and fracture. Journal of the Mechanics and Physics of Solids, 63, 481490.Google Scholar
Jager, I., & Fratzl, P. (2000). Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 79(4), 17371746.Google Scholar
Wagner, H. D., & Weiner, S. (1992). On the relationship between the microstructure of bone and its mechanical stiffness. Journal of Biomechanics, 25(11), 13111320.Google Scholar
Kotha, S. P., Kotha, S., & Guzelsu, N. (2000). A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets. Composites Science and Technology, 60(11), 21472158.Google Scholar
Shuchun, Z., & Yueguang, W. (2007). Effective elastic modulus of bone-like hierarchical materials. Acta Mechanica Solida Sinica, 20(3), 198205.Google Scholar
Chen, B., Wu, P. D., & Gao, H. (2009). A characteristic length for stress transfer in the nanostructure of biological composites. Composites Science and Technology, 69(7), 11601164.Google Scholar
Wei, X., Naraghi, M., & Espinosa, H. D. (2012). Optimal length scales emerging from shear load transfer in natural materials: Application to carbon-based nanocomposite design. ACS Nano, 6(3), 23332344.Google Scholar
Li, X., Gao, H., Scrivens, W. A., et al. (2005). Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology, 16(10), 2020.Google Scholar
Morits, M., Verho, T., Sorvari, J., et al. (2017). Toughness and fracture properties in nacremimetic clay/polymer nanocomposites. Advanced Functional Materials, 27 (10), 1605378.Google Scholar
Niebel, T. P., Bouville, F., Kokkinis, D., & Studart, A. R. (2016). Role of the polymer phase in the mechanics of nacre-like composites. Journal of the Mechanics and Physics of Solids, 96, 133146.Google Scholar
Long, B., Wang, C. A., Lin, W., Huang, Y., & Sun, J. (2007). Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition. Composites Science and Technology, 67(13), 27702774.Google Scholar
Bonderer, L. J., Studart, A. R., & Gauckler, L. J. (2008). Bioinspired design and assembly of platelet reinforced polymer films. Science, 319(5866), 10691073.Google Scholar
Mammeri, F., Le Bourhis, E., Rozes, L., & Sanchez, C. (2005). Mechanical properties of hybrid organicinorganic materials. Journal of Materials Chemistry, 15(35–36), 37873811.Google Scholar
Chen, R., Wang, C. A., Huang, Y., & Le, H. (2008). An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure. Materials Science and Engineering: C, 28(2), 218222.Google Scholar
Corni, I., Harvey, T. J., Wharton, J. A., Stokes, K. R., Walsh, F. C., & Wood, R. J. K. (2012). A review of experimental techniques to produce a nacre-like structure. Bioinspiration & Biomimetics, 7(3), 031001.Google Scholar
Valashani, S. M. M., & Barthelat, F. (2015). A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre. Bioinspiration & Biomimetics, 10(2), 026005.Google Scholar
Zlotnikov, I., Gotman, I., Burghard, Z., Bill, J., & Gutmanas, E. Y. (2010). Synthesis and mechanical behavior of bioinspired ZrO2-organic nacre-like laminar nanocomposites. Colloids and Surfaces A: Physicochemical Engineering Aspects, 361(1), 138142.Google Scholar
Bai, H., Walsh, F., Gludovatz, B., et al. (2016). Bioinspired hydroxyapatite/poly (methyl methacrylate) composite with a nacre mimetic architecture by a bidirectional freezing method. Advanced Materials, 28(1), 5056.Google Scholar
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 54805489.Google Scholar
Launey, M. E., Munch, E., Alsem, D. H., et al. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 29192932.Google Scholar
Wegst, U. G., Schecter, M., Donius, A. E., & Hunger, P. M. (2010). Biomaterials by freeze casting. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1917), 20992121.Google Scholar
Askarinejad, S., & Rahbar, N. (2018). Mechanics of bioinspired lamellar structured ceramic/polymer composites: Experiments and models. International Journal of Plasticity, 107, 122149.Google Scholar
Liu, M., Sun, J., Sun, Y., Bock, C., & Chen, Q. (2009). Thickness-dependent mechanical properties of polydimethylsiloxane membranes. Journal of Micromechanics and Microengineering, 19(3), 035028.Google Scholar
Qi, H. J., & Boyce, M. C. (2005). Stressstrain behavior of thermoplastic polyurethanes. Mechanics of Materials, 37(8), 817839.Google Scholar
ASTM International. (2006). ASTM E1820–06: Standard test method for measurement of fracture toughness annual book of ASTM standards, Vol. 03.01: metals – mechanical testing; elevated and low-temperature tests; metallography. West Conshohocken, PA: ASTM International.Google Scholar
Hedgepeth, J. M. (1961). Stress concentrations in filamentary structures.Google Scholar
Nairn, J. A. (1988). Fracture mechanics of unidirectional composites using the shear-lag model I: Theory. Journal of Composite Materials, 22(6), 561588.Google Scholar
Nairn, J. A., & Mendels, D. A. (2001). On the use of planar shear-lag methods for stress-transfer analysis of multilayered composites. Mechanics of Materials, 33(6), 335362.Google Scholar
Benveniste, Y., & Miloh, T. (1986). The effective conductivity of composites with imperfect thermal contact at constituent interfaces. International Journal of Engineering Science, 24(9), 15371552.Google Scholar
Cheng, Z. Q., He, L. H., & Kitipornchai, S. (2000). Influence of imperfect interfaces on bending and vibration of laminated composite shells. International Journal of Solids and Structures, 37(15), 21272150.Google Scholar
Wang, Z., Zhu, J., Jin, X. Y., Chen, W. Q., & Zhang, C. (2014). Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. Journal of the Mechanics and Physics of Solids, 65, 138156.Google Scholar
Hashin, Z. (1991). Composite materials with interphase: Thermoelastic and inelastic effects. In Inelastic deformation of composite materials. New York: Springer; pp. 334.Google Scholar
Gu, S. T., He, Q. C., & Pense, V. (2015). Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mechanics of Materials, 88, 1229.Google Scholar
Nairn, J. A., & Liu, Y. C. (1997). Stress transfer into a fragmented, anisotropic fiber through an imperfect interface. International Journal of Solids and Structures, 34(10), 12551281.Google Scholar
Nairn, J. A. (2007). Numerical implementation of imperfect interfaces. Computational Materials Science, 40(4), 525536.Google Scholar
Martin, P. A. (1992). Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers. Journal of Nondestructive Evaluation, 11(3–4), 167174.Google Scholar
Tada, H., Paris, P. C., & Irwin, G. R. (2000). The analysis of cracks handbook (pp. 5858). New York: ASME Press. Chicago.Google Scholar
Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2008). Tough, bio-inspired hybrid materials. Science, 322(5907), 15161520.Google Scholar
Thouless, M. D., & Evans, A. G. (1988). Effects of pull-out on the mechanical properties of ceramic-matrix composites. Acta Metallurgica, 36(3), 517522.Google Scholar
Marshall, D. B., Evans, A. G., Drory, M., et al. (1986). Fracture mechanics of ceramics.Google Scholar
Phillips, D. C. (1972). The fracture energy of carbon-fibre reinforced glass. Journal of Materials Science, 7(10), 11751191.Google Scholar
Marshall, D. B., & Evans, A. G. (1985). Failure mechanisms in ceramic-fiber/ceramic-matrix composites. Journal of the American Ceramic Society, 68(5), 225231.Google Scholar
Cox, B. N., & Marshall, D. B. (1994). Concepts for bridged cracks in fracture and fatigue. Acta Metallurgica et Materialia, 42(2), 341363.Google Scholar
Stewart, R. L., Chyung, K., Taylor, M. P., et al. (1986). Fracture mechanics of ceramics. New York: Plenum Press, 33.Google Scholar
Curkovic, L., Bakic, A., Kodvanj, J., & Haramina, T. (2010). Flexural strength of alumina ceramics: Weibull analysis. Transactions of FAMENA, 34(1), 1319.Google Scholar
Evans, A. G., & McMeeking, R. M. (1986). On the toughening of ceramics by strong reinforcements. Acta Metallurgica, 34(12), 24352441.Google Scholar

References

Liese, W. (1998). The anatomy of bamboo culms [Technical report]. Beijing, China: International Network for Bamboo and Rattan.Google Scholar
Lewis, D., & Miles, C. (2007). Farming bamboo. Raleigh, NC: Lulu Press.Google Scholar
Clark, L. G., & Pohl, R. W. (1996). Agnes Chase’s first book of grasses: The structure of grasses explained for beginners. Washington, DC: Smithsonian Institution Press.Google Scholar
McClure, F. (1966). The bamboos: A fresh perspective. Cambridge, MA: Harvard University Press.Google Scholar
Fu, J. (2001). Chinese Moso bamboo: Its importance. Bamboo, 22, 57.Google Scholar
Lobovikov, M., Ball, L., Guardia, M., & Russo, L. (2007). World bamboo resources: A thematic study prepared in the framework of the global forest resources assessment. Rome, Italy: Food and Agriculture Organization of the United Nations Press.Google Scholar
Farrelly, D. (1996). The book of bamboo: A comprehensive guide to this remarkable plant, its uses, and its history. San Francisco: Sierra Club Books Press.Google Scholar
Janssen, J. J. (2000). Designing and building with bamboo [Technical report]. Beijing, China: International Network for Bamboo and Rattan.Google Scholar
Banik, R. L. (1995). A manual for vegetative propagation of bamboos [Technical report]. Beijing, China: International Network for Bamboo and Rattan.Google Scholar
Chapman, G. P. (1996). The biology of grasses. Wallingford, UK: CABI Press.Google Scholar
Zhao, H., Gao, Z., Wang, L., et al. (2018). Chromosome-level reference genome and alternative splicing atlas of Moso bamboo (Phyllostachys edulis). GigaScience, 7, 115.Google Scholar
van der Lugt, P. (2008). Design interventions for stimulating bamboo commercialization-Dutch design meets bamboo as a replicable model [PhD thesis]. Delft, Netherlands: Delft University of Technology.Google Scholar
Flander, K. D., & Rovers, R. (2009). One laminated bamboo-frame house per hectare per year. Construction and Building Materials, 23, 210218.Google Scholar
Paudel, S. K., & Lobovikov, M. (2003). Bamboo housing: Market potential for low-income groups. Journal of Bamboo and Rattan, 2, 381396.Google Scholar
Chung, K., & Yu, W. (2002). Mechanical properties of structural bamboo for bamboo scaffoldings. Engineering Structures, 24, 429442.Google Scholar
Shen, S. (2007). The art of survival: Case study of Crosswaters Ecolodge, Nankunshan, Guangdong. Urban Space Design, 3, 6473 (in Chinese).Google Scholar
Dethier, J., Liese, W., Otto, F., Schaur, E., & Steffans, K. (2000). Grow your own house-Simon Velez and bamboo architecture. Weil am Rhein, Germany: Vitra Design Museum Press.Google Scholar
Richard, M. J. (2013). Assessing the performance of bamboo structural components [PhD thesis]. Pittsburgh, PA: University of Pittsburgh.Google Scholar
van der Lugt, P., Vogtländer, J., & Brezet, H. (2009). Bamboo, a sustainable solution for western Europe-design cases, LCAs and land-use [Technical report]. Beijing, China: International Network for Bamboo and Rattan.Google Scholar
Vengala, J., Jagadeesh, H. N., & Pandey, C. N. (2008). Development of bamboo structures in India: Modern bamboo structures. London, UK: Taylor & Francis Press; pp. 5163.Google Scholar
Bansal, A. K., & Zoolagud, S. (2002). Bamboo composites: Material of the future. Journal of Bamboo and Rattan, 1, 119130.Google Scholar
Loewe, M., & Shaughnessy, E. L. (1999). The Cambridge history of Ancient China: From the origins of civilization to 221 BC. Cambridge, UK: Cambridge University Press.Google Scholar
Johnson, S. (2008). Reinventing the wheel. The Daily Princeton. Retrieved from www.dailyprincetonian.com/2008/04/24/20982/Google Scholar
Soboyejo, W. (2002). Mechanical properties of engineered materials. New York: CRC Press.Google Scholar
Rahbar, N., Jorjani, M., Riccardelli, C., et al. (2010). Mixed mode fracture of marble/adhesive interfaces. Materials Science and Engineering A, 527, 49394946.Google Scholar
Wang, J. J. A., Ren, F., Tan, T., & Liu, K. (2015). The development of in situ fracture toughness evaluation techniques in hydrogen environment. International Journal of Hydrogen Energy, 40, 20132024.Google Scholar
Burros, M. (1987). Winter bamboo shoots. New York Times. Retrieved from www.nytimes.com/recipes/2689/winter-bamboo-shoots.htmlGoogle Scholar
Gibson, L., Ashby, M., Karam, G., Wegst, U., & Shercliff, H. (1995). The mechanical properties of natural materials. II. Microstructures for mechanical efficiency. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences., 450, 141162.Google Scholar
Amada, S., Ichikawa, Y., Munekata, T., Nagase, Y., & Shimizu, H. (1997). Fiber texture and mechanical graded structure of bamboo. Composites Part B: Engineering, 28, 1320.Google Scholar
Ghavami, K., Rodrigues, C., & Paciornik, S. (2003). Bamboo: Functionally graded composite material. Asian Journal of Civil Engineering (Building and Housing), 4, 110.Google Scholar
Li, X. B. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing [Master thesis]. Baton Rouge: Louisiana State University.Google Scholar
Ray, A. K., Das, S. K., Mondal, S., & Ramachandrarao, P. (2004). Microstructural characterization of bamboo. Journal of Materials Science, 39, 10551060.Google Scholar
Ray, A. K., Mondal, S., Das, S. K., & Ramachandrarao, P. (2005). Bamboo: A functionally graded composite-correlation between microstructure and mechanical strength. Journal of Materials Science, 40, 52495253.Google Scholar
Silva, E. C. N., Walters, M. C., & Paulino, G. H. (2006). Modeling bamboo as a functionally graded material: Lessons for the analysis of affordable materials. Journal of Materials Science, 41, 69917004.Google Scholar
Lo, T. Y., Cui, H., & Leung, H. (2004). The effect of fiber density on strength capacity of bamboo. Materials Letters, 58, 25952598.Google Scholar
Lo, T. Y., Cui, H., Tang, P., & Leung, H. (2008). Strength analysis of bamboo by microscopic investigation of bamboo fibre. Construction and Building Materials, 22, 15321535.Google Scholar
Abdul Khalil, H., Bhat, I., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. (2012). Bamboo fibre reinforced biocomposites: A review. Materials & Design, 42, 353368.Google Scholar
Burgert, I., & Keplinger, T. (2013). Plant micro-and nanomechanics: Experimental techniques for plant cell-wall analysis. Journal of Experimental Botany, 64, 46354649.Google Scholar
Fratzl, P., Burgert, I., & Gupta, H. S. (2004). On the role of interface polymers for the mechanics of natural polymeric composites. Physical Chemistry Chemical Physics, 6, 55755579.Google Scholar
Nishida, M., Tanaka, T., Miki, T., Shigematsu, I., Kanayama, K., & Kanematsu, W. (2014). Study of nanoscale structural changes in isolated bamboo constituents using multiscale instrumental analyses. Journal of Applied Polymer Science, 131, 9.Google Scholar
Zou, L. H., Jin, H., Lu, W. Y., & Li, X. D. (2009). Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Materials Science and Engineering C, 29, 13751379.Google Scholar
Youssefian, S., & Rahbar, N. (2015). Molecular origin of strength and stiffness in bamboo fibrils. Scientific Reports, 5, 11116.Google Scholar
Yu, Y., Tian, G., Wang, H., Fei, B., & Wang, G. (2011). Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung, 65, 113119.Google Scholar
Habibi, M. K., & Lu, Y. (2014). Crack propagation in bamboo's hierarchical cellular structure. Scientific Reports, 4, 17.Google Scholar
Wai, N., Nanko, H., & Murakami, K. (1985). A morphological study on the behavior of bamboo pulp fibers in the beating process. Wood Science and Technology, 19, 211222.Google Scholar
Villalobos, G., Linero, D. L., & Muñoz, J. D. (2011). A statistical model of fracture for a 2d hexagonal mesh: The cell network model of fracture for the bamboo Guadua angustifolia. Computer Physics Communications, 182, 188191.Google Scholar
Schott, W. (2005). Bamboo under the microscope. Retrieved from www.powerfibers.com/Bamboo_under_the_Microscope.pdfGoogle Scholar
Abe, K., & Yano, H. (2010). Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose, 17, 271–277.Google Scholar
Tan, T., Rahbar, N., Allameh, S., et al. (2011). Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomaterialia, 7, 37963803.Google Scholar
He, X. Q., Suzuki, K., Kitamura, S., Lin, J. X., Cui, K. M., & Itoh, T. (2002). Toward understanding the different function of two types of parenchyma cells in bamboo culms. Plant and Cell Physiology, 43, 186195.Google Scholar
Nogata, F., & Takahashi, H. (1995). Intelligent functionally graded material: Bamboo. Composites Engineering, 5, 743751.Google Scholar
Ma, J. F., Chen, W. Y., Zhao, L., & Zhao, D. H. (2008). Elastic buckling of bionic cylindrical shells based on bamboo. Journal of Bionic Engineering, 5, 231238.Google Scholar
Laroque, P. (2007). Design of a low cost bamboo footbridge [Master thesis]. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar
Shao, Z. P., Fang, C. H., & Tian, G. L. (2009). Mode I interlaminar fracture property of Moso bamboo (Phyllostachys pubescens). Wood Science and Technology, 43, 527536.Google Scholar
Amada, S., & Untao, S. (2001). Fracture properties of bamboo. Composites Part B: Engineering, 32, 451459.Google Scholar
Charalambides, P., Lund, J., Evans, A., & Mcmeeking, R. (1989). A test specimen for determining the fracture resistance of bimaterial interfaces. Journal of Applied Mechanics, 56, 7782.Google Scholar
Budiansky, B., Amazigo, J. C., & Evans, A. G. (1988). Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. Journal of the Mechanics and Physics of Solids, 36, 167187.Google Scholar
Bloyer, D., Ritchie, R., & Rao, K. V. (1998). Fracture toughness and R-curve behavior of laminated brittle-matrix composites. Metallurgical and Materials Transactions A, 29, 24832496.Google Scholar
Bloyer, D., Ritchie, R., & Rao, K. V. (1999). Fatigue-crack propagation behavior of ductile/brittle laminated composites. Metallurgical and Materials Transactions A, 30, 633642.Google Scholar
Suhaily, S. S., Khalil, H. A., Nadirah, W. W., & Jawaid, M. (2013). Bamboo based biocomposites material, design and applications. Materials science-advanced topics. Rijeka, Croatia: InTech Press; pp. 489517.Google Scholar
Rassiah, K., & Megat Ahmad, M. (2013). A review on mechanical properties of bamboo fiber reinforced polymer composite. Australian Journal of Basic and Applied Sciences, 7, 247253.Google Scholar
Deshpande, A. P., Bhaskar Rao, M., & Lakshmana Rao, C. (2000). Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science, 76, 8392.Google Scholar
Yao, W., & Zhang, W. (2011). Research on manufacturing technology and application of natural bamboo fibre. In Intelligent Computation Technology and Automation (Vol. 2). Shenzhen, Guangdong, China: International Conference on IEEE; pp. 143148.Google Scholar
Chen, X., Guo, Q., & Mi, Y. (1998). Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. Journal of Applied Polymer Science, 69, 18911899.Google Scholar
Shito, T., Okubo, K., & Fujii, T. (2002). Development of eco-composites using natural bamboo fibers and their mechanical properties. Transactions on The Built Environment: WIT Press, 4, pp. 175182.Google Scholar
Sano, O., Matsuoka, T., Sakaguchi, K., & Karukaya, K. (2002). Study on the interfacial shear strength of bamboo fibre reinforced plastics. Transactions on The Built Environment: WIT Press, 4, 147–156.Google Scholar
Okubo, K., Fujii, T., & Yamamoto, Y. (2004). Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35, 377383.Google Scholar
Lee, S. Y., Chun, S. J., Doh, G. H., Kang, I. A., Lee, S., & Paik, K. H. (2009). Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. Journal of Composite Materials, 43, 16391657.Google Scholar
Chattopadhyay, S. K., Khandal, R., Uppaluri, R., & Ghoshal, A. K. (2011). Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. Journal of Applied Polymer Science, 119, 16191626.Google Scholar
Das, M., & Chakraborty, D. (2009b). The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, part 1: Polyester resin matrix. Journal of Applied Polymer Science, 112, 489495.Google Scholar
Kushwaha, P. K., & Kumar, R. (2010). Studies on the water absorption of bamboo-epoxy composites: The effect of silane treatment. Polymer-Plastics Technology and Engineering, 49, 867873.Google Scholar
Kushwaha, P. K., & Kumar, R. (2011). Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. Journal of Reinforced Plastics and Composites, 30, 7385.Google Scholar
Wong, K., Zahi, S., Low, K., & Lim, C. (2010). Fracture characterisation of short bamboo fibre reinforced polyester composites. Materials & Design, 31, 41474154.Google Scholar
Rajulu, A. V., Chary, K. N., Reddy, G. R., & Meng, Y. (2004). Void content, density and weight reduction studies on short bamboo fiber–epoxy composites. Journal of Reinforced Plastics and Composites, 23 127130.Google Scholar
Nirmal, U., Hashim, J., & Low, K. (2012). Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribology International, 47, 122133.Google Scholar
Osorio, L., Trujillo, E., Van Vuure, A., & Verpoest, I. (2011). Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. Journal of Reinforced Plastics and Composites, 30, 396408.Google Scholar
Das, M., & Chakraborty, D. (2009a). Processing of the uni-directional powdered phenolic resin-bamboo fiber composites and resulting dynamic mechanical properties. Journal of Reinforced Plastics and Composites, 28, 13391348.Google Scholar
Kim, J. Y., Peck, J. H., Hwang, S. H., et al. (2008). Preparation and mechanical properties of poly (vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. Journal of Applied Polymer Science, 108, 26542659.Google Scholar
Thwe, M. M., & Liao, K. (2003). Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Science and Technology, 63, 375387.Google Scholar
Samal, S. K., Mohanty, S., & Nayak, S. K. (2009). Polypropylene-bamboo/glass fiber hybrid composites: Fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. Journal of Reinforced Plastics and Composites, 28, 27292747.Google Scholar
Tan, T., Santos, S. F. D., Savastano, H., & Soboyejo, W. (2012). Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. Journal of Materials Science, 47, 28642874.Google Scholar
Kushwaha, P., & Kumar, R. (2009). Enhanced mechanical strength of BFRP composite using modified bamboos. Journal of Reinforced Plastics and Composites, 28, 28512859.Google Scholar
Koren, G. (2010). New bamboo product for the global market [Master thesis]. Delft, Netherlands: Delft University of Technology.Google Scholar
Meyers, M. A., Chen, P. Y., Lin, A. Y. M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53, 1206.Google Scholar
Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 9, 27492766.Google Scholar
Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P.,, & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14, 2336.Google Scholar
Li, J. F., Takagi, K., Ono, M., et al. (2003). Fabrication and evaluation of porous piezoelectric ceramics and porosity–graded piezoelectric actuators. Journal of the American Ceramic Society, 86, 10941098.Google Scholar
Zhou, B. (2000). Bio-inspired study of structural materials. Materials Science and Engineering C, 11, 1318.Google Scholar
Ribbans, B., Li, Y., & Tan, T., 2016. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures. Journal of the Mechanical Behavior of Biomedical Materials, 56, 5767.Google Scholar
Tan, T., & Ribbans, B. (2017). A bioinspired study on the compressive resistance of helicoidal fibre structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 20170538.Google Scholar
Alghamdi, S., Tan, T., Hale-Sills, C., et al. (2017). Catastrophic failure of nacre under pure shear stresses of torsion. Scientific Reports, 7, 13123.Google Scholar
Alghamdi, S., Du, F., Yang, J., & Tan, T. (2018). The role of water in the initial sliding of nacreous tablets: Findings from the torsional fracture of dry and hydrated nacre. Journal of the Mechanical Behavior of Biomedical Materials, 88, 322329.Google Scholar
Schulgasser, K., & Witztum, A. (1992). On the strength, stiffness and stability of tubular plant stems and leaves. Journal of Theoretical Biology, 155, 497515.Google Scholar
Bruck, H., Evans, J., & Peterson, M. (2002). The role of mechanics in biological and biologically inspired materials. Experimental Mechanics, 42, 361371.Google Scholar
Taya, M. (2003). Bio-inspired design of intelligent materials. In Smart structures and materials, electroactive polymer actuators and devices (Vol. 5051). Bellingham, WA: International Society for Optics and Photonics; pp. 5466.Google Scholar
Rabin, B. H., Williamson, R. L., Bruck, H. A., et al. (1998). Residual strains in an Al2O3‐Ni joint bonded with a composite interlayer: Experimental measurements and FEM analyses. Journal of the American Ceramic Society, 81, 15411549.Google Scholar
de Vries, D. V. W. M. (2010). Biomimetic design based on bamboo [Master thesis]. Eindhoven, Netherlands: Eindhoven University of Technology.Google Scholar
Winter, A. N., Corff, B. A., Reimanis, I. E., & Rabin, B. H. (2000). Fabrication of graded nickel-alumina composites with a thermal-behavior-matching process. Journal of the American Ceramic Society, 83, 21472154.Google Scholar
Williamson, R., Rabin, B., & Drake, J. (1993). Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part I. Model description and geometrical effects. Journal of Applied Physics, 74, 13101320.Google Scholar
Almajid, A. A., & Taya, M. (2001). 2D-elasticity analysis of FGM piezo-laminates under cylindrical bending. Journal of Intelligent Material Systems and Structures, 12, 341351.Google Scholar
Rubio, W. M., Vatanabe, S. L., Paulino, G. H., & Silva, E. C. N. (2011). Functionally graded piezoelectric material systems – A multiphysics perspective. Advanced computational materials modeling: From classical to multi-scale techniques. Weinheim, Germany: Wiley Press; pp. 301339.Google Scholar
Li, S., Zeng, Q., Xiao, Y., Fu, S., & Zhou, B. (1995). Biomimicry of bamboo bast fiber with engineering composite materials. Materials Science and Engineering: C, 3, 125130.Google Scholar
Markham, M., & Dawson, D. (1975). Interlaminar shear strength of fibre-reinforced composites. Composites, 6, 173176.Google Scholar
Tan, T., Ren, F., Wang, J. J. A., et al. (2013). Investigating fracture behavior of polymer and polymeric composite materials using spiral notch torsion test. Engineering Fracture Mechanics, 101, 109128.Google Scholar
Tan, T., Xia, T., O’Folan, H., et al. (2014). Sustainability in beauty: A review and extension of bamboo inspired materials. Blucher Material Science Proceedings, 1, 1821.Google Scholar
Tan, T., Xia, T., O’Folan, H., et al. (2015). Sustainability in beauty: An innovative proposing-learning model to inspire renewable energy education. The Journal of Sustainability Education, 8, 17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Materials
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Materials
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Materials
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
Available formats
×