Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-07T05:03:03.734Z Has data issue: false hasContentIssue false

11 - Flying of Insects

from Part III - Natural Phenomena

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

The abundance of flying insects in nature may make them seem ordinary to most of us. However, for approximately 350 million years [1], flying insects have been experimenting successfully with various aspects of flight, including aerodynamics [2,3], wing design [4], sensors [5,6], and flight control [7–9]. As a result, they have developed miniaturized flight apparatus and efficient computation architectures for executing aerobatic feats that are not yet emulated in engineering flight (Figure 11.1). This makes flying insects truly extraordinary small-scale aircraft from nature, and their design and working principles have received wide interest in both engineering and biology communities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wootton, R. (1981). Palaeozoic insects. Annual Review of Entomology, 26, 319344.Google Scholar
Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: From insects to vertebrates. Journal of Experimental Biology, 219, 920932.Google Scholar
Sane, S. P. (2001). The aerodynamics of flapping wings. Doctor of Philosophy, Integrative Biology. University of California.Google Scholar
Wootton, R. J. (1990). The mechanical design of insect wings. Scientific American, 263(5), 114120.CrossRefGoogle Scholar
Taylor, G. K., Krapp, H. G., & Simpson, S. J. (2007). Sensory systems and flight stability: What do insects measure and why? In Casas, J. and Simpson, S. J. (Eds.), Advances in insect physiology, vol. 34, pp. 231316. Academic Press.Google Scholar
Daniel, T., Aldworth, Z., Hinterwirth, A., & Fox, J. (2012). Insect inertial measurement units: Gyroscopic sensing of body rotation. Springer.Google Scholar
Dickinson, M. H., & Muijres, F. T. (2016). The aerodynamics and control of free flight manoeuvres in drosophila. Philosophical Transactions of the Royal Society B, 371, 20150388.CrossRefGoogle ScholarPubMed
Borst, A. (2014). Fly visual course control: Behaviour, algorithms and circuits. Nature Reviews Neuroscience, 15, 590599.CrossRefGoogle ScholarPubMed
Srinivasan, M. V., & Zhang, S. (2004). Visual motor computations in insects. Annual Review of Neuroscience, 27, 679696.CrossRefGoogle ScholarPubMed
Dudley, R. (2000). The biomechanics of insect flight. Princeton University Press.Google Scholar
Sane, S. P. (2016). Bioinspiration and biomimicry: What can engineers learn from biologists? Journal of Applied Science and Engineering, 1–6.Google Scholar
Hennig, W. (1981). Insect phylogeny. John Wiley & Sons Ltd.Google Scholar
Ennos, A. R. (1988). The importance of torsion in the design of insect wings. Journal of Experimental Biology, 140, 137160.CrossRefGoogle Scholar
Wootton, R., Herbert, R., Young, P., & Evans, K. (2003). Approaches to the structural modelling of insect wings. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358, 15771587.Google Scholar
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325, 15491552.Google Scholar
Zheng, L., Hedrick, T. L., & Mittal, R. (2013). Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLOS ONE, 8, e53060.Google Scholar
Combes, S. A., & Daniel, T. L. (September 2003). Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology, 206, 29892997.Google Scholar
Fry, S. N., Sayaman, R., & Dickinson, M. H. (April 2003). The aerodynamics of free-flight maneuvers in Drosophila. Science, 300, 495498.CrossRefGoogle ScholarPubMed
Cheng, B. X., & Hedrick, T. L. (December 15, 2011). The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta). Journal of Experimental Biology, 214, 40924106.Google Scholar
Sun, M., & Tang, H. (January 2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 205, 5570.CrossRefGoogle Scholar
Sun, M., & Xiong, Y. (February 2005). Dynamic flight stability of a hovering bumblebee. Journal of Experimental Biology, 208, 447459.Google Scholar
Gao, N., Aono, H., & Liu, H. (2011). Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hoveringfruitfly Drosophila melanogaster. Journal of Theoretical Biology, 270, 98111.Google Scholar
Wu, J. H., & Sun, M. (2012). Floquet stability analysis of the longitudinal dynamics of two hovering model insects. Journal of the Royal Society Interface, 9, 20332046.CrossRefGoogle ScholarPubMed
Cheng, B., & Deng, X. (2011). Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Transactions on Robotics, 27, 849864.CrossRefGoogle Scholar
Taha, H. E., Hajj, M. R., & Nayfeh, A. H. (2014). Longitudinal flight dynamics of hovering MAVs/insects. Journal of Guidance, Control, and Dynamics, 37, 970979.Google Scholar
Taha, H. E., Nayfeh, A. H., & Hajj, M. R. (2014). Effect of the aerodynamic-induced parametric excitation on the longitudinal stability of hovering MAVs/insects. Nonlinear Dynamics, 78, 23992408.Google Scholar
Karásek, M., & Preumont, A. (2012). Flapping flight stability in hover: A comparison of various aerodynamic models. International Journal of Micro Air Vehicles, 4, 203226.CrossRefGoogle Scholar
Taylor, G. K., & Thomas, A. L. R. (August 2003). Dynamic flight stability in the desert locust Schistocerca gregaria. Journal of Experimental Biology, 206, 28032829.CrossRefGoogle ScholarPubMed
Sun, M. (2014). Insect flight dynamics: Stability and control. Reviews of Modern Physics, 86, 615646.Google Scholar
Krapp, H. G., Hengstenberg, B., & Hengstenberg, R. (1998). Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology, 79, 19021917.CrossRefGoogle ScholarPubMed
Taylor, Charles P. (1981). Contribution of compound eyes and ocelli to steering of locusts in flight: I. Behavioural analysis. Journal of Experimental Biology, 93, 118.CrossRefGoogle Scholar
Mamiya, A., Straw, A. D., To´masson, E., & Dickinson, M. H. (2011). Active and passive antennal movements during visually guided steering in flying Drosophila. The Journal of Neuroscience, 31(18), 69006914.Google Scholar
Nalbach, G. (1993). The halteres of the blowfly Calliphora. Journal of Comparative Physiology A, 173, 293300.CrossRefGoogle Scholar
Pringle, J. W. S. (1948). The gyroscopic mechanism of the halteres of Diptera. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 233, 347384.Google Scholar
Fayyazuddin, A., & Dickinson, M. H. (1996). Haltere afferents provide direct, electrotonic input to a steering motor neuron in the blowfly, Calliphora. The Journal of Neuroscience, 16, 52255232.Google Scholar
Fox, J. L., Fairhall, A. L., & Daniel, T. L. (2010). Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope. Proceedings of the National Academy of Sciences, 107, 38403845.CrossRefGoogle Scholar
Dickerson, B. H., Aldworth, Z. N., & Daniel, T. L. (2014). Control of moth flight posture is mediated by wing mechanosensory feedback. Journal of Experimental Biology, 217, 23012308.Google ScholarPubMed
Bender, J. A., & Dickinson, M. H.(December 2006). A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster. Journal of Experimental Biology, 209, 45974606.Google Scholar
Fuller, S. B., Straw, A. D., Peek, M. Y., Murray, R. M., & Dickinson, M. H. (2014). Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proceedings of the National Academy of Sciences, 111, E1182E1191.CrossRefGoogle ScholarPubMed
Roth, E., Hall, R. W. Daniel, T. L., & Sponberg, S. (2016). Integration of parallel mechanosensory and visual pathways resolved through sensory conflict. Proceedings of the National Academy of Sciences, 201522419.Google Scholar
Cowan, N. J., Ankarali, M. M., Dyhr, J. P., et al. (2014). Feedback control as a framework for understanding tradeoffs in biology. Integrative and Comparative Biology, icu050.CrossRefGoogle Scholar
Ristroph, L., Bergou, A. J., Ristroph, G., Coumes, K. Berman, G. J., & Guckenheimer, J. (March 16, 2010). Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proceedings of the National Academy of Sciences, 107, 48204824.Google Scholar
Liu, P., & Cheng, B. (2017). Limitations of rotational manoeuvrability in insects and hummingbirds: Evaluating the effects of neuro-biomechanical delays and muscle mechanical power. Journal of the Royal Society Interface, 14, 20170068.CrossRefGoogle ScholarPubMed
Dickinson, M., & Tu, M. S. (1997). The function of Dipteran flight muscle. Comparative Biochemistry and Physiology, 116A, 223238.Google Scholar
Tu, M. S., & Dickinson, M. H. (1995). The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). Journal of Comparative Physiology, 178, 813830.Google Scholar
Balint, C. N., & Dickinson, M. H. (2001). The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. Journal of Experimental Biology, 204, 42134226.CrossRefGoogle ScholarPubMed
Lindsay, T., Sustar, A., & Dickinson, M. (2017). The function and organization of the motor system controlling flight maneuvers in flies. Current Biology, 27, 345358.Google Scholar
Ellington, C. (1985). Power and efficiency of insect flight muscle. Journal of Experimental Biology, 115, 293304.Google Scholar
Mountcastle, A. M., & Combes, S. A. (2013). Wing flexibility enhances load-lifting capacity in bumblebees. In Proceedings of the Royal Society B, 20130531.Google Scholar
Lentink, D., & Dickinson, M. H. (August 15, 2009). Biofluiddynamic scaling of flapping, spinning and translating fins and wings. Journal of Experimental Biology, 212, 26912704.Google Scholar
Lentink, D., & Dickinson, M. H. (August 15, 2009). Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 212, 27052719.CrossRefGoogle ScholarPubMed
Chin, D. D., Matloff, L. Y., Stowers, A. K., Tucci, E. R., & Lentink, D. (2017). Inspiration for wing design: How forelimb specialization enables active flight in modern vertebrates. Journal of the Royal Society Interface, 14, 20170240.Google Scholar
Swartz, S. M., Iriarte-Diaz, J., Riskin, D. K., et al. (2007). Wing structure and the aerodynamic basis of flight in bats. AIAA Journal, 1.Google Scholar
Ellington, C. P. (1984). The aerodynamics of hovering insect flight. 3. Kinematics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 305, 4178.Google Scholar
Ozen, C. A., & Rockwell, D. (2012). Three-dimensional vortex structure on a rotating wing. Journal of Fluid Mechanics, 707, 541.CrossRefGoogle Scholar
Garmann, D., & Visbal, M. (2014). Dynamics of revolving wings for various aspect ratios. Journal of Fluid Mechanics, 748, 932956.Google Scholar
Cheng, B., Roll, J., Liu, Y., Troolin, D. R., & Deng, X. (2014). Three-dimensional vortex wake structure of flapping wings in hovering flight. Journal of the Royal Society Interface, 11, 20130984.Google Scholar
Wojcik, C. J., & Buchholz, J. H. (2014). Vorticity transport in the leading-edge vortex on a rotating blade. Journal of Fluid Mechanics, 743, 249261,Google Scholar
Birch, J. M., Dickson, W. B., & Dickinson, M. H. (March 1, 2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207, 10631072.Google Scholar
Sane, S. P., & Dickinson, M. H. (October 2001). The control of flight force by a flapping wing: Lift and drag production. Journal of Experimental Biology, 204, 26072626.Google Scholar
Dickinson, M. H., Lehmann, F.-O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284, 18812044.Google Scholar
Sane, S. P., & Dickinson, M. H. (April 2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205, 10871096.CrossRefGoogle Scholar
Birch., J. M., & Dickinson, M. H. (July 1, 2003). The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. Journal of Experimental Biology, 206, 22572272.Google Scholar
Weisfogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59, 169230.CrossRefGoogle Scholar
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2008). Aerodynamics of low Reynolds number flyers. Cambridge University Press.Google Scholar
Pines, D. J., & Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43, 290305,Google Scholar
Shyy, W., Berg, M., & Ljungqvist, D. (1999). Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35, 455505,CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C.-K., & Cesnik, C. E. (2010). Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46, 284327.Google Scholar
Wootton, R. J. (1992). Functional morphology of insect wings. Annual Review of Entomology, 37, 113140,CrossRefGoogle Scholar
Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., & Iima, M. (2012). Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration & Biomimetics, 7, 025002.Google Scholar
Tian, F.-B., Dai, H., Luo, H., Doyle, J. F., & Rousseau, B. (2014). Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Journal of Computational Physics, 258, 451469.Google Scholar
Dai, H., Luo, H., & Doyle, J. F. (2012). Dynamic pitching of an elastic rectangular wing in hovering motion. Journal of Fluid Mechanics, 693, 473499.Google Scholar
Nakata, T., & Liu, H. (2012). A fluid–structure interaction model of insect flight with flexible wings. Journal of Computational Physics, 231, 18221847.Google Scholar
Ishihara, D., Horie, T., & Denda, M. (2009). A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. Journal of Experimental Biology, 212, 110.Google Scholar
Sotiropoulos, F., & Yang, X. (2014). Immersed boundary methods for simulating fluid–structure interaction. Progress in Aerospace Sciences, 65, 121.CrossRefGoogle Scholar
Wang, Q., Goosen, J., & van Keulen, F. (2017). An efficient fluid–structure interaction model for optimizing twistable flapping wings. Journal of Fluids and Structures, 73, 8299.Google Scholar
Ma, Y., Ning, J. G., Ren, H. L., Zhang, P. F., & Zhao, H. Y. (2015). The function of resilin in honeybee wings. Journal of Experimental Biology, 218, 21362142.Google ScholarPubMed
Haas, F., Gorb, S., & Blickhan, R. (2000). The function of resilin in beetle wings. Proceedings of the Royal Society of London B: Biological Sciences, 267, 13751381.Google Scholar
Daniel, T. L., & Combes, S. A. (2002). Flexible wings and fins: Bending by inertial or fluid-dynamic forces?. Integrative and Comparative Biology, 42, 10441049.CrossRefGoogle ScholarPubMed
Yin, B., & Luo, H. (2010). Effect of wing inertia on hovering performance of flexible flapping wings. Physics of Fluids, 22, 11902.Google Scholar
Chen, J.-S., Chen, J.-Y., & Chou, Y.-F. (2008). On the natural frequencies and mode shapes of dragonfly wings. Journal of Sound and Vibration, 313, 643654.Google Scholar
Ennos, A. R. (1988). The inertial cause of wing rotation in Diptera. Journal of Experimental Biology, 140, 161169.Google Scholar
Ennos, A. R. (1986). A comparative study of the flight mechanism of diptera. Journal of Experimental Biology, 127, 355372.CrossRefGoogle Scholar
Miyan, J. A., & Ewing, A. W. (1985). How Diptera move their wings: A re-examination of the wing base articulation and muscle systems concerned with flight. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 311, 271302.Google Scholar
Wang, H., Ando, N., & Kanzaki, R. (2008). Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli. Journal of Experimental Biology, 211, 423432.Google Scholar
Walker, S. M., Thomas, A. L., & Taylor, G. K. (2012). Operation of the alula as an indicator of gear change in hoverflies. Journal of the Royal Society Interface, 9, 11941207.Google Scholar
Deora, T., Singh, A. K., & Sane, S. P. (2015). Biomechanical basis of wing and haltere coordination in flies. Proceedings of the National Academy of Sciences, 201412279.Google Scholar
Nalbach, G. (1989). The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight. Journal of Comparative Physiology, 165, 321331.Google Scholar
Wisser, A., & Nachtigall, W. (1984). Functional-morphological investigations on the flight muscles and their insertion points in the blowfly Calliphora erythrocephala (Insecta, Diptera). Zoomorphology, 104, 188195.Google Scholar
Tu, M. S., & Dickinson, M. H. (1994). Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. Journal of Experimental Biology, 192, 207224.Google Scholar
Dickinson, M. H., & Lighton, J. R. B. (1995). Muscle efficiency and elastic storage in the flight motor of Drosophila. Science, 268, 8790.Google Scholar
Lehmann, F.-O., & Dickinson, M. (1997). The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila. Journal of Experimental Biology, 200, 11331143.Google Scholar
Pringle, J. W. S. (1949). The excitation and contraction of the flight muscles of insects. Journal of Physiology, 108, 226232.Google Scholar
Pringle, J. W. S. (2003). Insect flight, vol. 9. Cambridge University Press.Google Scholar
Springthorpe, D., Fernández, M. J., & Hedrick, T. L. (2012). Neuromuscular control of free-flight yaw turns in the hawkmoth Manduca sexta. Journal of Experimental Biology, 215, 17661774.Google Scholar
Balint, C. N., & Dickinson, M. H. (2004). Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina. Journal of Experimental Biology, 207, 38133838.Google Scholar
Paulk, A., Millard, S. S., & Swinderen, B. v. (2012). Vision in Drosophila: Seeing the world through a model’s eyes. Annual Review of Entomology, 58, 313332.Google Scholar
Keil, T. A. (1997). Functional morphology of insect mechanoreceptors. Microscopy Research and Technique, 39, 506531.Google Scholar
Maimon, G., Straw, A. D., & Dickinson, M. H. (2008). A simple vision-based algorithm for decision making in flying drosophila. Current Biology, 18, 464470.Google Scholar
Tammero, L. F., Frye, M. A., & Dickinson, M. (2004). Spatial organization of visuomotor reflexes in Drosophila. Journal of Experimental Biology, 207, 113122.Google Scholar
Collett, T., Nalbach, H., & Wagner, H. (1993). Visual stabilization in arthropods. Reviews of Oculomotor Research, 5, 239.Google Scholar
Krapp, Holger G. (2000). Neuronal matched filters for optic flow processing in flying insects. International Review of Neurobiology, 44, 93120.Google Scholar
Srinivasan, M. V., & Zhang, S.-W. (2000). Visual navigation in flying insects. International Review of Neurobiology, 44, 67.Google Scholar
Heisenberg, M., & Wolf, R. (1992). The sensory-motor link in motion-dependent flight control of flies. Reviews of Oculomotor Research, 5, 265283.Google Scholar
Bender, J. A., & Dickinson, M. H. (August 2006). Visual stimulation of saccades in magnetically tethered Drosophila. Journal of Experimental Biology, 209, 31703182.Google Scholar
Tammero, L. F., & Dickinson, M. (2001). The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 205, 327343.Google Scholar
Van Breugel, F., & Dickinson, M. H. (2012). The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 215, 17831798.Google Scholar
Strausfeld, N. J. (2012). Atlas of an insect brain. Springer Science & Business Media.Google Scholar
Borst, A. (2009). Drosophila's view on insect vision. Current Biology, 19, R36R47.Google Scholar
Tammero, L. F., Frye, M. A., & Dickinson, M. H. (2004). Spatial organization of visuomotor reflexes in Drosophila. Journal of Experimental Biology, 207, 113122.Google Scholar
Srinivasan, M. V. (2011). Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiological Reviews, 91, 413460.Google Scholar
Srinivasan, M. V., Zhang, S., Altwein, M., & Tautz, J. (2000). Honeybee navigation: Nature and calibration of the “odometer.” Science, 287, 851853.Google Scholar
Barth, F. G., Humphrey, J. A., & Srinivasan, M. V. (2012). Frontiers in sensing: From biology to engineering: Springer Science & Business Media.Google Scholar
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sensory Communication, 303–317.Google Scholar
Borst, A., Haag, J., & Reiff, D. F. (2010). Fly motion vision. Annual Review of Neuroscience, 33, 4970.Google Scholar
Tammero, L. F., & Dickinson, M. H. (September 2002). Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. Journal of Experimental Biology, 205, 27852798.Google Scholar
Mayer, M., Vogtmann, K., Bausenwein, B., Wolf, R., & Heisenberg, M. (1988). Flight control during free yaw turns in Drosophila-melanogaster. Journal of Comparative Physiology A – Sensory Neural and Behavioral Physiology, 163, 389399.Google Scholar
Boeddeker, N., & Egelhaaf, M. (2005). A single control system for smooth and saccade-like pursuit in blowflies. Journal of Experimental Biology, 208, 15631572.Google Scholar
Heisenberg, M., & Wolf, R. (1979). On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. Journal of Physiology, 130, 113130.Google Scholar
Heisenberg, M., & Wolf, R. (1988). Reafferent control of optomotor yaw torque in Drosophila-melanogaster. Journal of Comparative Physiology A – Sensory Neural and Behavioral Physiology, 163, 373388.Google Scholar
Varju, D. (1990). A note on the reafference principle. Biological Cybernetics, 63, 315323,CrossRefGoogle Scholar
Roth, E., Reiser, M. B., Dickinson, M. H., & Cowan, N. J. (2012). A task-level model for optomotor yaw regulation in Drosophila melanogaster: A frequency-domain system identification approach. Proceedings of the Conference on Decisions and Controls (CDC), Maui, Hawaii.CrossRefGoogle Scholar
Mischiati, M., Lin, H.-T., Herold, P., Imler, E., Olberg, R., & Leonardo, A. (2015). Internal models direct dragonfly interception steering. Nature, 517, 333338.CrossRefGoogle ScholarPubMed
Wagner, H. (1982). Flow-field variables trigger landing in flies. Nature, 297 (5862), 147148.Google Scholar
Borst, A. (1990). How do flies land? Bioscience, 40, 292299.Google Scholar
Borst, A., & Bahde, S. (1986). What kind of movement detector is triggering the landing response of the housefly? Biological Cybernetics, 55, 5969.CrossRefGoogle Scholar
Hall, J. M., McLoughlin, D. P., Kathman, N. D., Yarger, A. M., Mureli, S., & Fox, J. L. (2015). Kinematic diversity suggests expanded roles for fly halteres. Biology Letters, 11, 20150845.Google Scholar
Beatus, T., Guckenheimer, J. M., & Cohen, I. (2015). Controlling roll perturbations in fruit flies. Journal of the Royal Society Interface, 12, 20150075.Google Scholar
Sane, S. P., Dieudonné, A., Willis, M. A., & Daniel, T. L. (2007). Antennal mechanosensors mediate flight control in moths. Science, 315, 863866.Google Scholar
Sane, S. P., & Jacobson, N. P. (January 2006). Induced airflow in flying insects II. Measurement of induced flow. Journal of Experimental Biology, 209, 4356.Google Scholar
Dickinson, M. (1990). Comparison of encoding properties of campaniform sensilla on the fly wing. Journal of Experimental Biology, 151, 245261.Google Scholar
Dickinson, M. (1992). Directional sensitivity and mechanical coupling dynamics of campaniform sensilla during chordwise deformations of the fly wing. Journal of Experimental Biology, 169, 221233.Google Scholar
Dickinson, M. (1990). Linear and nonlinear encoding properties of an identified mechanoreceptor on the fly wing measured with mechanical noise stimuli. Journal of Experimental Biology, 151, 219244.Google Scholar
Dickinson, M. H., & Palka, J. (1987). Physiological properties, time of development, and central projection are correlated in the wing mechanoreceptors of Drosophila. The Journal of Neuroscience, 7, 42014208.Google Scholar
Dickerson, B. H., Aldworth, Z. N., & Daniel, T. L. (2014). Control of moth flight posture is mediated by wing mechanosensory feedback. Journal of Experimental Biology, 217, 23012308.Google Scholar
Parsons, M. M., Krapp, H. G., & Laughlin, S. B. (2010). Sensor fusion in identified visual interneurons. Current Biology, 20, 624628.Google Scholar
Fayyazuddin, A., & Dickinson, M. H. (October 1999). Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly, Calliphora. Journal of Neurophysiology, 82, 19161926.Google Scholar
Sherman, A., & Dickinson, M. (2004). Summation of visual and mechanosensory feedback in Drosophila flight control. Journal of Experimental Biology, 207, 133142,Google Scholar
Chan, W. P., Prete, F., & Dickinson, M. (1998). Visual input to the efferent control system of a fly's gyroscope. Science, 280, 289292.Google Scholar
Sherman, A., & Dickinson, M. H. (January 2003). A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 206, 295302.Google Scholar
Dickinson, M. H. (April 2005). The initiation and control of rapid flight maneuvers in fruit flies. Integrative and Comparative Biology, 45, 7481.Google Scholar
Krapp, H. G., Taylor, G. K., & Humbert, J. S. (2011). The mode-sensing hypothesis: Matching sensors, actuators and flight dynamics. In Barth, Friedrich G., Humphrey, Joseph A. C., and Srinivasan, Mandyam V. (Eds.), Frontiers in sensing – biology and engineering. Springer Verlag.Google Scholar
Sponberg, S., Dyhr, J. P., Hall, R. W., & Daniel, T. L. (2015). Luminance-dependent visual processing enables moth flight in low light. Science, 348, 12451248.Google Scholar
Windsor, S. P., Bomphrey, R. J., & Taylor, G. K. (2014). Vision-based flight control in the hawkmoth Hyles lineata. Journal of the Royal Society Interface, 11, 20130921.Google Scholar
Cheng, B., Tobalske, B. W., Powers, G. T., et al. (2016). Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics. Journal of Experimental Biology, 219, 35183531.Google Scholar
Ristroph, L., Ristroph, G., Morozova, S., Bergou, A. J., Chang, S., & Guckenheimer, J. (2013). Active and passive stabilization of body pitch in insect flight. Journal of the Royal Society Interface, 10, 20130237.Google Scholar
Trimmer, W. S. (1989). Microrobots and micromechanical systems. Sensors and Actuators, 19, 267287.Google Scholar
Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. S. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130, 052304.Google Scholar
Zou, Y., Zhang, W., & Zhang, Z. (2016). Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Transactions on Robotics, 32, 12851289.Google Scholar
Roll, J., Cheng, B., & Deng, X. (2015). An electromagnetic actuator for high-frequency flapping-wing micro air vehicles. IEEE Transactions on Robotics, 31, 400414.Google Scholar
Coleman, David, Moble, Benedict, Vikram, Hrishikeshavan, and Inderjit, Chopra. “Design, development and flight-testing of a robotic hummingbird.” In American Helicopter Society 71st Annual Forum, pp. 5–7. 2015.Google Scholar
Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN. January, 9–12.Google Scholar
Hines, L., Campolo, D., & Sitti, M. (2014). Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance. IEEE Transactions on Robotics, 30, 220232.Google Scholar
Lentink, D., Jongerius, S. R., & Bradshaw, N. L. (2009). The scalable design of flapping micro-air vehicles inspired by insect flight. In Floreano, Dario, Zufferey, Jean-Christophe, Srinivasan, Mandyam V., Ellington, Charlie (Eds.), Flying insects and robots. Springer, 185205.Google Scholar
Baek, S. S., Ma, K. Y., & Fearing, R. S. (2009). Efficient resonant drive of flapping-wing robots. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference, 2854–2860.Google Scholar
Mateti, K., Byrne-Dugan, R. A., Tadigadapa, S. A., & Rahn, C. D. (2012). Wing rotation and lift in SUEX flapping wing mechanisms. Smart Materials and Structures, 22, 014006.Google Scholar
Deng, X. Y., Schenato, L., Wu, W. C., & Sastry, S. S. (August 2006). Flapping flight for biomimetic robotic insects: Part I – System modeling. IEEE Transactions on Robotics, 22, 776788.Google Scholar
Wood, R. J. (2008). The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics, 24, 341347,Google Scholar
Polcawich, R. G., Pulskamp, J. S., Bedair, S., et al. (2010). Integrated PiezoMEMS actuators and sensors. In Sensors, 2010 IEEE, 2193–2196.Google Scholar
Perez-Arancibia, N. O., Chirarattananon, P., Finio, B. M., & Wood, R. J. (2011). Pitch-angle feedback control of a biologically inspired flapping-wing microrobot. In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference, 1495–1502.Google Scholar
Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., & Wood, R. J. (2011). First controlled vertical flight of a biologically inspired microrobot. Bioinspiration & Biomimetics, 6, 036009.Google Scholar
Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340, 603607.Google Scholar
Zhang, J., Cheng, B., & Deng, X. (2016). Instantaneous wing kinematics tracking and force control of a high-frequency flapping wing insect MAV. Journal of Micro-Bio Robotics, 11, 6784.Google Scholar
Zhang, J., Tu, Z., Fei, F., & Deng, X. (2017). Geometric flight control of a hovering robotic hummingbird. In Robotics and Automation (ICRA), 2017 IEEE International Conference, 5415–5421.CrossRefGoogle Scholar
Karásek, M., Hua, A., Nan, Y., Lalami, M., & Preumont, A. (2014). Pitch and roll control mechanism for a hovering flapping wing MAV. International Journal of Micro Air Vehicles, 6, 253264.Google Scholar
Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., & Fearing, R. S. (2001). Towards flapping wing control for a micromechanical flying insect. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference, 3901–3908.Google Scholar
Muijres, F. T., Elzinga, M. J., Melis, J. M., & Dickinson, M. H. (2014). Flies evade looming targets by executing rapid visually directed banked turns. Science, 344, 172177.Google Scholar
Altshuler, D. L., Quicazán-Rubio, E. M., Segre, P. S., & Middleton, K. M. (2012). Wingbeat kinematics and motor control of yaw turns in Anna's hummingbirds (Calypte anna). Journal of Experimental Biology, 215, 40704084.Google Scholar
Bronson, J., Pulskamp, J., Polcawich, R., Kroninger, C., & Wetzel, E. (2009). PZT MEMS actuated flapping wings for insect-inspired robotics. In Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference, 1047–1050.Google Scholar
Sitti, M. (2003). Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax. IEEE/ASME Transactions on Mechatronics, 8, 2636.Google Scholar
Graule, M., Chirarattananon, P., Fuller, S., et al. (2016). Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science, 352, 978982.Google Scholar
Lau, G.-K., Chin, Y.-W., Goh, J. T.-W., & Wood, R. J. (2014). Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight. IEEE Transactions on Robotics, 30, 11871197.Google Scholar
Teoh, Z. E., & Wood, R. J. (2013). A flapping-wing microrobot with a differential angle-of-attack mechanism. In Robotics and Automation (ICRA), 2013 IEEE International Conference, 1381–1388.Google Scholar
Finio, B. M., Whitney, J. P., & Wood, R. J. (2010). Stroke plane deviation for a microrobotic fly. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference, 3378–3385.Google Scholar
Finio, B. M., Shang, J. K., & Wood, R. J. (2009). Body torque modulation for a microrobotic fly. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference, 3449–3456.Google Scholar
Shang, J., Combes, S. A., Finio, B., & Wood, R. J. (2009). Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspiration & Biomimetics, 4, 036002.Google Scholar
Tanaka, H., & Wood, R. J. (2010). Fabrication of corrugated artificial insect wings using laser micromachined molds. Journal of Micromechanics and Microengineering, 20, 075008.Google Scholar
Tanaka, H., Whitney, J. P., & Wood, R. J. (2011). Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Oxford University Press.Google Scholar
Steltz, E., Seeman, M., Avadhanula, S., & Fearing, R. S. (2006). Power electronics design choice for piezoelectric microrobots. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference, 1322–1328.Google Scholar
Karpelson, M., Wei, G.-Y., & Wood, R. J. (2012). Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 176, 7889.Google Scholar
Meng, K., Zhang, W., Chen, W., et al. (2012). The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle. Microsystem Technologies, 18, 127136.Google Scholar
Roll, J. A., Bardroff, D. T., & Deng, X. (2016). Mechanics of a scalable high frequency flapping wing robotic platform capable of lift-off. In Robotics and Automation (ICRA), 2016 IEEE International Conference, 4664–4671.Google Scholar
Cheng, B., Roll, J., & Deng, X. (2013). Modeling and optimization of an electromagnetic actuators for flapping-wing micro air vehicle. In IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 40354041.Google Scholar
Roll, J., Cheng, B., & Deng, X. (2013). Design, fabrication and testing of an electromagnetic actuator for flapping wing micro air vehicles. Submitted to Proceedings of IEEE ICRA, Karlsruhe, Germany.Google Scholar
Croon, G. C. H. E. d., Groen, M. A., Wagter, C. D., Remes, B., Ruijsink, R., & Oudheusden, B. W. v. (2012). Design, aerodynamics and autonomy of the DelFly. Bioinspiration & Biomimetics, 7, 025003.Google Scholar
Perseghetti, B. M., Roll, J. A., & Gallagher, J. C. (2014). Design constraints of a minimally actuated four bar linkage flapping-wing micro air vehicle. In Robot intelligence technology and applications 2. Springer, 545555.Google Scholar
Hu, Z., Cheng, B., & Deng, X. (2010). Lift generation and flow measurements of a robotic insect. In 49th AIAA Aerospace Sciences Meeting, Orlando, FL.Google Scholar
Zhang, J., Fei, F., Tu, Z., & Deng, X. (2017). Design optimization and system integration of robotic hummingbird. In Robotics and Automation (ICRA), 2017 IEEE International Conference, 5422–5428.Google Scholar
Conn, A., Burgess, S., & Ling, C. (2007). Design of a parallel crank-rocker flapping mechanism for insect-inspired micro air vehicles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221, 12111222.Google Scholar
Galiński, C., & Żbikowski, R. (2005). Insect-like flapping wing mechanism based on a double spherical Scotch yoke. Journal of the Royal Society Interface, 2, 223235.Google Scholar
Seshadri, P., Benedict, M., & Chopra, I. (2012). A novel mechanism for emulating insect wing kinematics. Bioinspiration & Biomimetics, 7, 036017.Google Scholar
Floreano, D., Pericet-Camara, R., Viollet, S., et al. (2013). Miniature curved artificial compound eyes. Proceedings of the National Academy of Sciences, 110, 92679272.Google Scholar
Wu, W.-C., Schenato, L., Wood, R. J., & Fearing, R. S. (2003). Biomimetic sensor suite for flight control of a micromechanical flying insect: Design and experimental results. In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference, 1146–1151.Google Scholar
Smith, G., Bedair, S., Schuster, B., et al. (2012). Biologically inspired, haltere, angular-rate sensors for micro-autonomous systems. In SPIE Defense, Security, and Sensing, 83731K–83731K-13.Google Scholar
Plett, J., Bahl, A., Buss, M., Kühnlenz, K., & Borst, A. (2012). Bio-inspired visual ego-rotation sensor for MAVs. Biological Cybernetics, 106, 5163,Google Scholar
Floreano, D., Zufferey, J.-C., Srinivasan, M. V., & Ellington, C. (2009). Flying insects and robots. Springer.Google Scholar
Srinivasan, M. V., Chahl, J. S., Weber, K., Venkatesh, S., Nagle, M. G., & Zhang, S.-W. (1999). Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26, 203216.Google Scholar
Hyslop, A. M., & Humbert, J. S. (2010). Autonomous navigation in three-dimensional urban environments using wide-field integration of optic flow. Journal of Guidance, Control, and Dynamics, 33, 147159.Google Scholar
Humbert, J. S., & Hyslop, A. M. (2010). Bioinspired visuomotor convergence. IEEE Transactions on Robotics, 26, 121130.Google Scholar
Neumann, T., & Bülthoff, H. (2001). Insect inspired visual control of translatory flight. Advances in Artificial Life, 627–636.Google Scholar
Barbour, N., & Schmidt, G. (2001). Inertial sensor technology trends. IEEE Sensors Journal, 1, 332339.Google Scholar
Duparré, J., & Wippermann, F. (2006). Micro-optical artificial compound eyes. Bioinspiration & Biomimetics, 1, R1.Google Scholar
Jeong, K.-H., Kim, J., & Lee, L. P. (2006). Biologically inspired artificial compound eyes. Science, 312, 557561.Google Scholar
Muratet, L., Doncieux, S., & Meyer, J.-A. (2004). A biomimetic reactive navigation system using the optical flow for a rotary-wing UAV in urban environment. Proceedings of the International Session on Robotics.Google Scholar
Chahl, J., & Srinivasan, M. V. (2000). A complete panoramic vision system, incorporating imaging, ranging, and three dimensional navigation. In Omnidirectional Vision, 2000. Proceedings. IEEE Workshop, 104–111.Google Scholar
Franceschini, N., Ruffier, F., & Serres, J. (2007). A bio-inspired flying robot sheds light on insect piloting abilities. Current Biology, 17, 329335.Google Scholar
Zufferey, J.-C., Beyeler, A., & Floreano, D. (2009). Optic flow to steer and avoid collisions in 3D. In Flying insects and robots. Springer, 7386.Google Scholar
Kehoe, J., Watkins, A., Causey, R., & Lind, R. (2006). State estimation using optical flow from parallax-weighted feature tracking. In AIAA Guidance, Navigation, and Control Conference and Exhibit, 6721.Google Scholar
Franz, M. O., Chahl, J. S., & Krapp, H. G. (2004). Insect-inspired estimation of egomotion. Neural Computation, 16, 22452260.Google Scholar
Srinivasan, M., Zhang, S., Lehrer, M., & Collett, T. (1996). Honeybee navigation en route to the goal: Visual flight control and odometry. Journal of Experimental Biology, 199, 237244.Google Scholar
Srinivasan, M. V., Zhang, S., & Chahl, J. S. (2001). Landing strategies in honeybees, and possible applications to autonomous airborne vehicles. The Biological Bulletin, 200, 216221.Google Scholar
Srinivasan, M. V., Zhang, S.-W., Chahl, J. S., Barth, E., & Venkatesh, S. (2000). How honeybees make grazing landings on flat surfaces. Biological Cybernetics, 83, 171183.Google Scholar
Conroy, J., Gremillion, G., Ranganathan, B., & Humbert, J. S. (2009). Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Autonomous Robots, 27, 189198.Google Scholar
Chahl, J. S., Srinivasan, M. V., & Zhang, S.-W. (2004). Landing strategies in honeybees and applications to uninhabited airborne vehicles. The International Journal of Robotics Research, 23, 101110.Google Scholar
Barrows, G., & Neely, C. (2000). Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle. In Proceedings of SPIE, 52–63.Google Scholar
Xu, P., Humbert, J. S., & Abshire, P. (2011). Analog VLSI implementation of wide-field integration methods. Journal of Intelligent & Robotic Systems, 64, 465487.Google Scholar
Zhang, T., Wu, H., Borst, A., Kuhnlenz, K., & Buss, M. (2008). An FPGA implementation of insect-inspired motion detector for high-speed vision systems. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference, 335–340.Google Scholar
Gremillion, G., Galfond, M., Krapp, H. G., & Humbert, J. S. (2012). Biomimetic sensing and modeling of the ocelli visual system of flying insects. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference, 1454–1459.Google Scholar
Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y., & Wood, R. J. (2014). Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Journal of the Royal Society Interface, 11, 20140281.Google Scholar
Fuller, S. B., Sands, A., Haggerty, A., Karpelson, M., & Wood, R. J. (2013). Estimating attitude and wind velocity using biomimetic sensors on a microrobotic bee. In Robotics and Automation (ICRA), 2013 IEEE International Conference, 1374–1380.Google Scholar
Muijres, F. T., Elzinga, M. J., Iwasaki, N. A., & Dickinson, M. H. (2015). Body saccades of Drosophila consist of stereotyped banked turns. Journal of Experimental Biology, 218, 864875.Google Scholar
Wootton, R. J. (1981). Support and deformability in insect wings. Journal of Zoology, 193, 447468.Google Scholar
Walker, S. M., Thomas, A. L., & Taylor, G. K. (2009). Deformable wing kinematics in free-flying hoverflies. Journal of the Royal Society Interface, 7, 131142.Google Scholar
Hedenström, A. (2014). How insect flight steering muscles work. PLoS Biology, 12, e1001822.Google Scholar
Maisak, M. S., Haag, J., Ammer, G., et al. (2013). A directional tuning map of Drosophila elementary motion detectors. Nature, 500, 212.Google Scholar
Parks, P., Cheng, B., Hu, Z., & Deng, X. (2011). Translational damping on flapping cicada wings. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 574–579.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Flying of Insects
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
  • Chapter DOI: https://doi.org/10.1017/9781139058995.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Flying of Insects
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
  • Chapter DOI: https://doi.org/10.1017/9781139058995.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Flying of Insects
  • Edited by Wole Soboyejo, Worcester Polytechnic Institute, Massachusetts, Leo Daniel
  • Book: Bioinspired Structures and Design
  • Online publication: 28 August 2020
  • Chapter DOI: https://doi.org/10.1017/9781139058995.012
Available formats
×